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acoustic Phonetics acoustic data (complete)

Description

The data are part of a large study on consonant assimilation, which is the phenomenon that the
articulation of two consonants becomes phonetically more alike when they appear subsequently in
fluent speech. The data set contains the audio signals of nine different speakers which repeated
the same sixteen German target words each five times. The target words are bisyllabic noun-noun
compound words which contained the two abutting consonants of interest, s and sh, in either order.
Consonant assimilation is accompanied by a complex interplay of language-specific, perceptual and
articulatory factors. The aim in the study was to investigate the assimilation of the two consonants as
a function of their order (either first s, then sh or vice-versa), syllable stress (stressed or unstressed)
and vowel context, i.e. which vowels are immediately adjacent to the target consonants of interest.
The vowels are either of the form ia or ai. For more details, see references below.

Format

A data frame with 24830 rows and 11 variables

Details

The variables are as follows:

• subject_long: unique identification number for each speaker.

• word_long: unique identification number for each target word.

• combi_long: number of the repetition of the combination of the corresponding speaker and
target word.

• y_vec: the response values for each observation point

• n_long: unique identification number for each curve.

• t: the observations point locations.

• covariate.1: (order of the consonants, reference category first /s/ then /sh/).

• covariate.2: (stress of the final syllable of the first compound, reference category ’stressed’).

• covariate.3: (stress of the initial syllable of the second compound, reference category
’stressed’).

• covariate.4: (vowel context, reference category ia).

• word_names_long: names of the target words.
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References

Pouplier, Marianne and Hoole, Philip (2016): Articulatory and Acoustic Characteristics of German
Fricative Clusters, Phonetica, 73(1), 52–78.

Cederbaum, Pouplier, Hoole, Greven (2016): Functional Linear Mixed Models for Irregularly or
Sparsely Sampled Data. Statistical Modelling, 16(1), 67-88.

acoustic_subset Phonetics acoustic data (subset)

Description

A small subset of the phonetics acoustic data set acoustic with observations from two speakers
and two items only. This will not produce meaningful results but can be used as a toy data set when
testing the code. The variables are as in the full data set, see acoustic.

Format

A data frame with 656 rows and 11 variables

References

Pouplier, Marianne and Hoole, Philip (2016): Articulatory and Acoustic Characteristics of German
Fricative Clusters, Phonetica, 73(1), 52–78.

Cederbaum, Pouplier, Hoole, Greven (2016): Functional Linear Mixed Models for Irregularly or
Sparsely Sampled Data. Statistical Modelling, 16(1), 67-88.

make_summation_matrix Construct symmetry constraint matrix for bivariate symmetric smooth-
ing.

Description

This function can be used to construct a symmetry constraint matrix that imposes a (skew-)symmetry
constraint on (cyclic) spline coefficients in symmetric bivariate smoothing problems and is espe-
cially designed for constructing objects of the class "symm.smooth", see smooth.construct.symm.smooth.spec.

Usage

make_summation_matrix(F, skew = FALSE, cyclic.degree = 0)
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Arguments

F number of marginal basis functions.

skew logical, should the basis be constraint to skew-symmetry instead of symmetry.

cyclic.degree integer, specifying the number of basis functions identified with each other at
the boundaries in order to implement periodicity. Should be specified to match
the degree of the utilized B-spline basis.

Details

Imposing a symmetry constraint to the spline coefficients in order to obtain a reduced coeffi-
cient vector is equivalent to right multiplication of the bivariate design matrix with the symme-
try constraint matrix obtained with function make_summation_matrix. The penalty matrix of the
bivariate smooth needs to be adjusted to the reduced coefficient vector by left and right multi-
plication with the symmetry constraint matrix. This function is used in the constructor function
smooth.construct.symm.smooth.spec.

Value

A basis transformation matrix of dimension F 2 × G with G < F 2 depending on the specified
constraint.

Author(s)

Jona Cederbaum, Almond Stoecker

References

Cederbaum, Scheipl, Greven (2016): Fast symmetric additive covariance smoothing. Submitted on
arXiv.

See Also

smooth.construct and smoothCon for details on constructors

Predict.matrix.symm.smooth

Predict matrix method for (skew-)symmetric bivariate smooths.

Description

Predict matrix method for (skew-)symmetric bivariate smooths.

Usage

## S3 method for class 'symm.smooth'
Predict.matrix(object, data)
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Arguments

object is a symm.smooth object created by smooth.construct.symm.smooth.spec,
see smooth.construct.

data see smooth.construct.

Author(s)

Jona Cederbaum, Almond Stoecker

See Also

Predict.matrix and smoothCon for details on constructors.

smooth.construct.symm.smooth.spec

Symmetric bivariate smooths constructor

Description

The symm class is a smooth class that is appropriate for symmetric bivariate smooths, e.g. of covari-
ance functions, using tensor-product smooths in a gam formula. A constraint matrix is constructed
(see make_summation_matrix) to impose a (skew-)symmetry constraint on the (cyclic) spline co-
efficients, which considerably reduces the number of coefficients that have to be estimated.

Usage

## S3 method for class 'symm.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object is a smooth specification object or a smooth object.

data a data frame, model frame or list containing the values of the (named) covariates
at which the smooth term is to be evaluated.

knots an optional data frame supplying any knot locations to be supplied for basis
construction.

Details

By default a symmetric bivariate B-spline smooth g is specified, in the sense that g(s, t) = g(t, s).
By setting s(..., bs = "symm", xt = list(skew = TRUE)), a skew-symmetric (or anti-smmetric)
smooth with g(s, t) = −g(t, s) can be specified instead. In both cases, the smooth can also be
constraint to be cyclic with the property g(s, t) = g(s+ c, t) = g(s, t+ c) for some fixed constant
c via specifying xt = list(cyclic = TRUE). Note that this does not correspond to specifying a
tensor-product smooth from cyclic marginal B-splines as given by the cp-smooth. In the cyclic
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case, it is recommended to explicitly specify the range of the domain of the smooth via the knots
argument, as this determines the period and often deviates from the observed range.

The underlying procedure is the following: First, the marginal spline design matrices and the corre-
sponding marginal difference penalties are built. Second, the tensor product of the marginal design
matrices is built and the bivariate penalty matrix is set up. Third, the constraint matrix is applied to
the tensor product design matrix and to the penalty matrix.

Value

An object of class "symm.smooth". See smooth.construct for the elements it will contain.

Author(s)

Jona Cederbaum, Almond Stoecker

References

Cederbaum, Scheipl, Greven (2016): Fast symmetric additive covariance smoothing. Submitted on
arXiv.

See Also

smooth.construct and smoothCon for details on constructors

Examples

require(sparseFLMM)

# (skew-)symmetric smooths ---------------------------------------

# generate random surface
dat1 <- data.frame(arg1 = 1:50)
dat2 <- expand.grid(arg1 = 1:50, arg2 = 1:50)

Bskew <- Predict.matrix(
smooth.construct(
s(arg1, arg2, bs = "symm", xt = list(skew = TRUE)),
data = dat2, knots = NULL ),

data = dat2 )
Bsymm <- Predict.matrix(

smooth.construct(
s(arg1, arg2, bs = "symm", xt = list(skew = FALSE)),
data = dat2, knots = NULL ),

data = dat2 )

set.seed(934811)
dat2$yskew <- c(Bskew %*% rnorm(ncol(Bskew)))
dat2$ysymm <- c(Bsymm %*% rnorm(ncol(Bsymm)))

# fit sum of skew-symmetric and symmetric parts with corresponding smooths
modpa <- gam( I(yskew + ysymm) ~ s(arg1, arg2, bs = "symm", xt = list(skew = TRUE)) +
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s(arg1, arg2, bs = "symm", xt = list(skew = FALSE)), data = dat2)
# predict surfaces
preds <- predict(modpa, type = "terms")
dat1 <- as.list(dat1)
dat1$arg2 <- dat1$arg1
dat1$predskew <- matrix(preds[,1], nrow = length(dat1$arg1))
dat1$predsymm <- matrix(preds[,2], nrow = length(dat1$arg1))

cols <- hcl.colors(12, "RdBu")
opar <- par(mfcol = c(2,2))
# symm part (intercept missing)
with(dat1, image(arg1, arg2, predsymm, asp = 1,

main = "Symmetric part of y",
col = cols))

with(dat1, image(arg1, arg2, asp = 1,
main = "Fit via symm.smooth",
matrix(dat2$ysymm, nrow = length(arg1)),

col = cols))
# skew-symm part
with(dat1, image(arg1, arg2, predskew, asp = 1,

main = "Skew-symmetric part of y",
col = cols))

with(dat1, image(arg1, arg2, asp = 1,
main = "Fit via symm.smooth",
matrix(dat2$yskew, nrow = length(arg1)),
col = cols))

par(opar)

stopifnot(all.equal(dat1$predskew, - t(dat1$predskew)))
stopifnot(all.equal(dat1$predsymm, t(dat1$predsymm)))

# cyclic (skew-)symmetric splines ---------------------------------------

# fit the above example with cyclic smooths
modpac <- gam( I(yskew + ysymm) ~ s(arg1, arg2, bs = "symm",

xt = list(skew = TRUE, cyclic = TRUE)) +
s(arg1, arg2, bs = "symm", xt = list(skew = FALSE, cyclic = TRUE)),

knots = list(arg1 = c(1, 50), arg2 = c(1,50)),
# specify arg range to specify 'wavelength'!
data = dat2)

plot(modpac, asp = 1, se = FALSE, pages = 1)

predsc <- predict(modpac, type = "terms")
dat1$predskewc <- matrix(predsc[,1], nrow = length(dat1$arg1))
dat1$predsymmc <- matrix(predsc[,2], nrow = length(dat1$arg1))

# check cyclic margins
opar <- par(mfrow = c(1,2))
with(dat1, matplot(arg1, predsymmc[, c(1,10, 40)], t = "l",

main = "symmetric smooth"))
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abline(h = dat1$predsymmc[1, c(1,10, 40)], col = "darkgrey")
abline(v = c(1,50), col = "darkgrey")

with(dat1, matplot(arg1, predskewc[, c(1,10, 40)], t = "l",
main = "skew-symmetric smooth"))

abline(h = dat1$predskewc[1, c(1,10, 40)], col = "darkgrey")
abline(v = c(1,50), col = "darkgrey")
par(opar)

# 1D point symmetric B-splines --------------------------------------------

# generate toy data
dat <- data.frame( x = 1:100 )
ps_obj <- with(dat, s(x, bs = "ps"))
B <- Predict.matrix(smooth.construct(ps_obj, dat, NULL), dat)
set.seed(3904)
dat$y <- B %*% rnorm(ncol(B))
plot(dat, t = "l")

# fit skew-symmetric spline
mod0 <- gam( y ~ s(x, bs = "symm", xt = list(skew = TRUE)),

knots = list(x = c(0,100)), # specify x range to determine inversion point
dat = dat )

lines(dat$x, predict(mod0), col = "cornflowerblue", lty = "dashed")

# or a symmetric spline to first part only
mod1 <- gam( y ~ s(x, bs = "symm"),

knots = list(x=c(0,50)),
dat = dat[1:50, ])

lines(dat[1:50, ]$x, predict(mod1), col = "darkred", lty = "dashed")

sparseFLMM Functional Linear Mixed Models for Irregularly or Sparsely Sampled
Data

Description

Estimation of functional linear mixed models (FLMMs) for irregularly or sparsely sampled data
based on functional principal component analysis (FPCA). The implemented models are special
cases of the general FLMM

Yi(tij) = µ(tij , xi) + zTi U(tij) + ϵi(tij), i = 1, ..., n, j = 1, ..., Di,

with Yi(tij) the value of the response of curve i at observation point tij , µ(tij , xi) is a mean func-
tion, which may depend on covariates xi = (xi1, . . . , xip)

T . zi is a covariate vector, which is
multiplied with the vector of functional random effects U(tij). ϵi(tij) is independent and identi-
cally distributed white noise measurement error with homoscedastic, constant variance. For more
details, see references below.



sparseFLMM 9

The current implementation can be used to fit four special cases of the above general FLMM:

• a model for independent functional data (e.g. longitudinal data), for which zTi U(tij) only
consists of a smooth curve-specific deviation (smooth error curve)

• a model for correlated functional data with one functional random intercept (fRI) for one
grouping variable in addition to a smooth curve-specific error

• a model for correlated functional data with two crossed fRIs for two grouping variables in
addition to a smooth curve-specific error

• a model for correlated functional data with two nested fRIs for two grouping variables in
addition to a smooth curve-specific error.

Usage

sparseFLMM(
curve_info,
use_RI = FALSE,
use_simple = FALSE,
method = "fREML",
use_bam = TRUE,
bs = "ps",
d_grid = 100,
min_grid = 0,
max_grid = 1,
my_grid = NULL,
bf_mean = 8,
bf_covariates = 8,
m_mean = c(2, 3),
covariate = FALSE,
num_covariates,
covariate_form,
interaction,
which_interaction = matrix(NA),
save_model_mean = FALSE,
para_estim_mean = FALSE,
para_estim_mean_nc = 0,
bf_covs,
m_covs,
use_whole = FALSE,
use_tri = FALSE,
use_tri_constr = TRUE,
use_tri_constr_weights = FALSE,
np = TRUE,
mp = TRUE,
use_discrete_cov = FALSE,
para_estim_cov = FALSE,
para_estim_cov_nc = 0,
var_level = 0.95,
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N_B = NA,
N_C = NA,
N_E = NA,
use_famm = FALSE,
use_bam_famm = TRUE,
bs_int_famm = list(bs = "ps", k = 8, m = c(2, 3)),
bs_y_famm = list(bs = "ps", k = 8, m = c(2, 3)),
save_model_famm = FALSE,
use_discrete_famm = FALSE,
para_estim_famm = FALSE,
para_estim_famm_nc = 0,
nested = FALSE

)

Arguments

curve_info data table in which each row represents a single observation point. curve_info
needs to contain the following columns:

• y_vec (numeric): the response values for each observation point
• t (numeric): the observations point locations, i.e. tij
• n_long (integer): unique identification number for each curve
• subject_long (integer): unique identification number for each level of the

first grouping variable (e.g. speakers for the phonetics data in the example
below). In the case of independent functions, subject_long should be set
equal to n_long.

For models with two crossed functional random intercepts, the data table addi-
tionally needs to have columns:

• word_long (integer): unique identification number for each level of the
second grouping variable (e.g. words for the phonetics data in the example
below)

• combi_long (integer): number of the repetition of the combination of the
corresponding level of the first and of the second grouping variable.

For models with two nested functional random intercepts, the data table addi-
tionally needs to have columns: #’

• word_long (integer): unique identification number for each level of the
second grouping variable (e.g. phases of a randomized controled trial).
Note that the nested model is only implemented for two levels in the second
grouping variable.

• combi_long (integer): number of the repetition of the combination of the
corresponding level of the first and of the second grouping variable.

For models with covariates as part of the mean function µ(tij , xi), the covariate
values (numeric) need to be in separate columns with names: covariate.1,
covariate.2, etc.

use_RI TRUE to specify a model with one functional random intercept for the first
grouping variable (subject_long) and a smooth random error curve. Defaults
to FALSE, which specifies a model with crossed functional random intercepts for
the first and second grouping variable and a smooth error curve.
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use_simple TRUE to specify a model with only a smooth random error function, use_RI
should then also be set to TRUE. Defaults to FALSE.

method estimation method for gam or bam, see mgcv for more details. Defaults to "fREML".

use_bam TRUE to use function bam instead of function gam (syntax is the same, bam is
faster for large data sets). bam is recommended and set as default.

bs spline basis function type for the estimation of the mean function and the auto-
covariance, see s and te for more details. Defaults to penalized B-splines, i.e.
bs = "ps". This choice is recommended as others have not been tested yet.

d_grid pre-specified grid length for equidistant grid on which the mean, the auto-covariance
surfaces, the eigenfunctions and the functional random effects are evaluated.
NOTE: the length of the grid can be important for computation time (approx.
quadratic influence). Defaults to d_grid = 100.

min_grid minimum value of equidistant grid (should approx. correspond to minimum
value of time interval). Defaults to min_grid = 0.

max_grid maximum value of equidistant grid (should approx. correspond to maximum
value of time interval). Defaults to max_grid = 1.

my_grid optional evaluation grid, which can be specified and used instead of d_grid,
min_grid, max_grid. NOTE: the grid should be equidistant.

bf_mean basis dimension (number of basis functions) used for the functional intercept
f0(tij) in the mean estimation via bam/gam. Defaults to bf_mean = 8.

bf_covariates basis dimension (number of basis functions) used for the functional effects of
covariates in the mean estimation via bam/gam. Defaults to bf_covariates
= 8. NOTE: in the current implementation, the same basis dimension for all
covariates is used.

m_mean order of the penalty for this term in bam/gam of mean estimation, for bs = "ps"
spline and penalty order, defaults to m_mean = c(2, 3), i.e., cubic B-splines with
third order difference penalty, see s for details.

covariate TRUE to estimate covariate effects (as part of the mean function).

num_covariates number of covariates that are included in the model. NOTE: not number of
effects in case interactions of covariates are specified.

covariate_form vector with entries for each covariate that specify the form in which the respec-
tive covariate enters the mean function. Possible forms are "by" for varying-
coefficient (f(tij) ∗ covariate), which is possible for dummy coded covari-
ates and metric covariates and "smooth" for smooth effect in t and in covariate
(f(tij , covariate)), which is only possible for metric covariates! NOTE: met-
ric covariates should be centered such that the global functional intercept f0(tij)
can be interpreted as global mean function and the effect can be interpreted as
difference from the global mean.

interaction TRUE to estimate interaction effects of covariates, which interactions, see which_interaction
(below). Interactions are possible for dummy-coded covariates that act as vary-
ing coefficients.

which_interaction

symmetric matrix that specifies which interactions should be considered in case
covariate = TRUE and interaction = TRUE. Entry which_interaction[k, l]
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specifies that the interaction between covariate.k and covariate.l is mod-
eled (example below). NOTE: entries are redundant, which_interaction[l,
k] should be set to the same as which_interaction[k, l] (symmetric). De-
faults to which_interaction = matrix(NA) which should be specified when
interaction = FALSE.

save_model_mean

TRUE to give out gam/bam object (attention: can be large!), defaults to FALSE.
para_estim_mean

TRUE to parallelize mean estimation (only possible using bam), defaults to FALSE.
para_estim_mean_nc

number of cores for parallelization of mean estimation (only possible using bam,
only active if para_estim_mean = TRUE). Defaults to 0.

bf_covs vector of marginal basis dimensions (number of basis functions) used for covari-
ance estimation via bam/gam for each functional random effect (including the
smooth error curve). In the case of multiple grouping variables, the first entry
corresponds to the first grouping variable, the second vector entry corresponds
to the second grouping variable, and the third to the smooth error curve.

m_covs list of marginal orders of the penalty for bam/gam for covariance estimation, for
bs = "ps" marginal spline and penalty order. As only symmetric surfaces are
considered: same for both directions.
For crossed fRIs: list of three vectors, e.g. m_covs = list(c(2, 3), c(2, 3),
c(2, 3)), where first and second entry correspond to first and second grouping
variable, respectively and third entry corresponds to smooth error. For one fRI:
list of two vectors, e.g. m_covs = list(c(2, 3), c(2, 3)), where first entry
corresponds to (first) grouping variable and second entry corresponds to smooth
error. For independent curves: list of one vector, e.g. m_covs = list(c(2,3))
corresponding to smooth error.

use_whole TRUE to estimate the whole auto-covariance surfaces without symmetry con-
straint. Defaults to FALSE as is much slower than use_tri_constr and use_tri_constr_weights.
For more details, see references below.

use_tri TRUE to estimate only the upper triangle of the auto-covariance surfaces with-
out symmetry constraint. Defaults to FALSE and not recommended. For more
details, see references below.

use_tri_constr TRUE to estimate only the upper triangle of the auto-covariance surfaces with
symmetry constraint using the smooth class 'symm'. Defaults to TRUE. For more
details, see references below.

use_tri_constr_weights

TRUE to estimate only the upper triangle of the auto-covariances with symmetry
constraint, using the smooth class 'symm' and weights of 0.5 on the diagonal
to use the same weights as for estimating the whole auto-covariance surfaces.
Defaults to FALSE. For more details, see references below.

np TRUE to use ’normal parameterization’ for a tensor product smooth, see te for
more details. Defaults to TRUE.

mp FALSE to use Kronecker product penalty instead of Kronecker sum penalty with
only one smoothing parameter (use_whole = TRUE and use_tri = TRUE), for
details see te. For use_tri_constr = TRUE and use_tri_constr_weights =
TRUE, only one smoothing parameter is estimated anyway. Defaults to TRUE.
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use_discrete_cov

TRUE to further speed up the auto-covariance computation by discretization of
covariates for storage and efficiency reasons, includes parallelization controlled
by para_estim_cov_nc (below), see bam for more details. Defaults to FALSE.

para_estim_cov TRUE to parallelize auto-covariance estimation (only possible using bam), de-
faults to FALSE.

para_estim_cov_nc

number of cores (if use_discrete_cov = FALSE) or number of threads (if use_discrete_cov
= TRUE) for parallelization of auto-covariance estimation (only possible using
bam, only active if para_estim_cov = TRUE). Defaults to 0.

var_level pre-specified level of explained variance used for the choice of the number of
the functional principal components (FPCs). Alternatively, a specific number of
FPCs can be specified (see below). Defaults to var_level = 0.95.

N_B number of components for B (fRI for first grouping variable) to keep, overrides
var_level if not NA.

N_C number of components for C (fRI for second grouping variable) to keep, over-
rides var_level if not NA.

N_E number of components for E (smooth error) to keep, overrides var_level if not
NA.

use_famm TRUE to embed the model into the framework of functional additive mixed mod-
els (FAMMs) using re-estimation of the mean function together with the predic-
tion of the FPC weights (scores). This allows for point-wise confidence bands
for the covariate effects. Defaults to FALSE.

use_bam_famm TRUE to use function bam instead of function gam in FAMM estimation (reduces
computation time for large data sets), highly recommended. Defaults to TRUE.

bs_int_famm specification of the estimation of the functional intercept f0(tij) (as part of the
mean function), see pffr for details. Defaults to bs_int = list(bs = "ps", k
= 8, m = c(2, 3)), where bs: type of basis functions, k: number of basis func-
tions, m: order of the spline and order of the penalty.

bs_y_famm specification of the estimation of the covariates effects (as part of the mean func-
tion), see pffr for details. Defaults to bs_y_famm = list(bs = "ps", k = 8, m
= c(2, 3)), where bs: type of basis functions, k: number of basis functions, m:
order of the spline and order of the penalty.

save_model_famm

TRUE to give out the FAMM model object (attention: can be very large!). De-
faults to FALSE.

use_discrete_famm

TRUE to further speed up the fpc-famm computation by discretization of # co-
variates for storage and efficiency reasons, includes parallelization controlled by
para_estim_famm_nc (below), see bam for more details. Defaults to FALSE.

para_estim_famm

TRUE to parallelize FAMM estimation. Defaults to FALSE.
para_estim_famm_nc

number of cores (if use_discrete_famm = FALSE) or number of threads (if use_discrete_famm
= TRUE) for parallelization of FAMM estimation (only possible using bam, only
active if para_estim_famm = TRUE). Defaults to 0.
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nested TRUE to specify a model with nested functional random intercepts for the first
and second grouping variable and a smooth error curve. Defaults to FALSE.

Details

The code can handle irregularly and possibly sparsely sampled data. Of course, it can also be used
to analyze regular grid data, but as it is especially designed for the irregular case and there may be
a more efficient way to analyze regular grid data.

The mean function is of the form

µ(tij , xi) = f0(tij) +

r∑
k=1

fk(tij , xik),

where f0(tij) is a functional intercept. Currently implemented are effects of dummy-coded and
metric covariates which act as varying-coefficients of the form fk(tij) ∗ xik and smooth effects of
metric covariates (smooth in t and in the covariate) of the form f(tij , xik). NOTE: metric covari-
ates should be centered such that the global functional intercept can be interpreted as global mean
function and the effect can be interpreted as difference from the global mean. Interaction effects of
dummy-coded covariates acting as varying coefficients are possible.

The estimation consists of four main steps:

1. estimation of the smooth mean function (including covariate effects) under independence as-
sumption using splines.

2. estimation of the smooth auto-covariances of the functional random effects. A fast bivari-
ate symmetric smoother implemented in the smooth class ’symm’ can be used to speed up
estimation (see below).

3. eigen decomposition of the estimated auto-covariances, which are evaluated on a pre-specified
equidistant grid. This yields estimated eigenvalues and eigenfunctions, which are rescaled to
ensure orthonormality with respect to the L2-scalar product.

4. prediction of the functional principal component weights (scores) yielding predictions for the
functional random effects.

The estimation of the mean function and auto-covariance functions is based on package mgcv.
The functional principal component weights (scores) are predicted as best (linear) unbiased pre-
dictors. In addition, this implementation allows to embed the model in the general framework of
functional additive mixed models (FAMM) based on package refund, which allows for the con-
struction of point-wise confidence bands for covariate effects (in the mean function) conditional on
the FPCA. Note that the estimation as FAMM may be computationally expensive as the model is
re-estimated in a mixed model framework.

The four special cases of the general FLMM (two nested fRIs, two crossed fRIs, one fRI, indepen-
dent curves) are implemented as follows:

• In the special case with two nested fRIs, three random processes B, C, and E are considered,
where B is the fRI for the first grouping variable (e. g. patient in a random controlled trial), C
denotes the fRI for the second grouping variable (e.g. individual specific effect in the follow-
up) and E denotes the smooth error. For this special case, arguments use_RI and use_simple
are both set to FALSE and argument nested is set to TRUE. Note that this implementation only
allows for a simple before/after study design.
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• In the special case with two crossed fRIs, three random processes B, C, and E are considered,
where B is the fRI for the first grouping variable (e.g. speakers in the phonetics example
below), C denotes the fRI for the second grouping variable (e.g. target words in the phonetics
example below) and E denotes the smooth error. For this special case, arguments use_RI and
use_simple are both set to FALSE.

• In the special case with only one fRI, only B and E are considered and the number of levels
for the second grouping variable is to zero. For this special case, argument use_RI is set to
TRUE and argument use_simple is set to FALSE.

• The special case with independent curves is internally seen as a special case of the model with
one fRI for the first grouping variable, with the number of levels for this grouping variable
corresponding to the number of curves. Thus, for each level of the first grouping variable there
is one curve. Therefore, for the special case of independent curves, the estimation returns an
estimate for the auto-covariance of B (instead of E) and all corresponding results are indicated
with '_B', although they correspond to the smooth error. For this special case, arguments
use_RI and use_simple are both set to TRUE.

Value

The function returns a list of two elements: time_all and results.
time_all contains the total system.time() for calling function sparseFLMM().
results is a list of all estimates, including:

• mean_hat: includes the components of the estimated mean function.

– mean_pred contains effects of dummy covariates or metric covariates with a linear effect
(varying coefficients).

– mean_pred_smooth contains effects of metric covariates with a smooth effect.
– intercept is the estimated intercept, which is part of f0(tij).

For each auto-covariance smoothing alternative X (use_whole, use_tri, use_tri_constr, use_tri_constr_weights):

• cov_hat_X: includes

– sigmasq: the estimated error variance
– sigmasq_int: the integral of the estimated error variance over the domain
– grid_mat_B/C/E: the estimated auto-covariance(s) evaluated on the pre-specified grid
– sp: the smoothing parameter(s) for smoothing the auto-covariance(s)
– time_cov_estim: the time for the smoothing the auto-covariance(s) only
– time_cov_pred_grid: the time for evaluating the estimated auto-covariance(s) on the

pre-specified grid.

• time_cov_X: the total system.time() for the auto-covariance estimation

• fpc_hat_X: including

– phi_B/C/E_hat_grid: the estimated rescaled eigenfunctions evaluated on the pre-specified
grid

– nu_B/C/E_hat: the estimated rescaled eigenvalues
– N_B/C/E: the estimated truncation numbers, i.e., number of FPCs which are chosen
– total_var: the estimated total variance
– var_explained: the estimated explained variance
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– xi_B/C/E_hat: the predicted FPC weights (scores).

• time_fpc_X: the total system.time() for the eigen decompositions and prediction on the FPC
weights (scores) If use_famm = TRUE, the list results additionally contains:

– fpc_famm_hat_X: including

* intercept: the estimated intercept, which is part of f0(tij)

* residuals: the residuals of the FAMM estimation

* xi_B/C/E_hat_famm: the predicted basis weights

* famm_predict_B/C/E: the predicted functional processes evaluated on the pre-specified
grid

* famm_cb_mean: the re-estimated functional intercept f0(tij)

* famm_cb_covariate.1, famm_cb_covariate.1, etc: possible re-estimated covari-
ate effects

* famm_cb_inter_1_2, famm_cb_inter_1_3, etc: possible interaction effects

* time_fpc_famm_X: the total system.time() for the FAMM estimation.

The unique identification numbers for the levels of the grouping variables and curves are
renumbered for convenience during estimation from 1 in ascending order. The original iden-
tification numbers are returned in the list results:

– n_orig: curve levels as they entered the estimation

– subject_orig: levels of the first grouping variable as they entered the estimation

– word_orig: levels of the second grouping variable (if existent) as they entered the esti-
mation

– my_grid: pre-specified grid.

Author(s)
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See Also

Note that sparseFLMM calls bam or gam directly.

For functional linear mixed models with complex correlation structures for data sampled on equal
grids based on functional principal component analysis, see function denseFLMM in package denseFLMM.
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Examples

## Not run:
# subset of acoustic data (very small subset, no meaningful results can be expected and
# FAMM estimation does not work for this subset example. For FAMM estimation, see below.)
data("acoustic_subset")

acoustic_results <- sparseFLMM(curve_info = acoustic_subset, use_RI = FALSE, use_simple = FALSE,
method = "fREML", use_bam = TRUE, bs = "ps", d_grid = 100, min_grid = 0,

max_grid = 1, my_grid = NULL, bf_mean = 8, bf_covariates = 8, m_mean = c(2,3),
covariate = TRUE, num_covariates = 4, covariate_form = rep("by", 4),
interaction = TRUE,
which_interaction = matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
byrow = TRUE, nrow = 4, ncol = 4),
save_model_mean = FALSE, para_estim_mean = FALSE, para_estim_mean_nc = 0,
bf_covs = c(5, 5, 5), m_covs = list(c(2, 3), c(2, 3), c(2, 3)),
use_whole = FALSE, use_tri = FALSE, use_tri_constr = TRUE,
use_tri_constr_weights = FALSE, np = TRUE, mp = TRUE,
use_discrete_cov = FALSE,
para_estim_cov = FALSE, para_estim_cov_nc = 5,
var_level = 0.95, N_B = NA, N_C = NA, N_E = NA,
use_famm = FALSE, use_bam_famm = TRUE,
bs_int_famm = list(bs = "ps", k = 8, m = c(2, 3)),
bs_y_famm = list(bs = "ps", k = 8, m = c(2, 3)),
save_model_famm = FALSE, use_discrete_famm = FALSE,
para_estim_famm = FALSE, para_estim_famm_nc = 0)

## End(Not run)

## Not run:
# whole data set with estimation in the FAMM framework

data("acoustic")
acoustic_results <- sparseFLMM(curve_info = acoustic, use_RI = FALSE, use_simple = FALSE,

method = "fREML", use_bam = TRUE, bs = "ps", d_grid = 100, min_grid = 0,
max_grid = 1, my_grid = NULL, bf_mean = 8, bf_covariates = 8, m_mean = c(2,3),

covariate = TRUE, num_covariates = 4, covariate_form = rep("by", 4),
interaction = TRUE,
which_interaction = matrix(c(FALSE, TRUE, TRUE, TRUE, TRUE,
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE),
byrow = TRUE, nrow = 4, ncol = 4),
save_model_mean = FALSE, para_estim_mean = FALSE, para_estim_mean_nc = 0,
bf_covs = c(5, 5, 5), m_covs = list(c(2, 3), c(2, 3), c(2, 3)),
use_whole = FALSE, use_tri = FALSE, use_tri_constr = TRUE,
use_tri_constr_weights = FALSE, np = TRUE, mp = TRUE,
use_discrete_cov = FALSE,
para_estim_cov = TRUE, para_estim_cov_nc = 5,
var_level = 0.95, N_B = NA, N_C = NA, N_E = NA,
use_famm = TRUE, use_bam_famm = TRUE,
bs_int_famm = list(bs = "ps", k = 8, m = c(2, 3)),
bs_y_famm = list(bs = "ps", k = 8, m = c(2, 3)),
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save_model_famm = FALSE, use_discrete_famm = FALSE,
para_estim_famm = TRUE, para_estim_famm_nc = 5)

## End(Not run)
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