
Package ‘splitTools’
June 6, 2023

Title Tools for Data Splitting

Version 1.0.1

Description Fast, lightweight toolkit for data splitting. Data sets can
be partitioned into disjoint groups (e.g. into training, validation,
and test) or into (repeated) k-folds for subsequent cross-validation.
Besides basic splits, the package supports stratified, grouped as well
as blocked splitting. Furthermore, cross-validation folds for time
series data can be created. See e.g. Hastie et al. (2001)
<doi:10.1007/978-0-387-84858-7> for the basic background on data
partitioning and cross-validation.

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.3

Imports stats

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

URL https://github.com/mayer79/splitTools

BugReports https://github.com/mayer79/splitTools/issues

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Michael Mayer [aut, cre]

Maintainer Michael Mayer <mayermichael79@gmail.com>

Repository CRAN

Date/Publication 2023-06-06 14:00:02 UTC

R topics documented:
create_folds . 2
create_timefolds . 3
multi_strata . 4
partition . 5

1

https://doi.org/10.1007/978-0-387-84858-7
https://github.com/mayer79/splitTools
https://github.com/mayer79/splitTools/issues

2 create_folds

Index 7

create_folds Create Folds

Description

This function provides a list of row indices used for k-fold cross-validation (basic, stratified, grouped,
or blocked). Repeated fold creation is supported as well. By default, in-sample indices are returned.

Usage

create_folds(
y,
k = 5L,
type = c("stratified", "basic", "grouped", "blocked"),
n_bins = 10L,
m_rep = 1L,
use_names = TRUE,
invert = FALSE,
shuffle = FALSE,
seed = NULL

)

Arguments

y Either the variable used for "stratification" or "grouped" splits. For other types
of splits, any vector of the same length as the data intended to split.

k Number of folds.

type Split type. One of "stratified" (default), "basic", "grouped", "blocked".

n_bins Approximate numbers of bins for numeric y (only for type = "stratified").

m_rep How many times should the data be split into k folds? Default is 1, i.e., no
repetitions.

use_names Should folds be named? Default is TRUE.

invert Set to TRUE in order to receive out-of-sample indices. Default is FALSE, i.e.,
in-sample indices are returned.

shuffle Should row indices be randomly shuffled within folds? Default is FALSE.

seed Integer random seed.

Details

By default, the function uses stratified splitting. This will balance the folds regarding the distribu-
tion of the input vector y. (Numeric input is first binned into n_bins quantile groups.) If type =
"grouped", groups specified by y are kept together when splitting. This is relevant for clustered or
panel data. In contrast to basic splitting, type = "blocked" does not sample indices at random, but
rather keeps them in sequential groups.

create_timefolds 3

Value

If invert = FALSE (the default), a list with in-sample row indices. If invert = TRUE, a list with
out-of-sample indices.

See Also

partition(), create_timefolds()

Examples

y <- rep(c(letters[1:4]), each = 5)
create_folds(y)
create_folds(y, k = 2)
create_folds(y, k = 2, m_rep = 2)
create_folds(y, k = 3, type = "blocked")

create_timefolds Creates Folds for Time Series Data

Description

This function provides a list with in- and out-of-sample indices per fold used for time series k-fold
cross-validation, see Details.

Usage

create_timefolds(y, k = 5L, use_names = TRUE, type = c("extending", "moving"))

Arguments

y Any vector of the same length as the data intended to split.

k Number of folds.

use_names Should folds be named? Default is TRUE.

type Should in-sample data be "extending" over the folds (default) or consist of one
single fold ("moving")?

Details

The data is first partitioned into k + 1 sequential blocks B1 to Bk+1. Each fold consists of two
index vectors: one with in-sample row numbers, the other with out-of-sample row numbers. The
first fold uses B1 as in-sample and B2 as out-of-sample data. The second one uses either B2 (if
type = "moving") or {B1, B2} (if type = "extending") as in-sample, and B3 as out-of-sample
data etc. Finally, the kth fold uses {B1, ..., Bk} ("extending") or Bk ("moving") as in-sample data,
and Bk+1 as out-of-sample data. This makes sure that out-of-sample data always follows in-sample
data.

4 multi_strata

Value

A nested list with in-sample and out-of-sample indices per fold.

See Also

partition(), create_folds()

Examples

y <- runif(100)
create_timefolds(y)
create_timefolds(y, use_names = FALSE)
create_timefolds(y, use_names = FALSE, type = "moving")

multi_strata Create Strata from Multiple Features

Description

Creates a stratification vector based on multiple columns of a data.frame that can then be passed
to the splitting functions.

Currently, the function offers two strategies to create the strata:

• "kmeans": k-means cluster analysis on scaled input. (Ordered factors are integer encoded first,
unordered factors and character columns are one-hot-encoded.)

• "interaction": All combinations (after binning numeric columns into approximately k bins).

Usage

multi_strata(df, strategy = c("kmeans", "interaction"), k = 3L)

Arguments

df A data.frame used to form the stratification vector.

strategy A string (either "kmeans" or "interaction") to compute the strata, see description.

k An integer. For strategy = "kmeans", it is the desired number of strata, while
for strategy = "interaction", it is the approximate number of bins per nu-
meric feature before forming all combinations.

Value

Factor with strata as levels.

See Also

partition(), create_folds()

partition 5

Examples

y_multi <- data.frame(
A = rep(c(letters[1:4]), each = 20),
B = factor(sample(c(0, 1), 80, replace = TRUE)),
c = rnorm(80)

)
y <- multi_strata(y_multi, k = 3)
folds <- create_folds(y, k = 5)

partition Split Data into Partitions

Description

This function provides row indices for data splitting, e.g., to split data into training, validation, and
test. Different types of split strategies are supported, see Details. The partition indices are either
returned as list with one element per partition (the default) or as vector of partition IDs.

Usage

partition(
y,
p,
type = c("stratified", "basic", "grouped", "blocked"),
n_bins = 10L,
split_into_list = TRUE,
use_names = TRUE,
shuffle = FALSE,
seed = NULL

)

Arguments

y Either the variable used for "stratification" or "grouped" splits. For other types
of splits, any vector of the same length as the data intended to split.

p A vector with split probabilities per partition, e.g., c(train = 0.7, valid =
0.3). Names are passed to the output.

type Split type. One of "stratified" (default), "basic", "grouped", "blocked".

n_bins Approximate numbers of bins for numeric y (only for type = "stratified").
split_into_list

Should the resulting partition vector be split into a list? Default is TRUE.

use_names Should names of p be used as partition names? Default is TRUE.

shuffle Should row indices be randomly shuffled within partition? Default is FALSE.
Shuffling is only possible when split_into_list = TRUE.

seed Integer random seed.

6 partition

Details

By default, the function uses stratified splitting. This will balance the partitions as good as possible
regarding the distribution of the input vector y. (Numeric input is first binned into n_bins quantile
groups.) If type = "grouped", groups specified by y are kept together when splitting. This is
relevant for clustered or panel data. In contrast to basic splitting, type = "blocked" does not sample
indices at random, but rather keeps them in groups: e.g., the first 80% of observations form a training
set and the remaining 20% are used for testing.

Value

A list with row indices per partition (if split_into_list = TRUE) or a vector of partition IDs.

See Also

create_folds()

Examples

y <- rep(c(letters[1:4]), each = 5)
partition(y, p = c(0.7, 0.3), seed = 1)
partition(y, p = c(0.7, 0.3), split_into_list = FALSE, seed = 1)
p <- c(train = 0.8, valid = 0.1, test = 0.1)
partition(y, p, seed = 1)
partition(y, p, split_into_list = FALSE, seed = 1)
partition(y, p, split_into_list = FALSE, use_names = FALSE, seed = 1)
partition(y, p = c(0.7, 0.3), type = "grouped")
partition(y, p = c(0.7, 0.3), type = "blocked")

Index

create_folds, 2
create_folds(), 4, 6
create_timefolds, 3
create_timefolds(), 3

multi_strata, 4

partition, 5
partition(), 3, 4

7

	create_folds
	create_timefolds
	multi_strata
	partition
	Index

