Choosing weights for likelihood smoothing

Andreï V. Kostyrka, University of Luxembourg

Created: 2025-04-29, last modified: 2024-04-29, compiled: 2025-10-27

Abstract

This vignette demonstrates how the choice of SEL weights for smoothing the likelihood affects the final result.
library(smoothemplik)
#> Smoothed Empirical Likelihood version 0.0.16 (2025-10-27).
#> Package under active development; core functions subject to change.

1 Kernel methods

There are many approaches to choosing the smoothing weights for conditional empirical likelihood, and there is no consensus on the optimality of one or another weighting scheme.

Recall that in the SEL approach, the empirical likelihood of the data in the observed sample is maximised subject to the constraint \(\mathbb{E}(\rho(Z, \theta) \mid X) = 0\). Assume for simplicity that the dimension of the moment function \(\rho\) is 1. The optimisation problem is therefore finding the optimal discrete distribution that enforces a sample analogue of this conditional moment restriction for any parameter \(\theta\): \[ \max_{0 < p_{ij} < 1} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \log p_{ij}, \] where \(\sum_j p_{ij} = 1\) for \(i=1,\ldots,n\) and \(\sum_j p_{ij}\rho(Z_j, \theta) = 0\) for \(i=1,\ldots,n\).

The solution to this problem has a closed form: \[ \hat p_{ij} = \frac{w_{ij}}{1 + \hat\lambda_i (\theta) \rho(Z_j, \theta)}, \] where the Lagrange multipliers \(\hat\lambda_i\) are the solution to the equality \(\sum_{j=1}^n \frac{w_{ij} \rho(Z_j, \theta)}{1 + \lambda_i(\theta) \rho(Z_j, \theta)} = 0\) (the first-order condition for maximising the weighted empirical likelihood), found numerically.

Typically, \(w_{ij}\) are kernel weights. They can be obtained in a plethora of approaches:

  1. Directly apply popular kernels to the conditioning variables \(X\);
  2. Transform \(X\) coordinate-wise via any probability-integral-like transformation (empirical CDF, Gaussian CDF etc.) to map them into the \([0, 1]^{\dim X}\) hyper-cubel;
  3. For each \(X\), find its \(k\) nearest neighbours, rank them by proximity, and apply the kernel function to the ranks of the nearest observations.
  4. Choose the adaptive nearest-neighbour bandwidth \(b_n(X_i) = b_i\) such that there be exactly \(k\) nearest neighbours in the vicinity defined by the kernel, without any rank transformation.

Theoretically, approaches (3) and (4) should work the best because it ensures that there are enough observations for smoothing, and that there is neither over- or under-smoothing. The latter two phenomena are a problem:

Consider kernel weights of the form \[ w_{ij} := k\left( \frac{X_i - X_j}{b} \right), \] where \(k\) is a kernel function that is zero outside \([-1, 1]\), integrates to one, and is symmetric and non-negative within that interval. The most popular kernel functions are uniform, triangular (Bartlett), quadratic (Epanechnikov), quartic, and Gaussian.

1.1 Fixed bandwidth

Using a fixed bandwidth for SEL smoothing is the simplest choice, yet it can be sub-optimal for many reasons. In the regions where the observations are dense, the empirical likelihood may be over-smoothed, whereas in low-density regions, it may be undersmoothed, creating problems for the spanning condition.

The obvious ‘crutch’ to fix the spanning condition failure is the use of some sort of extrapolation of the SELR function outside the convex hull. The present package offers three options for the EL() function: chull.fail = "taylor" that extrapolates its branches quadratically following a Taylor expansion after a cut-off point, or chull.fail = "wald" that replaces the SELR function halfway between the outermost observations with a smooth transition to a Wald approximation, or chull.fail = "none" for returning -Inf. This option is experimental; envisioned are such options as 2nd- or 4th-order log-approximation. Adjusted EL (AEL) and Balanced AEL (BAEL) can be invoked with chull.fail = "adjusted" (Chen et al. (2008)), chull.fail = "adjusted2" (Liu and Chen (2010) improvement), and chull.fail = "balanced" (Emerson and Owen (2009)).

x  <- c(-3, -2, 2, 3, 4)
ct <- c(10, 4:1)
grid.full <- c(seq(-3.5, 5.5, length.out = 201))
grid.keep <- grid.full <= -2.5 | grid.full >= 3.5
selr0 <- sapply(grid.full, function(m) -2*EL0(x, m, ct)$logelr)
selr1 <- -2*ExEL1(x, mu = grid.full, ct = ct, exel.control = list(xlim = c(-2.5, 3.5)))
selr2 <- -2*ExEL2(x, mu = grid.full, ct = ct, exel.control = list(xlim = c(-2.5, 3.5)))
plot(grid.full, selr0, ylim = c(0, 120), xlim = c(-3.5, 4.5), bty = "n",
     main = "-2 * weighted log-EL", ylab = "", type = "l")
points(grid.full[grid.keep], selr1[grid.keep], col = 4, pch = 0, cex = 0.75)
points(grid.full[grid.keep], selr2[grid.keep], col = 2, pch = 2, cex = 0.75)
rug(x, lwd = 2)
abline(v = c(-2.5, 3.5), lty = 3)
legend("top", c("Taylor", "Wald"), title = "Extrapolation type", col = c(4, 2),
       pch = c(0, 2), bty = "n")

These extrapolations may certainly remedy the predicament of having negative infinity for the log-ELR statistic, which does not get accepted by most numerical optimisers – but they should not be relied upon. It is normal to have ‘bad’ values for ‘bad’ guesses during the optimisation process, but at the initial value and at the optimum, the spanning condition should hold.

1.2 Rank weights

1.3 Nearest-neigbour weights

This bandwidth is also known as the ‘baloon’ / sample-point adaptive bandwidth. Define a function that chooses such a bandwidth that there be ceiling(d/n) nearest neighbours for each observation, where d is the span in (0, 1). It is assumed that the kernel in question has bounded support and is zero outside \([-1, 1]\). This version works for multiple dimensions as well.

pickMinBW <- function(X, d = 2 / sqrt(NROW(X)), tol = 1e-12) {
  X <- as.matrix(X)
  n <- nrow(X)
  p <- ncol(X)
  k <- ceiling(d * n)
  k <- max(1, min(k, n - 1))

  # has.ms <- requireNamespace("matrixStats", quietly = TRUE)
  b <- sapply(seq_len(n), function(i) {
    # L_inf distances from X_i
    A  <- abs(sweep(X, 2, X[i, ], "-", check.margin = FALSE))
    # Di <- if (has.ms) matrixStats::rowMaxs(A) else do.call(pmax, as.data.frame(A))
    Di <- do.call(pmax, as.data.frame(A))
    Di[i] <- Inf  # Exclude self
    if (k < n - 1) {
      return(sort(Di, partial = k + 1)[k + 1])
    } else {
      return(sort(Di, partial = n - 1)[n - 1])
    }
  })
  b * (1 - tol)
}

2 Simulation in 1 dimension

n <- 50
set.seed(1)
X <- sort(rchisq(n, df = 3))
Y <- 1 + X + (rchisq(n, df = 3) - 3) * (1 + X)
mod0 <- lm(Y ~ X)
vhat0 <- kernelSmooth(X, mod0$residuals^2, bw = max(diff(X))*1.2, kernel = "epanechnikov")
mod1 <- lm(Y ~ X, weights = 1 / vhat0)
plot(X, Y, bty = "n")
abline(c(1, 1), lty = 2)
abline(mod0, col = 1); abline(mod1, col = 2)

cbind(OLS = mod0$coefficients, WOLS = mod1$coefficients)
#>                   OLS      WOLS
#> (Intercept) 2.0887343 1.4469218
#> X           0.2858387 0.5054064

These values are relatively far away from the truth.

Define four smoothing matrices:

bw0 <- bw.CV(X, kernel = "epanechnikov")
bw0 <- max(bw0, max(diff(X))*1.1)
wF <- kernelWeights(X, bw = bw0, kernel = "epanechnikov")

# Assuming Gaussian CDF, which is not true
Xs <- scale(X)
XP <- pnorm(Xs)
wP <- kernelWeights(XP, bw = bw.CV(XP), kernel = "epanechnikov")
rowMeans(wP > 0) - 1/n
#>  [1] 0.14 0.16 0.20 0.24 0.26 0.28 0.28 0.28 0.26 0.26 0.28 0.28 0.28 0.28 0.30
#> [16] 0.26 0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.18 0.16 0.14 0.10 0.04 0.06 0.06
#> [31] 0.08 0.12 0.14 0.12 0.16 0.18 0.22 0.22 0.18 0.18 0.16 0.14 0.16 0.22 0.14
#> [46] 0.12 0.12 0.12 0.12 0.10

bw.adapt <- pickMinBW(X, d = 0.16)
plot(X, bw.adapt, bty = "n", main = "Adaptive bandwidth ensuring 15% non-zero weights",
     ylim = c(0, max(bw.adapt)))

wA <- kernelWeights(X, bw = bw.adapt, kernel = "epanechnikov")
rowMeans(wA > 0) - 1/n
#>  [1] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [16] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [31] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [46] 0.16 0.16 0.16 0.16 0.16

rX <- rank(X)
wNN <- kernelWeights(rX/max(rX), bw = 0.09, kernel = "epanechnikov")
rowMeans(wNN > 0) - 1/n
#>  [1] 0.08 0.10 0.12 0.14 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [16] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [31] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [46] 0.16 0.14 0.12 0.10 0.08
g  <- function(theta, ...) Y - theta[1] - theta[2]*X

wF <- wF / rowSums(wF)
wP <- wP / rowSums(wP)
wNN <- wNN / rowSums(wNN)
wA <- wA / rowSums(wA)

g1 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wF, minus = TRUE, type = "EuL")
g2 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wP, minus = TRUE, type = "EuL")
g3 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wNN, minus = TRUE, type = "EuL")
g4 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wA, minus = TRUE, type = "EuL")
  
th1  <- optim(mod1$coefficients, g1, method = "BFGS", control = list(ndeps = rep(1e-5, 2), reltol = 1e-5))
th2  <- optim(mod1$coefficients, g2, method = "BFGS", control = list(ndeps = rep(1e-5, 2), reltol = 1e-5))
th3  <- optim(mod1$coefficients, g3, method = "BFGS", control = list(ndeps = rep(1e-5, 2), reltol = 1e-5))
th4  <- optim(mod1$coefficients, g4, method = "BFGS", control = list(ndeps = rep(1e-5, 2), reltol = 1e-5))

cbind(WOLS = mod1$coefficients, Fixed = th1$par, PIT = th2$par, NNeighb = th3$par, Adapt = th4$par)
#>                  WOLS     Fixed       PIT   NNeighb     Adapt
#> (Intercept) 1.4469218 1.6509595 1.4592058 1.6426623 0.8895890
#> X           0.5054064 0.4119324 0.5326892 0.3026498 0.6117477

3 Simulation in 3 dimensions

n <- 200
set.seed(1)
X <- matrix(rchisq(n*3, df = 3), ncol = 3)
Y <- 1 + rowSums(X) + (rchisq(n, df = 3) - 3) * (1 + rowSums(X))
mod0 <- lm(Y ~ X)
vhat0 <- kernelSmooth(X, mod0$residuals^2, PIT = TRUE, bw = 0.2,
                      kernel = "epanechnikov", no.dedup = TRUE)
mod1 <- lm(Y ~ X, weights = 1 / vhat0)
cbind(OLS = mod0$coefficients, WOLS = mod1$coefficients)
#>                   OLS       WOLS
#> (Intercept) 4.1866397 0.16631928
#> X1          0.6251463 0.05875198
#> X2          0.7362969 0.99137344
#> X3          0.2928678 0.75248132

These values are also far away from the truth.

Construct the same four smoothing matrices:

bw0 <- 1
atleast2 <- FALSE
while(!atleast2) {
 wF <- kernelWeights(X, bw = bw0, kernel = "epanechnikov")
 bw0 <- bw0 * 1.1
 atleast2 <- min(rowSums(wF > 0)) > 1
}
rowMeans(wF > 0) - 1/n
#>   [1] 0.535 0.390 0.070 0.570 0.070 0.665 0.260 0.645 0.555 0.630 0.555 0.635
#>  [13] 0.075 0.685 0.700 0.245 0.665 0.175 0.340 0.225 0.430 0.580 0.595 0.035
#>  [25] 0.255 0.360 0.565 0.575 0.430 0.430 0.280 0.330 0.545 0.585 0.525 0.575
#>  [37] 0.730 0.145 0.645 0.095 0.280 0.585 0.560 0.600 0.565 0.490 0.640 0.600
#>  [49] 0.270 0.545 0.375 0.545 0.055 0.790 0.605 0.685 0.675 0.660 0.675 0.550
#>  [61] 0.395 0.025 0.820 0.595 0.295 0.760 0.310 0.565 0.660 0.435 0.465 0.460
#>  [73] 0.825 0.365 0.695 0.035 0.580 0.500 0.675 0.585 0.620 0.575 0.115 0.640
#>  [85] 0.675 0.180 0.195 0.095 0.035 0.220 0.515 0.570 0.755 0.015 0.555 0.715
#>  [97] 0.330 0.635 0.120 0.600 0.680 0.595 0.545 0.650 0.655 0.610 0.590 0.470
#> [109] 0.530 0.665 0.645 0.045 0.670 0.025 0.135 0.680 0.260 0.680 0.650 0.355
#> [121] 0.175 0.445 0.555 0.665 0.115 0.260 0.460 0.680 0.455 0.065 0.495 0.090
#> [133] 0.585 0.625 0.635 0.005 0.010 0.515 0.700 0.215 0.405 0.180 0.030 0.190
#> [145] 0.555 0.300 0.565 0.040 0.520 0.640 0.580 0.640 0.215 0.300 0.640 0.285
#> [157] 0.660 0.485 0.380 0.325 0.710 0.495 0.500 0.480 0.555 0.625 0.345 0.690
#> [169] 0.330 0.615 0.400 0.665 0.185 0.665 0.545 0.325 0.465 0.645 0.555 0.170
#> [181] 0.645 0.065 0.625 0.495 0.620 0.535 0.480 0.130 0.600 0.735 0.060 0.120
#> [193] 0.280 0.535 0.670 0.260 0.550 0.595 0.410 0.310
min(rowSums(wF > 0))
#> [1] 2

Xs <- scale(X)
XP <- apply(Xs, 2, pnorm)
wP <- kernelWeights(XP, bw = bw.rot(XP)*2, kernel = "epanechnikov")
rowMeans(wP > 0) - 1/n
#>   [1] 0.140 0.045 0.025 0.155 0.020 0.105 0.035 0.245 0.115 0.165 0.120 0.310
#>  [13] 0.065 0.075 0.170 0.040 0.060 0.085 0.065 0.065 0.105 0.115 0.180 0.070
#>  [25] 0.095 0.050 0.190 0.145 0.055 0.115 0.105 0.030 0.090 0.145 0.065 0.120
#>  [37] 0.120 0.065 0.170 0.055 0.035 0.060 0.155 0.135 0.225 0.160 0.155 0.160
#>  [49] 0.080 0.115 0.085 0.185 0.030 0.130 0.135 0.210 0.115 0.245 0.255 0.215
#>  [61] 0.105 0.020 0.095 0.240 0.035 0.155 0.045 0.185 0.165 0.100 0.090 0.095
#>  [73] 0.040 0.055 0.070 0.065 0.190 0.065 0.100 0.125 0.175 0.200 0.045 0.140
#>  [85] 0.080 0.060 0.035 0.035 0.080 0.070 0.175 0.155 0.030 0.025 0.225 0.145
#>  [97] 0.065 0.130 0.055 0.130 0.320 0.105 0.190 0.135 0.170 0.155 0.180 0.065
#> [109] 0.060 0.225 0.210 0.020 0.185 0.065 0.015 0.280 0.050 0.210 0.170 0.110
#> [121] 0.040 0.055 0.185 0.195 0.070 0.060 0.060 0.095 0.125 0.025 0.180 0.030
#> [133] 0.195 0.165 0.250 0.035 0.080 0.130 0.155 0.080 0.050 0.085 0.015 0.060
#> [145] 0.150 0.050 0.155 0.025 0.125 0.190 0.225 0.195 0.045 0.060 0.245 0.065
#> [157] 0.285 0.065 0.125 0.045 0.230 0.175 0.170 0.100 0.185 0.180 0.070 0.195
#> [169] 0.085 0.240 0.045 0.175 0.030 0.260 0.110 0.125 0.125 0.105 0.205 0.045
#> [181] 0.055 0.050 0.100 0.105 0.170 0.165 0.050 0.060 0.185 0.085 0.025 0.070
#> [193] 0.065 0.110 0.075 0.090 0.215 0.220 0.075 0.095
min(rowSums(wP > 0))
#> [1] 4

bw.adapt <- pickMinBW(X, d = 0.16)
plot(rowMeans(X), bw.adapt, bty = "n", main = "Adaptive bandwidth ensuring 15% non-zero weights",
     ylim = c(0, max(bw.adapt)))

wA <- kernelWeights(X, bw = bw.adapt, kernel = "epanechnikov")
rowMeans(wA > 0) - 1/n
#>   [1] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [16] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [31] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [46] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [61] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [76] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#>  [91] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [106] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [121] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [136] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [151] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [166] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [181] 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
#> [196] 0.16 0.16 0.16 0.16 0.16
min(rowSums(wA > 0))
#> [1] 33
g  <- function(theta, ...) Y - drop(cbind(1, X) %*% theta)

wF <- wF / rowSums(wF)
wP <- wP / rowSums(wP)
wA <- wA / rowSums(wA)

g1 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wF,
                                   minus = TRUE, type = "EuL")
g2 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wP,
                                   minus = TRUE, type = "EuL")
g4 <- function(theta) smoothEmplik(rho = g, theta = theta, data = NULL, sel.weights = wA,
                                   minus = TRUE, type = "EuL")

To save speed (30 seconds), we do not run the following fragment; the results are provided below.

# th1  <- optim(mod1$coefficients, g1, method = "BFGS", control = list(ndeps = rep(1e-5, 4)))
# th2  <- optim(mod1$coefficients, g2, method = "BFGS", control = list(ndeps = rep(1e-5, 4)))
# th4  <- optim(mod1$coefficients, g4, method = "BFGS", control = list(ndeps = rep(1e-5, 4)))

# round(cbind(True = rep(1, 4), WOLS = mod1$coefficients, Fixed = th1$par, PIT = th2$par, Adapt = th4$par), 3)
#             True  WOLS Fixed    PIT Adapt
# (Intercept)    1 0.166 2.755  3.668 0.110
# X1             1 0.059 0.132  0.241 0.790
# X2             1 0.991 1.036  0.694 0.929
# X3             1 0.752 0.625 -0.161 0.863

4 Conclusion

This simulation emphasises the importance of careful bandwidth choice in efficient estimation via smoothing the empirical or Euclidean likelihood. Nearest-neighbour methods work well, whereas adaptive-bandwidth methods are comparable to them, but also possess lucrative theoretical proofs such as integrability.

5 References

Chen, Jiahua, Asokan Mulayath Variyath, and Bovas Abraham. 2008. “Adjusted Empirical Likelihood and Its Properties.” Journal of Computational and Graphical Statistics 17 (2): 426–43. https://doi.org/10.1198/106186008x321068.
Emerson, Sarah C., and Art B. Owen. 2009. “Calibration of the Empirical Likelihood Method for a Vector Mean.” Electronic Journal of Statistics 3: 1161–92. https://doi.org/10.1214/09-ejs518.
Liu, Yukun, and Jiahua Chen. 2010. “Adjusted Empirical Likelihood with High-Order Precision.” The Annals of Statistics 38 (3). https://doi.org/10.1214/09-aos750.