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Abstract

This introduction to the R package tclust is a (slightly) modified version of Fritz et al.
(2012), published in the Journal of Statistical Software.

Outlying data can heavily influence standard clustering methods. At the same time,
clustering principles can be useful when robustifying statistical procedures. These two
reasons motivate the development of feasible robust model-based clustering approaches.
With this in mind, an R package for performing non-hierarchical robust clustering, called
tclust, is presented here. Instead of trying to “fit” noisy data, a proportion α of the most
outlying observations is trimmed. The tclust package efficiently handles different cluster
scatter constraints. Graphical exploratory tools are also provided to help the user make
sensible choices for the trimming proportion as well as the number of clusters to search
for.

Keywords: Model-based clustering, trimming, heterogeneous clusters.

1. Introduction to robust clustering and tclust

Methods for cluster analysis attempt to detect homogeneous clusters with large heterogeneity
among them. As happens with other (non-robust) statistical procedures, clustering methods
may be heavily influenced by even a small fraction of outlying data. For instance, two or
more clusters might be joined artificially, due to outlying observations, or “spurious” non-
informative clusters may be composed of only a few outlying observations (see, e.g., García-
Escudero and Gordaliza 1999; García-Escudero et al. 2010). Therefore, the application of
robust methods in this context is very advisable, especially in fully automatic clustering (un-
supervised learning) problems. Certain relations between cluster analysis and robust methods
(Rocke and Woodruff 2002; Hardin and Rocke 2004; García-Escudero et al. 2003; Woodruff
and Reiners 2004) also motivate interest in robust clustering techniques. For example, robust
clustering techniques can be used to handle “clusters” of highly concentrated outliers which
are especially dangerous in (non-robust) estimation. García-Escudero et al. (2010) provides
a recent survey of robust clustering methods.

The tclust package for the R environment for statistical computing (R Development Core Team
2010) implements different robust non-hierarchical clustering algorithms where trimming
plays a key role. This package is available at http://CRAN.R-project.org/package=tclust.
When trimming allows the removal of a fraction α of the “most outlying” data, the strong
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influence of outlying observations can be avoided. This trimming approach to clustering has
been introduced in Cuesta-Albertos et al. (1997), Gallegos (2002), Gallegos and Ritter (2005)
and García-Escudero et al. (2008). Trimming also serves to identify potentially interesting
anomalous observations.

Trimming is not a new concept in statistics. For instance, the trimmed mean for one-
dimensional data removes a proportion α/2 each of the largest and smallest observations
before computing the mean. However, it is not straightforward to extend this philosophy to
cluster analysis, because most of these problems are of multivariate nature. Moreover, it is
often the case that “bridge points” lying between clusters ought to be trimmed. Instead of
forcing the statistician to define the regions to be trimmed in advance, the procedures imple-
mented in tclust take the whole data structure into account in order to decide which parts of
the sample should be discarded. By considering this type of trimming, these procedures are
even able to trim outlying bridge points. The “self-trimming” philosophy behind these pro-
cedures is exactly the same as adopted by some well-known high breakdown-point methods
(see, e.g., Rousseeuw and Leroy 1987).

As a first example of this trimming approach, let us consider the trimmed k-means method
introduced in Cuesta-Albertos et al. (1997). The function tkmeans from the tclust package
implements this method. In the following example, this function is applied to a bivariate data
set based on the Old Faithful geyser called geyser2 that accompanies the tclust package. The
code given below creates Figure 1.

R> library(tclust)

R> set.seed(100)

R> data(geyser2)

R> clus <- tkmeans(geyser2, k = 3, alpha=0.03)

R> plot(clus, col = c(og, 2:4), tol.lwd = 1, tol.lty = 2)

In the data set geyser2, we are searching for k = 3 clusters and a proportion α = 0.03 of the
data is trimmed. The clustering results are shown in Figure 1. Among this 3% of trimmed
data, we can see 6 anomalous “short followed by short” eruptions lengths. Notice that an
observation situated between the clusters is also trimmed.

The package presented here adopts a “crisp” clustering approach, meaning that each obser-
vation is either trimmed or fully assigned to a cluster. In comparison, mixture approaches
estimate a cluster pertinence probability for each observation. Robust mixture alternatives
have also been proposed where noisy data is tried to be fitted through additional mixture
components. For instance, package mclust (Fraley and Raftery 2012; Banfield and Raftery
1993; Fraley and Raftery 1998) and the Fortran program emmix (McLachlan 1999; McLach-
lan and Peel 2000) implement such robust mixture fitting approaches. Mixture fitting results
can be easily converted into a “crisp” clustering result by converting the cluster pertinence
probabilities into 0-1 probabilities. Contrary to these mixture fitting approaches, the pro-
cedures implemented in the tclust package simply remove outlying observations and do not
intend to fit them at all. Package tlemix (see Neytchev et al. 2012; Neykov et al. 2007) also
implements a closely related trimming approach. As described in Section 3, the tclust pack-
age focuses on offering adequate cluster scatter matrix constraints leading to a wide range
of clustering procedures depending on the chosen constraint, and avoiding the occurrence of
spurious non-interesting clusters.
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Figure 1: Trimmed k-means results with k = 3 and α = 0.03 for the bivariate Old Faithful
Geyser data. Trimmed observations are denoted by the symbol “◦” (a convention followed in
all the figures in this work).

The outline of the paper is as follows: In Section 2 we briefly review the so-called “spurious
outliers” model and show how to derive two different clustering criteria from it. Different
constraints on the cluster scatter matrices and their implementation in the tclust package
are addressed in Section 3. Section 4 presents the numerical output returned by this pack-
age. Section 5 provides some brief comments concerning the algorithms implemented, and a
comparison of tclust and several other robust clustering approaches are given in Section 6.
Section 7 shows some graphical outputs that help advise the choice of the number of clusters
and the trimming proportion. Other useful plots summarizing the robust clustering results
are shown in Section 8. Finally, Section 9 applies the tclust package to a well-know real data
set.
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2. Trimming and the spurious outliers model

Gallegos (2002) and Gallegos and Ritter (2005) propose the “spurious outliers model” as
a probabilistic framework for robust crisp clustering. Let f(·; µ, Σ) denote the probability
density function of the p-variate normal distribution with mean µ and covariance matrix Σ.
The “spurious-outlier model” is defined through “likelihoods” like

[ k∏

j=1

∏

i∈Rj

f(xi; µj , Σj)

][ ∏

i∈R0

gi(xi)

]
(1)

with {R0, ..., Rk} being a partition of the set of indices {1, 2, ..., n} such that #R0 = ⌈nα⌉.
R0 are the indices of the “non-regular” observations generated by other (not necessarily nor-
mal) probability density functions gi. “Non-regular” observations can be clearly considered
as “outliers” if we assume certain sensible assumptions for the gi (see details in Gallegos 2002;
Gallegos and Ritter 2005). Under these assumptions, the search of a partition {R0, ..., Rk}
with #R0 = ⌈nα⌉, vectors µj and positive definite matrices Σj maximizing (1) can be sim-
plified to the same search (of a partition, vectors and positive definite matrices) by just
maximizing

k∑

j=1

∑

i∈Rj

log f(xi; µj , Σj). (2)

Notice that observations xi with i ∈ R0 are not taken into account in (2). Maximizing (2)
with k = 1 yields the Minimum Covariance Determinant (MCD) estimator (Rousseeuw 1985).

Unfortunately, the direct maximization of (2) is not a well-defined problem when k > 1. It is
easy to see that (2) is unbounded without any constraint on the cluster scatter matrices Σj .
The tclust function from the tclust package approximately maximizes (2) under different
cluster scatter matrix constraints which will be shown in Section 3.

The maximization of (2) implicitly assumes equal cluster weights. In other words, we are
ideally searching for clusters with equal sizes. The function tclust provides this option by
setting the argument equal.weights = TRUE. The use of this option does not guarantee that
all resulting clusters exactly contain the same number of observations, but the method hence
prefers this type of solutions.

Alternatively, different cluster sizes or cluster weights can be considered by searching for
a partition {R0, ..., Rk} (with #R0 = ⌈nα⌉), vectors µj , positive definite matrices Σj and
weights πj ∈ [0, 1] maximizing

k∑

j=1

∑

i∈Rj

(log πj + log f(xi; µj , Σj)). (3)

The (default) option equal.weights = FALSE is used in this case. Again, the scatter matrices
also have to be constrained such that the maximization of (3) becomes a well-defined problem.
Note that (3) simplifies to (2) when assuming equal.weights = TRUE and all weights are
equally set to πj = 1/k.
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equal.weights = TRUE equal.weights = FALSE

restr = "eigen"
k-means
Cuesta-Albertos et al. (1997)

García-Escudero et al. (2008)

restr = "deter" Gallegos (2002) This work

Table 1: Clustering methods handled by tclust. Names in cursive letters are untrimmed
(α = 0) methods.

3. Constraints on the cluster scatter matrices

As already mentioned, the function tclust implements different algorithms aimed at approx-
imately maximizing (2) and (3) under different types of constraints which can be applied on
the scatter matrices Σj . The type of constraint is specified by the argument restr of the
tclust function. Table 1 gives an overview of the different clustering approaches implemented
by the tclust function depending on the chosen type of constraint.

Imposing constraints is compulsory because maximizing (2) or (3) without any restriction
is not a well-defined problem. Notice that an almost degenerated scatter matrix Σj would
cause trimmed log-likelihoods (2) and (3) to tend to infinity. This issue can cause a (ro-
bust) clustering algorithm of this type to end up finding “spurious” clusters almost lying in
lower-dimensional subspaces. Moreover, the resulting clustering solutions might heavily de-
pend on the chosen constraint. The strength of the constraint is controlled by the argument
restr.fact ≥ 1 in the tclust function. The larger restr.fact is chosen, the looser is the
restriction on the scatter matrices, allowing for more heterogeneity among the clusters. On
the contrary, small values of restr.fact close to 1 imply very “equally scattered” clusters.
This idea of constraining cluster scatters to avoid spurious solutions goes back to Hathaway
(1985), who proposed it in mixture fitting problems.

Also arising from the spurious outlier model, other types of constraints have recently been
introduced by Gallegos and Ritter (2009, 2010). These (closely related) constraints also serve
to avoid degeneracy of trimmed likelihoods but they are not implemented in the current
version of the tclust package.

3.1. Constraints on the eigenvalues

Based on the eigenvalues of the cluster scatter matrices, a scatter similarity constraint may
be defined. With λl(Σj) as the eigenvalues of the cluster scatter matrices Σj and

Mn = max
j=1,...,k

max
l=1,...,p

λl(Σj) and mn = min
j=1,...,k

min
l=1,...,p

λl(Σj) (4)

as the maximum and minimum eigenvalues, the restriction restr = "eigen" constrains the
ratio Mn/mn to be smaller or equal than a fixed value restr.fact ≥ 1. A theoretical study
of the properties of this approach with equal.weights = FALSE can be found in García-
Escudero et al. (2008).

This type of constraint limits the relative size of the axes of the equidensity ellipsoids de-
fined through the obtained Σj when assuming normality. This way we are simultaneously
controlling the relative group sizes and also the deviation from sphericity in each cluster.

Setting equal.weights = TRUE, restr = "eigen" and restr.fact = 1 implies the most
constrained case. In this case, the tclust function tries to solve the trimmed k-means problem
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as introduced by Cuesta-Albertos et al. (1997). This problem simplifies to the well-known k-
means clustering criterion when no trimming is done (i.e., alpha = 0). The tkmeans function
directly implements this most constrained application of the tclust function.

3.2. Constraints on the determinants

Another way of restricting cluster scatter matrices is constraining their determinants. Thus,
if

Mn = max
j=1,...,k

|Σj | and mn = min
j=1,...,k

|Σj |

are the maximum and minimum determinants, we attempt to maximize (2) or (3) by con-
straining the ratio Mn/mn to be smaller or equal than a fixed value restr.fact. This is
done in the function tclust by using the option restr = "deter".

Now, this type of constraint limits the relative volumes of the mentioned equidensity ellipsoids,
but not the cluster shapes. The use of this type of constraint is particularly advisable when
affine equivariance is required because this property is satisfied when restr = "deter".

The untrimmed case alpha = 0, restr = "deter" and restr.fact = 1 was already out-
lined in Maronna and Jacovkis (1974), as the only sensible way to avoid (Mahalanobis distance
modified) k-means type algorithms to return clusters of a few almost collinear observations.
The possibility of trimming data was also considered in Gallegos (2002) who implicitly as-
sumed |Σ1| = ... = |Σk| (and so restr.fact = 1). The package presented here extends her
approach to more general cases (restr.fact > 1).

3.3. Example

In this example, we examine the influence of different constraints by applying the function
tclust to the so-called M5data data set. This data set, which accompanies the tclust package,
has been generated following the simulation scheme M5 introduced in García-Escudero et al.
(2008). Thus it is a bivariate mixture of three simulated gaussian components with very
different scatters and a clear overlap between two of these components. A 10% proportion
of outliers is also added in the outer region of the bounding rectangle enclosing the three
gaussian components. See Figure 2 for a graphical representation and García-Escudero et al.
(2008) for more details on the structure of this M5data data set. Executing the following code
yields Figure 3.

R > data ("M5data")

R > x <- M5data[, 1:2]

R > res.a <- tclust(x, k = 3, alpha = 0.1, restr.fact = 1, restr = "eigen",

+ equal.weights = TRUE)

R > res.b <- tclust(x, k = 3, alpha = 0.1, restr.fact = 50, restr = "eigen",

+ equal.weights = FALSE)

R > res.c <- tclust(x, k = 3, alpha = 0.1, restr.fact = 1, restr = "deter",

+ equal.weights = TRUE)

R > res.d <- tclust(x, k = 3, alpha = 0.1, restr.fact = 50, restr = "deter",

+ equal.weights = FALSE)

R > plot(res.a, main = "/r")

R > plot(res.b, main = "/r")
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Figure 2: A scatter plot of the M5data data set. Different symbols are used for the data
points generated by each of the three bivariate normal components and “◦” for the added
outliers.

R > plot(res.c, main = "/r")

R > plot(res.d, main = "/r")

Although different constraints are imposed, we are searching for k = 3 clusters and the trim-
ming proportion is set to α = 0.1 in all the cases. Note that only the clustering procedure
introduced in García-Escudero et al. (2008), shown in Figure 3,(d), with a sufficiently large
value of restr.fact approximately returns the three original clusters in spite of the very
different cluster scatters and different cluster sizes. Moreover, this clustering procedure ad-
equately handles the severe overlap of two clusters. The value restr.fact = 50 has been
chosen in this case because the eigenvectors of the covariance matrices of the three gaussian
components satisfy restriction (4) for this value. Due to their underlying assumptions, the
other three clustering methods (trimmed k-means in Figure 3,(a), Gallegos and Ritter (2005)
in (b), Gallegos (2002) in (c)) return rather similarly structured clusters. In fact, we found
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Figure 3: Results of the clustering processes for the M5data data set for different constraints
on the cluster scatter matrices and the parameters α = 0.1 and k = 3. Different colors and
symbols represent each observation’s individual cluster assignment.

spherical clusters in (a), clusters with the same scatter matrix in (b) and clusters with the
same cluster scatter matrix determinant in (c). The M5data is perhaps a very “extreme” sit-
uation and restriction settings in (a), (b) and (c) can be useful (and easier to be interpreted)
with not so extreme data sets and where the assumptions implied by these restriction settings
hold.

4. Numerical output

The function tclust returns an S3 object containing the cluster centers µj by columns
($centers), scatter matrices Σj as an array ($cov), the weights ($weights), the number
of observations in each group ($size) and the maximum value found for the trimmed log-
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Figure 4: Applying tclust with k = 3 and α = 0 on a simulated data set which originally
consists of 2 clusters when equal.weights = FALSE.

likelihood objective function (2) or (3) ($obj). The vector $cluster provides the cluster
assignment of each observation, whereas an artificial cluster “0” (without location and scat-
ter information) is introduced which holds all trimmed data points.

Sometimes, (2) and (3) maximize with some clusters remaining empty (see Figure 4). In this
case, only information on the non-empty groups is returned. Notice that, if we are searching
for k clusters, empty clusters can be found when a clustering solution for a number of clusters
strictly smaller than k attains a higher value for (2) or (3) than the best solution found with
k clusters. In this case, artificial empty clusters may be defined by considering sufficiently
remote centers µj and scatter matrices Σj satisfying the specific constraints that are assigned
to these empty clusters. They are chosen such that f(·; µj , Σj) gives almost null density to
all the observations in the sample. These artificially added centers and scatter matrices are
not returned as output by the tclust function and a warning is issued. For instance, let us
consider the following code
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R > set.seed(10)

R > x <- rbind(MASS::mvrnorm(200, c (0, 0), diag (2)),

+ MASS::mvrnorm(200, c (5, 0), diag (2)))

R > clus <- tclust(x, k = 3, alpha = 0, restr.fact = 1)

R > plot(clus)

Although we are searching for k = 3 clusters, Figure 4 and the issued warning show that only
2 clusters are found. Notice that k = 2 is surely a more sensible choice for the number of
clusters than k = 3 for this generated data set. Therefore, the detection of empty clusters,
or clusters with few data points, can be helpful, providing valuable tools for making sensible
choices for k as we will see in Section 7. On the other hand, the detection of empty clusters
is very unlikely to happen when the argument equal.weights = TRUE is provided in the call
to tclust.

5. Algorithms

The maximization of (2) or (3) considering different cluster scatter matrix constraints is not
straightforward because of the combinatorial nature of the associated maximization problems.

The algorithm presented in García-Escudero et al. (2008) can be adapted to approximately
solve all these problems. The methods implemented in tclust could be seen as Classifica-
tion EM algorithms (Schroeder 1976; Celeux and Govaert 1992), whereas a certain type of
“concentration” steps (see the fast-MCD algorithm in Rousseeuw and Van Driessen 1999)
is also applied. In fact, the concentration steps applied by the package tclust can be con-
sidered as an extension of those applied by the batch-mode k-means algorithm (Steinhaus
1956; Forgy 1965). It can be seen that the target function always increases throughout the
application of concentration steps, whereas several random start configurations are needed in
order to avoid ending trapped in local maxima. Therefore, nstart random initializations and
iter.max concentration steps are considered. The probability that the algorithm converges
close to the global optimum maximizing (2) or (3) increases with larger values of nstart and
iter.max. The drawback of high values of nstart and iter.max obviously is the increasing
computational effort.

In the concentration step, the centers and scatter matrices are updated by considering the
cluster sample means and cluster sample covariance matrices. New cluster assignments are
obtained by gathering the “closest” observations to the new centers. Mahalanobis distances,
based on the computed cluster sample covariance matrices, are used in order to decide which
are the closest observations to each center. If needed, in the updating step, the cluster sample
covariance matrices are modified as little as possible but in such a way that they satisfy the
desired constraints (García-Escudero et al. 2008). The main idea behind these “constrained”
concentration steps is to replace the eigenvalues of the sample covariance matrices by optimally
truncated eigenvalues, which satisfy the desired constraint. A more detailed description of the
algorithm applied by tclust and the way the restrictions are forced onto the cluster scatter
matrices can be found in Fritz et al. (2011).

6. Comparison with other robust clustering proposals
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Figure 5: PAM’s clustering results for the geyser2 data with 3-medoids denoted by the
symbol “×” in (a). PAM’s clustering results for a modified geyser2 data set in (b) and when
applying tkmeans with k = 3 and α = 0.03 in (c).

In this section, we briefly compare the performance of the clustering procedures implemented
in the tclust package with respect to other robust clustering proposals in the literature.

The Partitioning Around Medoids (PAM) clustering method (Kaufman and Rousseeuw 1990)
has been proposed as a robust alternative to k-means clustering. It can be seen that the
effect of the 6 anomalous “short followed by short” eruptions lengths in the lower left corner
of Figure 1 do not affect the position of the k-medoid centers (see Figure 5,(a)) too much, nor
the resulting clusters. However, in Figure 5,(b), we see that the clustering results with k = 3
are strongly affected when moving these 6 anomalous points toward a more distant position.
On the other hand, in Figure 5,(c), we can see that these outlying data points do not affect
the trimmed k-means based clustering at all once that they are trimmed.

In fact, only one single outlier placed in a very remote position is able to completely break
down the PAM method (García-Escudero and Gordaliza 1999). This also happens when ap-
plying emmix, which has a breakdown point of zero (Hennig 2004). The emmix approach
is able to obtain appropriate clustering results for the two data sets made of mixtures of
symmetric and asymmetric t components as those shown in Figure 6. These two data sets
contain three main clusters with some distant observations in the heavy tails of these t com-
ponents, which would be considered as outliers when assuming normality. When applying the
classification EM algorithm without trimming to these data sets, we are not able to find the
three cluster structures and two main clusters are artificially joined together. However, when
considering α = 0.05, tclust perfectly avoids the harmful effect of the observations in the
tails and still discovers the three clusters. In fact, almost all non-trimmed observations are
correctly clustered in both, symmetric and asymmetric, cases. Any α > 0 discarding the most
outlying observations would give similar results. Moreover, it may be seen that the shape
of the elliptical clusters are essentially discovered in the case of the symmetric-elliptical t
components. In this example, we see that applying tclust to data sets including non-normally
distributed components as those in Figure 6 may result in proper clustering solutions, this
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Figure 6: A data set made up of three elliptical t components is shown in (a) and three asym-
metrical t components in (d). The associated clustering results when applying the tclust

function with k = 3 and α = 0 are shown in (b) and (e) and with k = 3 and α = 0.05 in (c)
and (f).

however cannot be guaranteed if the underlying distributions differ too much from normality.
The closely related tlemix package allows to consider other non-normal models by taking ad-
vantage of the flexibility provided by the FlexMix package (Leisch 2004). On the other hand,
tclust focuses on normally distributed components and on the implementation of appropri-
ate cluster scatter matrix constraints while tlemix does not. The tlemix mainly controls the
minimum number of observations in a cluster.

The widely used mclust package considers a uniformly distributed component for explaining
outlying data points. As we can see, this uniform component successfully accommodates
the 10% “background noise” as seen in Figure 7,(a). However, it is not able to cope with a
more structured noise pattern like the “helix” in Figure 7,(c) which also accounts for 10%
of the data, although the information of a 10% contamination level was passed to mclust.
Alternatively, the tclust package with k = 2 and α = 0.1 properly discovers the outlying data
points without trying to fit them.

Since groups of outliers may be considered as further clusters, it could be argued that robust
clustering problems can always be solved by increasing the number of groups we are searching
for. However, as explained in García-Escudero et al. (2010), this is not necessarily the best
strategy. Firstly, sometimes the researcher fixes the number of clusters in advance, not being
aware of the presence of a small amount of outlying observations. Secondly, it could lead to
a quite large number of clusters when very scattered outliers are present in the data set.

A clear limitation of tclust is that it is not applicable on high-dimensional data sets, as the
method in its current definition definitely needs a data set containing more observations than
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Figure 7: Clustering results for two simulated data sets when applying mclust with k = 2 in
(a) and (c) and tclust with k = 2 and α = 0.1 in (b) and (d).

dimensions.

7. Selecting the number of groups and the trimming size

Perhaps one of the most complex problems when applying cluster analysis is the choice of
the number of clusters, k. In some cases one might have an idea of the number of clusters in
advance, but usually k is completely unknown. Moreover, in the approach proposed here, the
trimming proportion α has also to be chosen without knowing the true contamination level.

As we will see through the following example, the choices for k and α are related problems
that should be addressed simultaneously. It is important to see that a particular trimming
level implies a specific number of clusters and vice versa. This dependency can be explained
as entire clusters tend to be trimmed completely when increasing α. On the other hand, when
choosing α too low, groups of outliers might form new spurious clusters and thus it appears
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Figure 8: Clustering results for the simulated data set mixt with k = 3, α = 0 and restr.fact

= 50 (a) and k = 2, α = 0.1 and restr.fact = 8 (b).

that the number of clusters found in the data set is higher. Moreover, the simultaneous choice
of k and α depends on the type of clusters we are searching for and on the allowed differences
between cluster sizes. These two aspects can be controlled by the choice of arguments restr

and restr.fact.

To demonstrate the relation between α, k and restr.fact, let us consider restr = "eigen"

and the data set in Figure 8 which could either be interpreted as a mixture of three components
(a) or a mixture of two components (b) with a 10% outlier proportion. Both clustering
solutions shown in Figure 8 are perfectly sensible and the final choice of α and k only depends
on the value given to restr.fact. The code used to obtain Figure 8 is the following:

R > sigma1 <- diag(2) ## EigenValues: 1, 1

R > sigma2 <- diag(2) * 8 - 2 ## EigenValues: 8, 4

R > sigma3 <- diag(2) * 50 ## EigenValues: 50, 50

R > mixt <- rbind(

+ MASS::mvrnorm(360, mean = c (0.0, 0), sigma = sigma1),

+ MASS::mvrnorm(540, mean = c (5.0, 10), sigma = sigma2),

+ MASS::mvrnorm(100, mean = c (2.5, 5), sigma = sigma3))

R > plot(tclust(mixt, k = 3, alpha = 0.00, restr.fact = 50))

R > plot(tclust(mixt, k = 2, alpha = 0.05, restr.fact = 12))

Considering sigma1 and sigma2, the quotient of the largest and smallest eigenvalue is 8,
whereas the maximal quotient is 50 if we consider sigma1, sigma2 and sigma3. Thus
restr.fact = 8 would allow to consider two clusters while restr.fact = 50 would also
allow to assume three groups there. Although the proportion of “contaminated” data is equal
to 10%, the trimming level must be reduced to 5%, when considering k = 2, because the third
(more scattered) gaussian component partially overlaps with the other two components.

Let us assume first that restr and restr.fact have been fixed in advance by the researcher
who applies the robust clustering method. Even with this information and assuming α = 0,
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choosing the appropriate number of clusters is not an easy task. The careful monitoring of
the maximum value attained by log-likelihoods like those in (2) and (3) while changing k
has traditionally been applied as a method for choosing the number of clusters when α = 0.
Moreover Bryant (1991) stated that the use of “weighted” log-likelihoods (3) is preferred to
the use of log-likelihoods assuming equal weights (2). Notice that increasing k always causes
the maximized log-likelihood (2) to increase too, and this could lead to “overestimate” the
appropriate number of clusters (see García-Escudero et al. 2011).

In this trimming framework, let us consider LΠ
restr.fact

(α, k) as the maximum value reached
by (3) for each combination of a given set of values for k and α. García-Escudero et al. (2011)
propose to monitor the “classification trimmed likelihoods” functionals

(α, k) 7→ LΠ
restr.fact

(α, k)

while altering α and k, which yields an exploratory graphical tool for making sensible choices
for parameters α and k. In fact, it is proposed to choose the number of clusters as the smallest
value of k such that

LΠ
restr.fact

(α, k + 1) − LΠ
restr.fact

(α, k) (5)

is (close to) 0 except for small values of α. Once the number of clusters is fixed, a good choice
for the trimming level is the first α0 such that (5) is (close to) 0 for every α ≥ α0. Although
we are convinced that monitoring the classification trimmed likelihoods functionals is very
informative, no theoretical statistical procedures are available yet for determining when (5)
can be formally considered as “close to 0”.

The function ctlcurves in package tclust approximates the classification trimmed likelihoods
by successively applying the tclust function for a sequence of values of k and α. A default
value restr.fact = 50 is considered but, if desired, other values of restr.fact can be
passed to tclust via ctlcurves too.

For instance, the following code applied to the previously simulated mixt data set

R > plot (ctlcurves (mixt, k = 1:4, alpha = seq (0, 0.2, by = 0.05)))

results in Figure 9. This figure shows that increasing k from 2 to 3 is needed when α = 0,
as the objective functions value differs noticeably between k = 2 and k = 3. On the other
hand, increasing k from 2 to 3 is not needed anymore as the third (more scattered) “cluster”
vanishes when trimming 5% of the most outlying observations. Thus, there is no discernable
difference of the objective functions value with α ≥ α0 = 0.05 and k ≥ 2. Increasing k from
3 to 4 is not needed in any case.

The previously described procedure for making sensible choices for parameters k and α re-
quires an active role from the researcher. The type of restriction and the allowed restriction
factor, which do not necessarily depend on the given data set, must be specified in advance.
For instance, some specific clustering applications like “location-facilities” problems require
almost spherical clusters that can be obtained by setting restr = "eigen" and a restr.fact

close to 1. The researcher’s decision on the restriction consequently modifies the proper de-
termination of parameters k and α.

Due to the important role of the statement of restr and restr.fact, some general guideline
for fixing them will be given here. For instance, as already commented, fixing restr =

"deter" is recommended when only the relative cluster sizes shall be constrained, or when
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Figure 9: Classification trimmed likelihoods with k = 1, ..., 4, α = 0, 0.05, ..., 0.2 and
restr.fact = 50 for the mixt data set in Figure 8.

affine equivariance is clearly needed. On the other hand, using restr = "eigen" is advised
when we want to simultaneously constrain relative cluster sizes and shapes.

With respect to the choice of restr.fact, we recommend to initially use large values when
applying ctlcurves, thus, providing high flexibility to the clustering method. The default
value restr.fact = 50 is suggested for ctlcurves, as it worked well with a lot of data sets
(especially if the variables have been properly standardized through the scale argument in
the tclust function). The so obtained “sensible” values for k and α and their associated
clustering solutions must be explored carefully. For instance, tclust issues a warning when
the returned clustering solution has been “artificially restricted” by the algorithm, as shown
in Section 9. This means, that the values Mn and mn (see Section 3.1 and Section 3.2) derived
from the returned scatter matrices satisfy Mn/mn = restr.fact, because the algorithm has
forced the chosen constraint, since the (unconstrained) group sample covariance matrices do
not satisfy Mn/mn ≤ restr.fact. In this situation, if no specific constraints are required,
restr.fact may be increased stepwise until this warning disappears. Moreover, printing the
object returned by the ctlcurves function points out all “artificially restricted” solutions for
each computed combination of parameters k and α. In this way, if desired, we can easily
search for clustering solutions which are not artificially restricted and do not contain spurious
clusters. Finally, the exploratory tools in Section 8 also help to evaluate whether all these
parameters are reasonably chosen.
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Note that arguments nstart and iter.max may be provided in the call to ctlcurves and
they are internally passed to function tclust.

The curves presented in García-Escudero et al. (2003) can be considered as precedents of
those we obtain by using the ctlcurves function. Trimmed likelihoods have also been taken
into account in Neykov et al. (2007) for choosing k and α by using a BIC criterion.

8. Graphical displays

As seen in previous examples, the package tclust provides functions for visualizing the com-
puted cluster assignments. One-dimensional, two-dimensional and higher-dimensional cases
are visualized differently:

p = 1: The one-dimensional data set with the corresponding cluster assignments is displayed
along the x-axis. Setting the argument jitter = TRUE jitters the data along the y-axis
in order to increase the visibility of the actual data structure. Additionally, a (robust)
scatter estimation of each cluster is also displayed.

p = 2: Tolerance ellipsoids are plotted additionally in order to visualize the estimated cluster
scatter matrices.

p > 2: The first two Fisher’s canonical coordinates are displayed in this case, which are com-
puted based on the estimated cluster scatter matrices. Notice that trimmed observations
are not taken into account when computing these coordinates, since they have been com-
pletely discarded. The implementation of these canonical coordinates is derived from
the function discrcoord as implemented in the package fpc (Hennig 2010).

A simple example demonstrates how the plot function works in different dimensions. The
code:

R > geyser1 <- geyser2[, 1, drop = FALSE]

R > geyser3 <- cbind (geyser2, rnorm (nrow (geyser2)))

R > plot (tkmeans (geyser1, k = 2, alpha = 0.03), jitter = TRUE)

R > plot (tkmeans (geyser3, k = 3, alpha = 0.03))

yields Figure 10. For demonstrating the different plotting modes, we have selected one sin-
gle variable from geyser2 to obtain a one-dimensional data set (geyser1), and, added an
additional normally distributed variable to geyser2, yielding a three-dimensional data set
(geyser3). Figure 10 plots the results of the trimmed k-means robust clustering method for
these two generated data sets.

Given a tclust object, some additional exploratory graphical tools can be applied in order
to evaluate the quality of the cluster assignments and the trimming decisions. This is done
by applying the function DiscrFact.

Let R̂ = {R̂0, R̂1, ..., R̂k}, θ̂ = (θ̂1, ..., θ̂k) and π̂ = (π̂1, ..., π̂k) be the values obtained by
maximizing (2) or (3) (we set π̂j = 1/k when maximizing (2)). Dj(xi; θ̂, π̂) = π̂jφ(xi, θ̂j) is
a measure of the degree of affiliation of observation xi with cluster j. These values can be
ordered as D(1)(xi; θ̂, π̂) ≤ ... ≤ D(k)(xi; θ̂, π̂). Thus the quality of the assignment decision of a

non trimmed observation xi to the cluster j with D(k)(xi; θ̂, π̂) = Dj(xi; θ̂, π̂) can be evaluated
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Figure 10: Trimmed k-means clustering results for geyser1 (one-dimensional) in (a) and for
geyser3 (three-dimensional) in (b). These two data sets are based on geyser2. k = 2 is fixed
in (a) and k = 3 in (b) while α = 0.03 is fixed in both cases.

by comparing its degree of affiliation with cluster j to the best second possible assignment.
That is

DF(i) = log
(
D(k−1)(xi; θ̂, π̂)/D(k)(xi; θ̂, π̂)

)
for xi not trimmed.

Let x(1), ..., x(n) be the observations in the sample after being sorted according to their

D(k)(·; θ̂, π̂) values, i.e., D(k)(x(1); θ̂, π̂) ≤ ... ≤ D(k)(x(n); θ̂, π̂). It is not difficult to see that
x(1), ..., x(⌈nα⌉) are the trimmed observations which are not assigned to any cluster. Neverthe-

less, it is possible to compute the degree of affiliation D(k)(xi; θ̂, π̂) of a trimmed observation
xi to its nearest cluster. Thus, the quality of the trimming decision on this observation
can be evaluated by comparing D(k)(xi; θ̂, π̂) to D(k)(x(⌈nα⌉+1); θ̂, π̂), with x(⌈nα⌉+1) being the

non-trimmed observation with smallest value of D(k)(·; θ̂, π̂). That is

DF(i) = log
(
D(k)(xi; θ̂, π̂)/D(k)(x(⌈nα⌉+1); θ̂, π̂)

)
for xi trimmed.

Hence, discriminant factors DF(i) ≤ 0 are obtained for every observation in the data set,
whether trimmed or not.

Observations with large DF(i) values (i.e., values close to zero) indicate doubtful assignments
or trimming decisions. The use of this type of discriminant factors was already suggested
in Van Aelst et al. (2006) in a clustering problem without trimming. “Silhouette” plots
(Rousseeuw 1987) can be used for summarizing the obtained ordered discriminant factors.
Clusters in the silhouette plot with many large DF(i) values indicate the existence of not
very “well-determined” clusters. The most “doubtful” assignments with DF(i) larger than a
log(threshold) value are highlighted by the function DiscrFact.

Figure 11 shows the result of applying the DiscrFact function to a clustering solution found
for the mixt data set appearing in Figure 8. The following code is used to obtain this figure:

R > clus.w <- tclust (mixt, k = 3, alpha = 0.1, restr.fact = 1,

+ equal.weights = TRUE)
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Figure 11: Graphical displays based on the DF(i) values for a tclust cluster solution obtained
with k = 3, α = 0.1, restr.fact = 1 and equal.weights = TRUE for the mixt data set.

R > discr.clus.w <- DiscrFact (clus.w, threshold = 0.1)

R > plot (discr.clus.w)

The choice threshold = 0.1 means that a decision on a particular observation xi is con-
sidered as doubtful, if the quality of the second best possible decision (D(k−1)(xi; θ̂, π̂) or

D(k)(x(⌈nα⌉+1); θ̂, π̂) for trimmed observations) is larger than one tenth of the quality of the

actually made decision (D(k)(xi; θ̂, π̂)).

Although Figure 9 suggests to choose k = 2, k has been increased to 3 in order to show
how such a change leads to doubtful cluster assignment decisions which can be visualized by
DiscrFact. Figure 11,(a) simply illustrates the cluster assignments and trimming decisions.
The mentioned silhouette plot is presented in (b), whereas the doubtful decisions are marked
in (c). All observations with DF(i) ≥ log(0.1) are highlighted as they are plotted darker/in
color. Most of the doubtful decisions are located in the overlapping area of the two artificially
found clusters (highlighted symbols “×” and “+”). Some doubtfully trimmed observations
(highlighted symbol “◦”) are located in the boundaries of these two clusters.

9. Swiss Bank notes data

The well-known “Swiss Bank notes” data set includes 6 numerical measurements (six-dimensi-
onal data set) made on 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes (Flury
and Riedwyl 1988). The following code can be used to obtain the classification trimmed
likelihoods shown in Figure 12.
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Figure 12: Classification trimmed likelihoods for k = 1, ..., 4 and α = 0, .025, ..., .3 when
restr.fact = 50 for the “Swiss Bank notes” data set.

R > data ("swissbank")

R > plot (ctlcurves (swissbank, k = 1:4, alpha = seq (0, 0.3, by = 0.025)))

This figure indicates the clear existence of k = 2 main clusters (“genuine” and “forged” bills).
Moreover, considering the clear difference between LΠ

50
(0, 3) and LΠ

50
(0, 2), we can see that a

further cluster, i.e., k = 3, is needed when no trimming is allowed. This extra cluster can
be justified by the heterogeneity of the group of forgeries (perhaps due to the presence of
different sources of forged bills).

Considering Figure 12, the choice k = 2 and a value of α close to 0.1 also seem sensible.
Notice that LΠ

50(α, 3) is clearly larger than LΠ
50(α, 2) for α < 0.1 while these differences are

not so big when α ≥ 0.1. We can even see smaller differences in the classification trimmed
likelihood curves when increasing k from 3 to 4. However, these differences are less significant
than those previously commented. More spurious clusters can be surely found but they have
less entity and importance.

Figure 13 shows the clustering results with k = 2, α = 0.1 and restr.fact = 50 obtained
by executing the code:

R > clus <- tclust (swissbank, k = 2, alpha = 0.1, restr.fact = 50)

R > plot (DiscrFact (clus, threshold = 0.0001))
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Figure 13: Clustering results with k = 2, α = 0.1 and restr.fact = 50 summarized by the
use of DiscrFact function for the “Swiss Bank notes” data set. The threshold value is chosen
in order to highlight the 7 most doubtful cluster assignments.

Notice that, in this example, we did not want to impose a specific constraint on the solution.
Thus, the default parameter restr.fact = 50 has initially been used in ctlcurves. After
choosing the combination α = 0.10 and k = 2, we could try to reduce the restriction factor
which resulted in a warning:

R > tclust(swissbank, k = 2, alpha = 0.1, restr.fact = 40)

In .tclust.warn(warnings, ret):

The result is artificially constrained due to restr.fact = 40.

Thus the choice restr.fact = 50 seems appropriate as it does not artificially restrict the
result, whereas a slightly smaller restriction factor (40) does. By examining the sizes of the
obtained groups, we see that no spurious groups are found with restr.fact = 50:

R > clus$size

[1] 95 85

We have used restr = "eigen" in this example, but restr = "deter" can be also success-
fully applied with smaller values of restr.fact.

We also use the function DiscrFact to summarize the obtained clustering results. The two
first Fisher’s canonical coordinates derived from the final cluster assignments are plotted. The
threshold value 0.0001 is chosen in order to highlight the 7 most doubtful decisions.

Finally, Figure 14 shows a scatterplot of the fourth (“Distance of the inner frame to lower
border”) against the sixth variable (“Length of the diagonal”) with the corresponding cluster
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Figure 14: Clustering results with k = 2, α = .1 and restr.fact = 50 for the “Swiss
Bank notes” data set. Only the fourth and sixth variables are plotted. The 7 most doubtful
decisions are rounded by a circle symbol.

assignments. We use the symbols “G” for the genuine bills and “F” for the forged ones. The 7
most doubtful decisions (i.e., the observations with largest DF(i) values that were highlighted
in Figure 13,(c)) are surrounded by circles in this figure. We can see that “Cluster 1” essen-
tially includes most of the “forged” bills while “Cluster 2” includes most of the “genuine” ones.
Among the trimmed observations, we can find a subset of 15 forged bills following a clearly
different forgery pattern that has been previously commented by other authors (see, e.g.,
Flury and Riedwyl 1988; Cook 1999). These most doubtful assignments include 5 “genuine”
bills that have perhaps been wrongly trimmed.

10. Conclusion

This paper presents a package called tclust for robust (non-hierarchical) clustering. The
implementation is flexible, so only the restrictions on the cluster scatters have to be changed in
order to carry out different robust clustering algorithms. Robustness is achieved by trimming
a specific proportion of observations which are identified as the “most outlying” ones.

Although this R-package implements robust clustering approaches which have already been
described in the literature, some of these approaches have been extended to provide increased
flexibility. The package also provides some graphical tools which on the one hand help to chose
appropriate parameters (ctlcurves) and on the other hand help to estimate the adequacy of
a particular clustering solution (DiscrFact).

Future work on this package focuses on implementing additional types of scatter restrictions,
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making the algorithm even more flexible, and on providing numerical tools for automatically
choosing the number of clusters and the trimming proportion.
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