
Design of Portfolio of Stocks to Track an Index
Konstantinos Benidis and Daniel P. Palomar

2018-09-01

Contents

1 Comparison with other packages 1

2 Usage of the package 1

3 Explanation of the algorithms 4

3.1 spIndexTrack(): Sparse portfolio construction . 4

References 9

This vignette illustrates the design of sparse portfolios that aim to track a financial index with the
package sparseIndexTracking (with a comparison with other packages) and gives a description
of the algorithms used.

1 Comparison with other packages

There are currently no other R packages for index tracking. In paper [1] and monograph [2], a detailed com-
parison in terms of execution speed and performance is made with the mixed-integer quadratic programming
(MIQP) solver Gurobi (for which R has an interface via package ROI and plugin ROI.plugin.gurobi).

2 Usage of the package

We start by loading the package and real data of the index S&P 500 and its underlying assets:

library(sparseIndexTracking)

library(xts)

data(INDEX_2010)

The data INDEX_2010 contains a list with two xts objects:

1. X: A T ×N xts with the daily linear returns of the N assets that were in the index during
the year 2010 (total T trading days)

2. SP500: A T × 1 xts with the daily linear returns of the index S&P 500 during the same
period.

Note that we use xts objects just for illustration purposes. The function spIndexTrack() can also be
invoked passing simple data arrays or dataframes.

Based on the above quantities we create a training window, which we will use to create our portfolios,
and a testing window, which will be used to assess the performance of the designed portfolios. For simplicity,
here we consider the first six (trading) months of the dataset (~126 days) as the training window, and the
subsequent six months as the testing window:

X_train <- INDEX_2010$X[1:126]

X_test <- INDEX_2010$X[127:252]

r_train <- INDEX_2010$SP500[1:126]

r_test <- INDEX_2010$SP500[127:252]

1

Now, we use the four modes (four available tracking errors) of the spIndexTrack() algorithm to design
our portfolios:

ETE

w_ete <- spIndexTrack(X_train, r_train, lambda = 1e-7, u = 0.5, measure = 'ete')

cat('Number of assets used:', sum(w_ete > 1e-6))

#> Number of assets used: 45

DR

w_dr <- spIndexTrack(X_train, r_train, lambda = 2e-8, u = 0.5, measure = 'dr')

cat('Number of assets used:', sum(w_dr > 1e-6))

#> Number of assets used: 42

HETE

w_hete <- spIndexTrack(X_train, r_train, lambda = 8e-8, u = 0.5, measure = 'hete', hub = 0.05)

cat('Number of assets used:', sum(w_hete > 1e-6))

#> Number of assets used: 44

HDR

w_hdr <- spIndexTrack(X_train, r_train, lambda = 2e-8, u = 0.5, measure = 'hdr', hub = 0.05)

cat('Number of assets used:', sum(w_hdr > 1e-6))

#> Number of assets used: 43

Finally, we plot the actual value of the index in the testing window in comparison with the values of the
designed portfolios:

plot(cbind("PortfolioETE" = cumprod(1 + X_test %*% w_ete), cumprod(1 + r_test)),

legend.loc = "topleft", main = "Cumulative P&L")

Jul 06
2010

Aug 02
2010

Sep 01
2010

Oct 01
2010

Nov 01
2010

Dec 01
2010

Dec 31
2010

Cumulative P&L 2010−07−06 / 2010−12−31

1.05

1.10

1.15

1.20

1.05

1.10

1.15

1.20

PortfolioETE
SP500

plot(cbind("PortfolioDR" = cumprod(1 + X_test %*% w_dr), cumprod(1 + r_test)),

legend.loc = "topleft", main = "Cumulative P&L")

2

Jul 06
2010

Aug 02
2010

Sep 01
2010

Oct 01
2010

Nov 01
2010

Dec 01
2010

Dec 31
2010

Cumulative P&L 2010−07−06 / 2010−12−31

1.05

1.10

1.15

1.20

1.25

1.05

1.10

1.15

1.20

1.25
PortfolioDR
SP500

plot(cbind("PortfolioHETE" = cumprod(1 + X_test %*% w_hete), cumprod(1 + r_test)),

legend.loc = "topleft", main = "Cumulative P&L")

Jul 06
2010

Aug 02
2010

Sep 01
2010

Oct 01
2010

Nov 01
2010

Dec 01
2010

Dec 31
2010

Cumulative P&L 2010−07−06 / 2010−12−31

1.05

1.10

1.15

1.20

1.25

1.05

1.10

1.15

1.20

1.25
PortfolioHETE
SP500

plot(cbind("PortfolioHDR" = cumprod(1 + X_test %*% w_hdr), cumprod(1 + r_test)),

legend.loc = "topleft", main = "Cumulative P&L")

3

Jul 06
2010

Aug 02
2010

Sep 01
2010

Oct 01
2010

Nov 01
2010

Dec 01
2010

Dec 31
2010

Cumulative P&L 2010−07−06 / 2010−12−31

1.05

1.10

1.15

1.20

1.25

1.05

1.10

1.15

1.20

1.25PortfolioHDR
SP500

In the above examples we used a single training and testing window. In practice, we need to perform this
task sequentially for many windows in order to assess an algorithm or to distinguish the differences between
the various tracking errors.

Ideally, the ETE and HETE portfolios should have Excess P&L close to zero since their purpose is to
track as closely as possible the index, whereas the DR and HDR portfolios should have a positive Excess
P&L since their purpose is to beat the index. Finally, Huber should shine in periods of high volatility where
many extreme returns are observed (like the great recession).

All of the above can be observed in Figures 1 - 3 where we applied the four modes of the algorithm in
the index S&P 500 considering three different periods. All the constructed portfolios consist of 40 assets,
the training and testing windows were set to 6 months and 1 month, respectively, while monthly returns
were used. The upper plot of each period (Normalized P&L) shows the wealth of the index and the four
portfolios, which are normalized to the index value each time they are rebalanced. The lower plot of each
period (Excess P&L) shows the cumulative difference of the portfolios and the index due to normalization,
i.e., it is equivalent to a second account that keeps track of our excess profits or losses.

For a more detailed discussion please refer to [1] and [2].

3 Explanation of the algorithms

3.1 spIndexTrack(): Sparse portfolio construction

Assume that an index is composed of N assets. We denote by rb = [rb
1, . . . , rb

T]⊤ ∈ R
T and X = [r1, . . . , rT]⊤ ∈

R
T ×N the (arithmetic) net returns of the index and the N assets in the past T days, respectively, with

rt ∈ R
N denoting the net returns of the N assets at the t-th day.

The goal of spIndexTrack() is the design of a (sparse) portfolio w ∈ R
N
+ , with w⊤1 = 1, that tracks

closely the index, i.e., Xw ≈ rb, based on [1]. The underlying optimization problem that is solved is

minimize
w

TE(w) + λ‖w‖0

subject to w⊤1 = 1
0 ≤ w ≤ u1,

(1)

where TE(w) is a general tracking error (we will see specific tracking errors shortly), λ is a regularization
parameter that controls the sparsity of the portfolio, and u is an upper bound on the weights of the portfolio.

The ℓ0-“norm” is approximated by the continuous and differentiable (for w ≥ 0) function

4

Aug 04
1999

Jun 01
2000

Mar 01
2001

Dec 03
2001

Sep 03
2002

Jun 02
2003

Mar 01
2004

Dec 01
2004

Normalized P&L 1999−08−04 / 2004−12−31

0.6

0.8

1.0

1.2

0.6

0.8

1.0

1.2ETE
DR
HETE
HDR
SP500

Aug 04
1999

Jun 01
2000

Mar 01
2001

Dec 03
2001

Sep 03
2002

Jun 02
2003

Mar 01
2004

Dec 01
2004

Excess P&L 1999−08−04 / 2004−12−31

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Figure 1: Dot-com bubble.

Aug 03
2006

Jul 02
2007

May 01
2008

Apr 01
2009

Mar 01
2010

Feb 01
2011

Jan 03
2012

Dec 03
2012

Normalized P&L 2006−08−03 / 2012−12−31

0.6

0.8

1.0

1.2

0.6

0.8

1.0

1.2
ETE
DR
HETE
HDR
SP500

Aug 03
2006

Jul 02
2007

May 01
2008

Apr 01
2009

Mar 01
2010

Feb 01
2011

Jan 03
2012

Dec 03
2012

Excess P&L 2006−08−03 / 2012−12−31

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

Figure 2: Great recession.

5

Aug 04
2010

Jun 01
2011

Mar 01
2012

Dec 03
2012

Sep 03
2013

Jun 02
2014

Mar 02
2015

Dec 01
2015

Normalized P&L 2010−08−04 / 2015−12−31

1.0

1.2

1.4

1.6

1.8

1.0

1.2

1.4

1.6

1.8ETE
DR
HETE
HDR
SP500

Aug 04
2010

Jun 01
2011

Mar 01
2012

Dec 03
2012

Sep 03
2013

Jun 02
2014

Mar 02
2015

Dec 01
2015

Excess P&L 2010−08−04 / 2015−12−31

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

Figure 3: Stable market.

ρp,u(w) =
log(1 + w/p)

log(1 + u/p)
, (2)

where p > 0 is a parameter that controls the approximation. This leads to the following approximate problem:

minimize
w

TE(w) + λ1⊤ρp,u(w)

subject to w⊤1 = 1
0 ≤ w ≤ u1,

(3)

where ρp,u(w) = [ρp,u(w1), . . . , ρp,u(wN)]⊤.
There are four available tracking errors TE(w) in spIndexTrack():

• Empirical tracking error (ETE):

ETE(w) =
1

T

∥

∥rb −Xw
∥

∥

2

2

• Downside risk (DR):

DR(w) =
1

T

∥

∥(rb −Xw)+
∥

∥

2

2

• Huber empirical tracking error (HETE):

HETE(w) =
1

T
1⊤φ

(

rb −Xw
)

6

• Huber downside risk (HDR):

HDR(w) =
1

T
1⊤φ

(

(rb −Xw)+
)

where φ(x) = [φ(x1), . . . , φ(xT)]⊤ and

φ(x) =

{

x2 |x| ≤M

M(2|x| −M) |x| > M,

with M > 0 being the Huber parameter.

Regardless of the selected tracking error measure, problem (3) can be solved via Majorization-Minimization
(MM) [3] with an iterative closed-form update algorithm (with iterations denoted by k). It can be shown
that all of the above variations boil down to the iterative optimization of the following convex problem:

minimize
w

w⊤w + q(k)⊤
w

subject to w ∈ Wu,
(4)

where
Wu =

{

w
∣

∣w⊤1 = 1, 0 ≤ w ≤ u1
}

,

and q(k) ∈ R
N .

What differentiates the various tracking errors is the exact form of q(k) that we need to compute at each
iteration k of the algorithm:

q
(k)
ETE =

1

λ
(L1)
max

(2(L1 − λ(L1)
max I)w(k) + λd(k)

p,u −
2

T
X⊤rb),

q
(k)
DR =

1

λ
(L1)
max

(
2

T
2(L1 − λ(L1)

max I)w(k) + λd(k)
p,u +

2

T
X⊤(y(k) − rb)),

q
(k)
HETE =

1

λ
(L2)
max

(2(L2 − λ(L2)
max I)w(k) + λd(k)

p,u −
2

T
X⊤Diag(a(k))rb),

q
(k)
HDR =

1

λ
(L3)
max

(2(L3 − λ(L3)
max I)w(k) + λd(k)

p,u +
2

T
X⊤Diag(b(k))(c(k) − rb)),

where λ
(A)
max denotes the maximum eigenvalue of a matrix A, I denotes the identity matrix, Diag(x) is a

diagonal matrix with the vector x at its principal diagonal, and

d(k)
p,u =

[

dp,u(w
(k)
1), . . . , dp,u(w

(k)
N)

]⊤

, (5)

dp,u(w(k)) =
1

log(1 + u/p)(p + w(k))
, (6)

y(k) = −(Xw(k) − rb)+, (7)

a(k) = [a([rb −Xw(k)]1), . . . , a([rb −Xw(k)]T)]⊤, (8)

a(x) =

{

1 |x| ≤M
M
|x| |x| > M,

(9)

b(k) = [b([rb −Xw(k)]1), . . . , b([rb −Xw(k)]T)]⊤, (10)

b(x) =











M
M−2x

x < 0

1 0 ≤ x ≤M
M
x

x > M,

(11)

c(k) = [c([rb −Xw(k)]1), . . . , c([rb −Xw(k)]T)]⊤, (12)

7

c(x) =

{

x x < 0

0 x ≥ 0,
(13)

L1 =
1

T
X⊤X, (14)

L2 =
1

T
X⊤Diag(a(k))X, (15)

L3 =
1

T
X⊤Diag(b(k))X. (16)

The following propositions provide a waterfilling structured solution of problem (4), considering two
special cases, namely, u = 1 and u < 1.

Proposition 3.1 (AS1). The optimal solution of the optimization problem (4) with u = 1 is

w⋆ =

(

−
1

2
(µ1 + q)

)+

,

with

µ = −

∑

i∈A qi + 2

card(A)
,

and
A =

{

j
∣

∣µ + qj < 0
}

,

where A can be determined in O(log(N)) steps.

Proposition 3.2 (ASu). The optimal solution of the optimization problem (4) with u < 1 is

w⋆ =

(

min

(

−
1

2
(µ1 + q), u1

))+

,

with

µ = −

∑

j∈B2
qj + 2− card(B1)2u

card(B2)
,

and
B1 =

{

j
∣

∣µ + qj ≤ −2u
}

,

B2 =
{

j
∣

∣− 2u < µ + qj < 0
}

,

where B1 and B2 can be determined in O(N log(N)) steps.

We refer to the iterative procedure of Proposition 3.1 as AS1(q) (Active-Set for u = 1) and of Proposition
3.2 as ASu(q) (Active-Set for general u < 1). The iterative closed-form update algorithm is given in Algorithm
1 (where AS1|u(q) means AS1(q) or ASu(q)).

Algorithm 1

1. Set k = 0 and choose an initial point w(0) (by default set to w(0) = 1
N

1)
2. Compute q according to the selected tracking error
3. Find the optimal solution w⋆ with AS1|u(q) and set it equal to w(k+1)

4. k ← k + 1
5. Repeat steps 2-4 until convergence
6. Return w(k)

8

Finally, note that the approximate problem is controlled by the parameter p, and in particular, as p→ 0
we get ρp,u → ℓ0. However, by setting small values to p, it is likely that the algorithm will get stuck to a local
minimum. To solve this issue we start with large values for p, i.e., a “loose” approximation, and solve the
corresponding optimization problem. Then, we sequentially decrease p, i.e., we “tighten” the approximation,
and solve the problem again using the previous solution as an initial point. In practice we are interested only
in the last, “tightest” problem. For each problem that is solved (i.e., for fixed p) we utilize an acceleration
scheme that increases the convergence speed of the MM algorithm. For details, please refer to [4].

References

[1] K. Benidis, Y. Feng, and D. P. Palomar, “Sparse portfolios for high-dimensional financial index tracking,”
IEEE Transactions on Signal Processing, vol. 66, no. 1, pp. 155–170, Jan. 2018.

[2] K. Benidis, Y. Feng, and D. P. Palomar, Optimization methods for financial index tracking: From theory

to practice. Foundations and Trends in Optimization, Now Publishers, 2018.

[3] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,
communications, and machine learning,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp.
794–816, Feb. 2017.

[4] R. Varadhan and C. Roland, “Simple and globally convergent methods for accelerating the convergence of
any EM algorithm,” Scandinavian Journal of Statistics, vol. 35, no. 2, pp. 335–353, 2008.

9

	Comparison with other packages
	Usage of the package
	Explanation of the algorithms
	spIndexTrack(): Sparse portfolio construction

	References

