| Title: | Estimate Step Counts from 'Accelerometry' Data | 
| Version: | 0.3.2 | 
| Description: | Interfaces the 'stepcount' Python module https://github.com/OxWearables/stepcount to estimate step counts and other activities from 'accelerometry' data. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| Imports: | assertthat, curl, lubridate, magrittr, readr, reticulate | 
| Suggests: | tidyr, dplyr, ggplot2, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-10-01 20:53:56 UTC; johnmuschelli | 
| Author: | John Muschelli | 
| Maintainer: | John Muschelli <muschellij2@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-10-02 17:00:02 UTC | 
Pipe operator
Description
See magrittr::%>% for details.
Usage
lhs %>% rhs
Arguments
| lhs | A value or the magrittr placeholder. | 
| rhs | A function call using the magrittr semantics. | 
Value
The result of calling rhs(lhs).
Create Conda Environment for Walking
Description
Create Conda Environment for Walking
Usage
conda_create_walking_env(envname = "stepcount", ...)
Arguments
| envname | environment name | 
| ... | additional arguments to pass to  | 
Value
Output of reticulate::conda_create
Install the stepcount Python Module
Description
Install the stepcount Python Module
Usage
install_stepcount(packages = "stepcount", ...)
have_stepcount()
stepcount_check()
stepcount_version()
Arguments
| packages | packages to install.
If  | 
| ... | Additional arguments to pass to  | 
Value
Output of reticulate::py_install
Examples
if (have_stepcount()) {
   stepcount_version()
}
Load Stepcount Model
Description
Load Stepcount Model
Usage
sc_load_model(
  model_type = c("ssl", "rf"),
  model_path = NULL,
  check_md5 = TRUE,
  force_download = FALSE,
  as_python = TRUE
)
sc_model_filename(model_type = c("ssl", "rf"))
sc_download_model(
  model_path,
  model_type = c("ssl", "rf"),
  check_md5 = TRUE,
  ...
)
Arguments
| model_type | type of the model: either random forest (rf) or Self-Supervised Learning model (ssl) | 
| model_path | the file path to the model.  If on disk, this can be
re-used and not re-downloaded.  If  | 
| check_md5 | Do a MD5 checksum on the file | 
| force_download | force a download of the model, even if the file exists | 
| as_python | Keep model object as a python object | 
| ... | for  | 
Value
A model from Python.  sc_download_model returns a model file path.
Run Stepcount Model on Data
Description
Run Stepcount Model on Data
Usage
sc_model_params(model_type, pytorch_device)
stepcount(
  file,
  sample_rate = NULL,
  model_type = c("ssl", "rf"),
  model_path = NULL,
  pytorch_device = c("cpu", "cuda:0"),
  verbose = TRUE,
  keep_data = FALSE
)
stepcount_with_model(
  file,
  model_type = c("ssl", "rf"),
  model,
  sample_rate = NULL,
  pytorch_device = c("cpu", "cuda:0"),
  verbose = TRUE,
  keep_data = FALSE
)
Arguments
| model_type | type of the model: either random forest (rf) or Self-Supervised Learning model (ssl) | 
| pytorch_device | device to use for prediction for PyTorch. | 
| file | accelerometry file to process, including CSV,
CWA, GT3X, and  | 
| sample_rate | the sample rate of the data.  Set to  | 
| model_path | the file path to the model.  If on disk, this can be
re-used and not re-downloaded.  If  | 
| verbose | print diagnostic messages | 
| keep_data | should the data used in the prediction be in the output? | 
| model | A model object loaded from  | 
Value
A list of the results (data.frame),
summary of the results, adjusted summary of the results, and
information about the data.
Examples
file = system.file("extdata/P30_wrist100.csv.gz", package = "stepcount")
if (stepcount_check()) {
  out = stepcount(file = file)
  st = out$step_times
}
## Not run: 
  file = system.file("extdata/P30_wrist100.csv.gz", package = "stepcount")
  df = readr::read_csv(file)
  if (stepcount_check()) {
    out = stepcount(file = df)
    st = out$step_times
  }
  if (requireNamespace("ggplot2", quietly = TRUE) &&
      requireNamespace("tidyr", quietly = TRUE) &&
      requireNamespace("dplyr", quietly = TRUE)) {
    dat = df[10000:12000,] %>%
      dplyr::select(-annotation) %>%
      tidyr::gather(axis, value, -time)
    st = st %>%
      dplyr::mutate(time = lubridate::as_datetime(time)) %>%
      dplyr::as_tibble()
    st = st %>%
      dplyr::filter(time >= min(dat$time) & time <= max(dat$time))
    dat %>%
      ggplot2::ggplot(ggplot2::aes(x = time, y = value, colour = axis)) +
      ggplot2::geom_line() +
      ggplot2::geom_vline(data = st, ggplot2::aes(xintercept = time))
  }
## End(Not run)
Read a Data Set for stepcount
Description
Read a Data Set for stepcount
Usage
sc_read(
  file,
  sample_rate = NULL,
  resample_hz = "uniform",
  verbose = TRUE,
  keep_pandas = FALSE
)
Arguments
| file | path to the file for reading | 
| sample_rate | the sample rate of the data.  Set to  | 
| resample_hz | Target frequency (Hz) to resample the signal. If
"uniform", use the implied frequency (use this option to fix any device
sampling errors). Pass  | 
| verbose | print diagnostic messages | 
| keep_pandas | do not convert the data to a  | 
Value
A list of the data and information about the data
Note
The data P30_wrist100 is from
https://ora.ox.ac.uk/objects/uuid:19d3cb34-e2b3-4177-91b6-1bad0e0163e7,
where we took the first 180,000 rows, the first 30 minutes of data
from that participant as an example.
Examples
file = system.file("extdata/P30_wrist100.csv.gz", package = "stepcount")
if (stepcount_check()) {
  out = sc_read(file)
}
## Not run: 
  file = system.file("extdata/P30_wrist100.csv.gz", package = "stepcount")
  if (stepcount_check()) {
    out = sc_read(file, sample_rate = 100L)
  }
## End(Not run)
Rename data for Stepcount
Description
Rename data for Stepcount
Usage
sc_rename_data(data)
sc_write_csv(data, path = tempfile(fileext = ".csv"))
Arguments
| data | a  | 
| path | path to the CSV output file | 
Value
A data.frame of renamed columns
Use Conda Environment for stepcount
Description
Use Conda Environment for stepcount
Usage
use_stepcount_condaenv(envname = "stepcount", ...)
conda_create_stepcount(envname = "stepcount", ..., python_version = "3.9")
unset_reticulate_python()
have_stepcount_condaenv()
Arguments
| envname | environment name for the conda environment | 
| ... | additional arguments to pass to  | 
| python_version | version of Python to use for environment | 
Value
Nothing