Package ‘simmer.bricks’

July 15, 2023
Type Package

Title Helper Methods for 'simmer' Trajectories

Version 0.2.2

Description Provides wrappers for common activity patterns in 'simmer’ trajectories.
License MIT + file LICENSE

Encoding UTF-8

URL https://r-simmer.org, https://github.com/r-simmer/simmer.bricks

BugReports https://github.com/r-simmer/simmer.bricks/issues
Depends R (>=3.1.2), simmer (>= 3.7.0)

Suggests testthat, knitr, rmarkdown

ByteCompile yes

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Ifaki Ucar [aut, cph, cre] (<https://orcid.org/0000-0001-6403-5550>)
Maintainer Ifiaki Ucar <iucar@fedoraproject.org>

Repository CRAN

Date/Publication 2023-07-15 10:30:02 UTC

R topics documented:

simmer.bricks-package
delayed_release e
do_parallel e
interleave e

Index

https://r-simmer.org
https://github.com/r-simmer/simmer.bricks
https://github.com/r-simmer/simmer.bricks/issues
https://orcid.org/0000-0001-6403-5550

2 delayed_release

simmer.bricks-package simmer.bricks: Helper Methods for simmer Trajectories

Description

Provides wrappers for common activity patterns in simmer trajectories.

Author(s)

Ifiaki Ucar

See Also

simmer’s homepage https://r-simmer.org and GitHub repository https://github.com/r-simmer/
simmer.bricks.

delayed_release Delayed Release of a Resource

Description

This brick encapsulates a delayed release: the arrival releases the resource and continues its way
immediately, but the resource is busy for an additional period of time.

Usage

delayed_release(
.trj,
resource,
task,
amount = 1,
preemptive = FALSE,
mon_all = FALSE

)
delayed_release_selected(
.trj,
task,
amount = 1,

preemptive = FALSE,
mon_all = FALSE

https://r-simmer.org
https://github.com/r-simmer/simmer.bricks
https://github.com/r-simmer/simmer.bricks

delayed_release 3

Arguments
.trj the trajectory object.
resource the name of the resource.
task the timeout duration supplied by either passing a numeric or a callable object
(a function) which must return a numeric (negative values are automatically
coerced to positive).
amount the amount to seize/release, accepts either a numeric or a callable object (a func-
tion) which must return a numeric.
preemptive whether arrivals in the server can be preempted or not based on seize priorities.
mon_all if TRUE, get_mon_arrivals will show one line per clone.
Value

Returns the following chain of activities: clone > synchronize (see examples below).

Examples

These are equivalent for a non-preemptive resource:
trajectory() %>%
delayed_release("res1”, 5, 1)

trajectory() %>%
clone(
2,
trajectory() %>%
set_capacity("res1”, -1, mod="+") %>%
release("res1"”, 1),
trajectory() %>%
timeout (5) %>%
set_capacity("res1”, 1, mod="+")
) %%
synchronize(wait=FALSE)

These are equivalent for a preemptive resource:
trajectory() %>%
delayed_release("res2", 5, 1, preemptive=TRUE)

trajectory() %>%
clone(
2,
trajectory() %>%
release("res2", 1),
trajectory() %>%
set_prioritization(c(rep(.Machine$integer.max, 2), 0)) %>%
seize("res2", 1) %>%
timeout (5) %>%
release("res2", 1)
) %>%
synchronize(wait=FALSE)

do_parallel

do_parallel

Perform Parallel Tasks

Description

This brick encapsulates the activity of n workers running parallel sub-trajectories.

Usage
do_parallel(.trj, ..., .env, wait = TRUE, mon_all = FALSE)
Arguments
.trj the trajectory object.
sub-trajectories or list of sub-trajectories to parallelise.
.env the simulation environment.
wait if TRUE, the arrival waits until all parallel sub-trajectories are finished; if FALSE,
the arrival continues as soon as the first parallel task ends.
mon_all if TRUE, get_mon_arrivals will show one line per clone.
Value

Returns the following chain of activities: clone > synchronize (>wait > untrap if wait=FALSE)

(see examples below).

Examples

env <- simmer()
signal <- function() get_name(env)

task.1 <- trajectory("task 1") %>%
timeout (function() rexp(1))

task.2 <- trajectory(”"task 2") %>%
timeout (function() rexp(1))

These are equivalent:
trajectory() %>%
do_parallel(
task.1,
task.2,
.env = env, wait = TRUE

)

trajectory() %>%
clone(
n =3,
trajectory("original”) %>%
trap(signal) %>%

interleave

wait() %>%

wait() %>%

untrap(signal),
task.1[] %>%

send(signal),
task.2[] %>%

send(signal)) %>%

synchronize(wait = TRUE)

These are equivalent:
trajectory() %>%
do_parallel(
task.1,
task. 2,
.env = env, wait = FALSE

trajectory() %>%
clone(
n =3,
trajectory("original”) %>%
trap(signal),
task.1[] %>%
send(signal),
task.2[] %>%
send(signal)) %>%
synchronize(wait = FALSE) %>%
wait() %>%
untrap(signal)

interleave Interleaved Resources

Description

This brick encapsulates a chain of interleaved resources, i.e., the current resource is not released

until the next one in the chain is available. An interesting property of such a pattern is that, if one
resource is blocked for some reason, the whole chain stops.

Usage

interleave(.trj, resources, task, amount = 1)

Arguments

.trj the trajectory object.

resources character vector of resource names.

6 visit

task the timeout duration supplied by either passing a numeric or a callable object
(a function) which must return a numeric (negative values are automatically
coerced to positive).

amount the amount to seize/release, accepts either a numeric or a callable object (a func-
tion) which must return a numeric.

Details

Both task and amount accept a list of values/functions, instead of a single one, that should be of
the same length as resources, so that each value/function is applied to the resource of the same
index.

The transition to the second and subsequent resources is guarded by a token, an auxiliary resource
whose capacity must be equal to the capacity + queue size of the guarded resource, and its queue
size must be infinite. For example, if two resources are provided, c("A", "B"), the auxiliary re-
source will be named "B_token"”. If capacity=2 and queue_size=1 for B, then capacity=3 and
queue_size=Inf must be the values for B_token. But note that the user is responsible for adding
such an auxiliary resource to the simulation environment with the appropriate parameters.

Value

Returns the following chain of activities: seize (1) > timeout > [seize (token to 2) > release (1)
> seize (2) > timeout > release (2) > release (token to 2) > ... (repeat) | (see examples below).
Thus, the total number of activities appended is length(resources) * 3 + (length(resources)-1)
* 2.

Examples

These are equivalent:
trajectory() %>%
interleave(c("A", "B"), c(2, 10), 1)

trajectory() %>%
seize("A", 1) %>%
timeout(2) %>%
seize("B_token", 1) %>%
release("A", 1) %>%
seize("B", 1) %>%
timeout (10) %>%
release("B", 1) %>%
release("B_token", 1)

visit Visit a Resource

Description

These bricks encapsulate a resource visit: seize, spend some time and release.

wait_n 7

Usage

visit(.trj, resource, task, amount = 1)

visit_selected(.trj, task, amount = 1, id = @)

Arguments
.trj the trajectory object.
resource the name of the resource.
task the timeout duration supplied by either passing a numeric or a callable object
(a function) which must return a numeric (negative values are automatically
coerced to positive).
amount the amount to seize/release, accepts either a numeric or a callable object (a func-
tion) which must return a numeric.
id selection identifier for nested usage.
Value

Returns the following chain of activities: seize > timeout > release (see examples below).

Examples

These are equivalent:
trajectory() %>%
visit("res”, 5, 1)

trajectory() %>%
seize("res", 1) %>%
timeout (5) %>%
release("res”, 1)

These are equivalent:
trajectory() %>%
visit_selected(5, 1)

trajectory() %>%
seize_selected(1) %>%
timeout (5) %>%
release_selected(1)

wait_n Wait a Number of Signals

Description

These bricks encapsulate n stops: wait for a sequence of n signals. wait_until also traps and
untraps the required signals.

Usage

wait_n

wait_n(.trj, n =1)

wait_until(

Arguments

.trj
n

signals

Value

.trj, signals, n =1)

the trajectory object.
number of wait activities to chain.

signal or list of signals, accepts either a string, a list of strings or a callable object
(a function) which must return a string or a list of strings.

wait_n returns n times wait. wait_until also adds trap and untrap at the beginning and end,
respectively, of the chain of waits (see examples below).

Examples

These are
trajectory()
wait_n(3)

trajectory()
wait() %>%
wait() %>%
wait()

These are
trajectory()

equivalent:
%>%

%>%

equivalent:
%>%

wait_until("green")

trajectory()

%>%

trap("”green”) %>%

wait() %>%

untrap(“green”)

These are
trajectory()

equivalent:
%>%

wait_until(c("one”, "another"), 2)

trajectory()

%>%

trap(c(”one”, "another")) %>%

wait() %>%
wait() %>%

untrap(c("one"”, "another"))

Index

clone, 3, 4

delayed_release, 2

delayed_release_selected
(delayed_release), 2

do_parallel, 4

interleave, 5
release, 6, 7

seize, 6,7
simmer.bricks-package, 2

synchronize, 3, 4

timeout, 6, 7
trap, 8

untrap, 4, 8

visit, 6
visit_selected (visit), 6

wait, 4,8
wait_n,7
wait_until (wait_n),7

	simmer.bricks-package
	delayed_release
	do_parallel
	interleave
	visit
	wait_n
	Index

