## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(spexvb) ## ----installation, eval = FALSE----------------------------------------------- # install.packages("spexvb") ## ----example------------------------------------------------------------------ library(spexvb) library(doParallel) cl <- makeCluster(min(2, parallel::detectCores())) registerDoParallel( cl) # 1. Simulate high-dimensional data (n=100, p=500) set.seed(17) n <- 100 p <- 500 X <- matrix(rnorm(n * p), n, p) true_beta <- c(rep(3, 5), rep(0, p - 5)) # 5 active predictors Y <- X %*% true_beta + rnorm(n) # 2. Perform 5-fold CV to find optimal tau_alpha and fit final model fit <- cv.spexvb.fit( k = 5, X = X, Y = Y, tau_alpha = c(0, 10^(3:6)), # Precision for expansion parameter alpha standardize = TRUE, intercept = TRUE ) # 4. Visualize results plot(true_beta, main = "True Coefficients", ylab = "Value") plot(fit$beta, main = "Estimated Coefficients", ylab = "Value") abline(h = 0, col = "red", lty = 2) stopCluster(cl)