Estimates Hessian of a scalar-valued function, and returns it
    in a sparse Matrix format. The sparsity pattern must be known in advance. The
    algorithm is especially efficient for hierarchical models with a large number of
    heterogeneous units.  See Braun, M. (2017) <doi:10.18637/jss.v082.i10>.
| Version: | 0.3.3.7 | 
| Depends: | R (≥ 4.0.0) | 
| Imports: | Matrix (≥ 1.4), methods, Rcpp (≥ 0.12.13) | 
| LinkingTo: | Rcpp, RcppEigen (≥ 0.3.3.3.0) | 
| Suggests: | testthat, numDeriv, scales, knitr, xtable, dplyr | 
| Published: | 2022-10-19 | 
| DOI: | 10.32614/CRAN.package.sparseHessianFD | 
| Author: | Michael Braun  [aut, cre, cph] | 
| Maintainer: | Michael Braun  <braunm at smu.edu> | 
| BugReports: | https://github.com/braunm/sparseHessianFD/issues/ | 
| License: | MPL (== 2.0) | 
| URL: | https://braunm.github.io/sparseHessianFD/,
https://github.com/braunm/sparseHessianFD/ | 
| NeedsCompilation: | yes | 
| SystemRequirements: | C++11 | 
| Citation: | sparseHessianFD citation info | 
| Materials: | NEWS | 
| CRAN checks: | sparseHessianFD results |