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beta_builder Create a Parameter Vector from Lattice Locations

Description

Specify the locations in the lattice/image that have non-zero parameters as well as the values for
those parameters, and the function creates the parameter vector that matches the correct locations
in the design matrix.

Usage

beta_builder(
row.index,
col.index,
im.res,
B0 = 0,
B.values,
index.type = "manual",
decay.fn = "gaussian",
phi = 0.5,
max.d = Inf,
h,
w,
bayesian = FALSE,
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bayesian.dist = NULL,
bayesian.scale = NULL,
output.indices = TRUE

)

Arguments

row.index, col.index

Vectors of row/columns indices for non-zero parameters. If index.type = "manual",
each vector should contain specific coordinates. If index.type = "rectangle",
each vector should specify rectangle length; e.g. row.index = 1:3 means the
rectangle’s ’length’ is from rows 1 to 3. If index.type = "ellipse", the ar-
guments should be scalar values specifying the row/column coordinates for the
center of the ellipse. If index.type = "decay", the arguments should specify
the row/column coordinates, respectively, of the peak parameter value.

im.res A vector specifying the dimension/resolution of the image. The first entry is
the number of ’rows’ in the lattice/image, and the second entry is the number of
’columns’ in the lattice/image.

B0 is the "true" intercept value; default is 0.

B.values is a vector "true" parameter values for non-zero parameters. The order of as-
signment is by row. If B.values argument is a single value, then all non-zero
parameters are assigned to that value, unless decay.fn has been specified, in
which case B.values is the "peak", and non-zero parameters decay smoothly
by distance.

index.type is one of index.type = c("manual", "rectangle", "ellipse", "decay")

• index.type = "manual" uses row.index and col.index arguments to specify
manually selected non-zero locations. This setting is good for irregular
shaped regions.

• index.type = "rectangle" uses row.index and col.index arguments to spec-
ify a rectangular region of non-zero parameters.

• index.type = "ellipse" uses w and h arguments to specify elliptical re-
gion of non-zero parameters.

• index.type = "decay" allows the user to specify a peak location with
row.index and col.index, as with index.type = "ellipse". However,
the non-zero parameter values decay as a function of distance from the
peak.

decay.fn An argument to specify the decay function of non-zero parameters decay from
the peak when index.type = "decay". Options are "exponential" or "gaus-
sian". The rate of decay is given by B.values ∗ exp(−phi ∗ d) and B.values ∗
exp(−phi ∗ d2) for "exponential" and "gaussian", respectively. The default is
decay.fn = "gaussian". Note that d is the Euclidean distance between the
peak and a specified location, while phi is the rate of decay and is set by the
user with phi.

phi A scalar value greater than 0 that determines the decay rate of non-zero param-
eters when index.type = "decay". The default is phi = 0.5.
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max.d When index.type = "decay", max.d determines the maximum Euclidean dis-
tance from the peak that is allowed to be non-zero; parameters for locations
further than max.d from the peak are set to zero. If this argument is not set by
the user then all parameter values are determined by the decay function.

w, h If index.type = "ellipse" then the width and height of the ellipse, respectively.

bayesian If TRUE, then parameters are drawn from distributions based on initial B.values
vector. Default is FALSE.

bayesian.dist When bayesian = TRUE, specifies the distribution of the parameters. Options
are "gaussian" and uniform.

bayesian.scale A list. When bayesian = TRUE and bayesian.dist = "gaussian", specifies
the sd for the distributions of parameters. When bayesian = TRUE and bayesian.dist
= "uniform", specifies the width for the uniform distributions for the parame-
ters. The first entry should be one of "unique", "binary". If "unique", then
the second entry in the list should be a vector with length equal to B.values + 1
with unique values for the sd’s/widths, including B0. B0 can be set to a constant
value by setting the first position of bayesian.scale[[2]] to 0. If "binary",
then the second entry in the list should be a 3-element vector whose first entry
is the sd/width of B0, second entry the sd/width of "non-zero" or "important"
parameters, and the third entry is the sd/width of the "zero" or "irrelevant" pa-
rameters.

output.indices If output.indices = TRUE, then the first element of the returned list contains
the indices for the non-zero parameter locations (Default). If output.indices
= FALSE, then only the parameter vector is returned.

Value

A 2-element list containing (1) indices for the locations of "true" non-zero parameters, and (2) a
parameter vector.

Note

The order of the parameters is by row. That is, if the lattice/image is 4x4, then parameters 1-4 make
up the first row, 5-8 then second, and so forth.

Examples

## example
Bex1 <- beta_builder(row.index = c(5, 5, 6, 6),

col.index = c(5, 6, 5, 6),
im.res = c(10, 10),
B0 = 0, B.values = rep(1, 4))

## True non-zero parameters are locations 45, 46, 55, 56 in B
## i.e. locations (5, 5), (5, 6), (6, 5), (6, 6)

## Suppose that we index rows by i = 1, ... , I
## cols by j = 1, ... , J

## The index for a parameter is given by J * (i - 1) + j
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## In this example, I = 10, J = 10; Thus:

## (5, 5) -> 10 * (5 - 1) + 5 = 45
## (5, 6) -> 10 * (5 - 1) + 6 = 46
## (6, 5) -> 10 * (6 - 1) + 5 = 55
## (6, 6) -> 10 * (6 - 1) + 6 = 45
Bex1
## length 101 (includes B0 w/ 100 variable parameter values)
length(Bex1$B)

## example: index.type = "rectangle"
Bex2 <- beta_builder(row.index = 12:15, col.index = 6:19,

im.res = c(20, 20), B0 = 16,
B.values = 1:(length(12:15) * length(6:19)),
index.type = "rectangle")

Bex2
matrix(Bex2$B[-1], nrow = 20, byrow = TRUE)

## example: index.type = "ellipse"
Bex3 <- beta_builder(row.index = 4, col.index = 5,

im.res = c(10, 10),
B0 = 16, B.values = 3,
index.type = "ellipse",
h = 5, w = 4)

Bex3
matrix(Bex3$B[-1], nrow = 10, byrow = TRUE)

## decaying parameter values
Bex4 <- beta_builder(row.index = 10, col.index = 20,

im.res = c(30, 30), B0 = 0, B.values = 10,
index.type = "decay", max.d = 7,
output.indices = FALSE)

inf_2D_image(B = Bex4, im.res = c(30, 30), binarize.B = FALSE)

Bex5 <- beta_builder(row.index = 4, col.index = 5,
im.res = c(10, 10),
B0 = 16, B.values = 5,
index.type = "ellipse",
h = 5, w = 4,
bayesian = TRUE,
bayesian.dist = "gaussian",
bayesian.scale = list("binary", c(0, 1, 0.25)))

inf_2D_image(B = Bex5$B, im.res = c(10, 10), binarize.B = FALSE)

chol_s2Dp Build and Take the Cholesky Decomposition of a Covariance Matrix
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Description

The function first builds a correlation matrix with correlation.builder, converts that matrix to a
covariance matrix if necessary, and then takes the Cholesky decomposition of the matrix using
either base R or the R package spam. Note that spam is particularly effective when the matrix is
sparse.

Usage

chol_s2Dp(
matrix.type = "cov",
im.res,
use.spam = FALSE,
corr.structure = "ar1",
rho = NULL,
phi = NULL,
tau = 1,
alpha = 0.75,
corr.min = NULL,
neighborhood = "none",
w = NULL,
h = NULL,
r = NULL,
print.R = FALSE,
print.S = FALSE,
print.Q = FALSE,
sigma = 1,
triangle = "upper",
print.all = FALSE,
round.d = FALSE,
return.cov = TRUE,
return.prec = TRUE

)

Arguments

matrix.type Determines whether to build a covariance matrix, "cov", or a precision matrix,
"prec". See correlation_builder{sim2Dpredictr} and precision_builder{sim2Dpredictr}
for more details.

im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

use.spam If use.spam = TRUE then use tools from the R package spam; otherwise, base
R functions are employed. For large dimension MVN with sparse correlation
structure, spam is recommended; otherwise, base R may be faster. Defaults to
FALSE.

corr.structure One of "ar1", exponential, gaussian, or "CS". Correlations between loca-
tions i and j are rhod for corr.structure = "ar1", exp(−phi∗d) for corr.structure
= "exponential", exp(−phi ∗ d2) for corr.structure = "gaussian", and
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rho when corr.structure = "CS". Note that d is the Euclidean distance be-
tween locations i and j.

rho This is the maximum possible correlation between locations i and j. For all i,j
rho MUST be between -1 and 1.

phi A scalar value greater than 0 that determines the decay rate of correlation.
This argument is only utilized when corr.structure %in% c("exponential",
"gaussian").

tau A vector containing precision parameters. If of length 1, then all precisions
are assumed equal. Otherwise the length of tau should equal the number of
variables.

alpha A scalar value between 0 and 1 that defines the strength of correlations. Note
that when alpha = 0 the data are independent and when alpha = 1, the joint
distribution is the improper Intrinsic Autoregression (IAR), which cannot be
used to generate data. Note also that while alpha does control dependence it is
not interpretable as a correlation.

corr.min Scalar value to specify the minimum non-zero correlation. Any correlations
below corr.min are set to 0. Especially for high image resolution using this
option can result in a sparser covariance matrix, which may significantly speed
up draws when using spam. This option is preferred to using neighborhood and
associated arguments when the primary concern is to avoid very small corre-
lations and improve computation efficiency. Default is NULL, which places no
restrictions on the correlations.

neighborhood Defines the neighborhood within which marginal correlations are non-zero. The
default is "none", which allows marginal correlations to extend indefinitely.
neighborhood = "round" defines a circular neighborhood about locations and
neighborhood = "rectangle" defines a rectangular neighborhood about loca-
tions. Note that this argument differs from that in precision_builder, in
which neighborhood defines conditional non-zero correlations.

w, h If neighborhood = "rectangle" then w and h are the number of locations to
the left/right and above/below a location i that define its neighborhood. Any
locations outside this neighborhood have have zero correlation with location i.

r If neighborhood = "round", then if locations i,j are separated by distance d ≥
r, the correlation between them is zero.

print.R, print.S, print.Q

Logical. When TRUE, then print the correlation, covariance, or precision matrix
before taking the Cholesky decomposition. If sigma = 1, then S = R.

sigma Specify the desired standard deviations; the default is 1, in which case the
Cholesky decomposition is of a correlation matrix. If sigma != 1, then the
Cholesky decomposition is of a covariance Matrix.

• If sigma is a vector then length(sigma) must be equal to the total number of
locations, i.e. (n.row ∗ n.col)by(n.row ∗ n.col).

• sigma can take any scalar value when specifying common standard devia-
tion.

triangle Determine whether to output an upper (triangle = "upper") or lower (triangle
= "lower") triangular matrix.



8 chol_s2Dp

print.all If print.all = TRUE, then prints each correlation and allows you to check whether
the correlations are as you intended. This option is NOT recommended for large
point lattices/images.

round.d If round.d = TRUE, then d is rounded to the nearest whole number.
return.cov, return.prec

Logical. When TRUE, also return the covariance or precision matrix, respec-
tively. This is recommended when using spam to generate draws from the MVN.

Value

Matrix of dimension (n.row x n.col) x (n.row x n.col). If either return.cov or return.prec is
TRUE, then returns a list where the first element is the covariance or precision matrix, and the second
element is the Cholesky factor.

References

Banerjee S, Carlin BP, Gelfand AE (2015). Hierarchical Modeling and Analysis for Spatial Data,
Second edition. Chapman & Hall/CRC, Boca Raton, Florida.

Ripley BD (1987). Stochastic Simulation. John Wiley & Sons. doi:10.1002/9780470316726.

Rue H (2001). “Fast Sampling of Gaussian Markov Random Fields.” Journal of the Royal Statisti-
cal Society B, 63, 325-338. doi:10.1111/14679868.00288.

Furrer R, Sain SR (2010). “spam: A Sparse Matrix R Package with Emphasis on MCMC Methods
for Gaussian Markov Random Fields.” Journal of Statistical Software, 36(10), 1-25. https://
www.jstatsoft.org/v36/i10/.

Examples

## Use R package spam for Cholesky decomposition
R_spam <- chol_s2Dp(im.res = c(3, 3), matrix.type = "prec",

use.spam = TRUE, neighborhood = "ar1",
triangle = "upper")

## Use base R for Cholesky decomposition
R_base <- chol_s2Dp(corr.structure = "ar1",

im.res = c(3, 3), rho = 0.15,
neighborhood = "round",
r = 3, use.spam = FALSE)

## Specify standard deviations instead of default of sigma = 1.
R_sd <- chol_s2Dp(corr.structure = "ar1",

im.res = c(3, 3), rho = 0.15,
neighborhood = "round", r = 3,
sigma = runif(9, 1.1, 4))

## Not run:
## Print options ON
R_pr_on <- chol_s2Dp(corr.structure = "ar1",

im.res = c(3, 3), rho = 0.15,
sigma = 1:9, neighborhood = "round",
r = 3, print.R = TRUE, print.S = TRUE)

https://doi.org/10.1002/9780470316726
https://doi.org/10.1111/1467-9868.00288
https://www.jstatsoft.org/v36/i10/
https://www.jstatsoft.org/v36/i10/
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## End(Not run)

classify_multiclass Classify subjects based on predicted probabilities for each class

Description

Classify subjects based on predicted probabilities for each class. The predicted probabilities can be
input by the user or calculated within function using parameter estimates and design matrix for a
multinomial regression model.

Usage

classify_multiclass(
predicted.probs = NULL,
category.names,
keep.probs = TRUE,
B = NULL,
X = NULL,
X.incl.X0 = FALSE

)

Arguments

predicted.probs

A matrix where the number of rows is equal to the number of subjects and the
number of columns equals the number of categories. predicted.probs[i, j]
contains the probability that subject i belongs to category j.

category.names A vector containing the names of each category. The order of names should
match the order of columns in predicted.probs; correspondingly, the length
of the vector should equal the number of columns in predicted.probs.

keep.probs Logical. When TRUE, the output is data frame consisting of the information in
predicted.probs with an additional column predicted.class that contains
the predicted class for each subject. When FALSE, a vector of the predicted
classes is returned.

B A list, each element of which contains a parameter vector. The list should have
length V - 1, i.e., should contain parameter values associated with all categories
except the reference category, following Agresti (2007). Alternatively, B may be
a list of length V if one desires to specify parameters for every category, i.e., the
over-parameterized model used in Friedman (2010).

X A matrix, each row of which contains subject covariate/predictor values.

X.incl.X0 Logical. When TRUE, X should contain column of 1’s for the intercept. Other-
wise, a column of 1’s is generated internally. Default is FALSE.
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Details

Classification for each subject is determined based on the category with highest predicted probabil-
ity.

Value

Depending on the option selected for keep.probs, returns a data frame or vector.

Examples

## number of categories
vt <- 3

## covariate values
xt <- matrix(rnorm(10 * 2), ncol = 2, nrow = 10)

## list of parameter vectors (over-parameterized model)
bu <- list(b1 = c(0, 0.25, 0.25),

b2 = c(0, -0.25, -0.25),
b3 = c(0, 0.25, -0.25))

## subject specific probabilities for each category
## (over-parameterized model)
prp <- generate_multinom_probs(V = vt, X = xt, B = bu)

classify_multiclass(predicted.probs = prp,
category.names = c("A", "B", "C"))

## generate predicted probabilities within function
classify_multiclass(predicted.probs = NULL,

category.names = c("A", "B", "C"),
X = xt, B = bu)

correlation_builder Build a Correlation Matrix for 2D Spatial Data

Description

This function "builds" a correlation matrix based on user specifications.

Usage

correlation_builder(
corr.structure = "ar1",
im.res,
corr.min = NULL,
neighborhood = "none",
rho = NULL,
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phi = NULL,
w = NULL,
h = NULL,
r = NULL,
print.all = FALSE,
round.d = FALSE

)

Arguments

corr.structure One of "ar1", exponential, gaussian, or "CS". Correlations between loca-
tions i and j are rhod for corr.structure = "ar1", exp(−phi∗d) for corr.structure
= "exponential", exp(−phi ∗ d2) for corr.structure = "gaussian", and
rho when corr.structure = "CS". Note that d is the Euclidean distance be-
tween locations i and j.

im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

corr.min Scalar value to specify the minimum non-zero correlation. Any correlations
below corr.min are set to 0. Especially for high image resolution using this
option can result in a sparser covariance matrix, which may significantly speed
up draws when using spam. This option is preferred to using neighborhood and
associated arguments when the primary concern is to avoid very small corre-
lations and improve computation efficiency. Default is NULL, which places no
restrictions on the correlations.

neighborhood Defines the neighborhood within which marginal correlations are non-zero. The
default is "none", which allows marginal correlations to extend indefinitely.
neighborhood = "round" defines a circular neighborhood about locations and
neighborhood = "rectangle" defines a rectangular neighborhood about loca-
tions. Note that this argument differs from that in precision_builder, in
which neighborhood defines conditional non-zero correlations.

rho This is the maximum possible correlation between locations i and j. For all i,j
rho MUST be between -1 and 1.

phi A scalar value greater than 0 that determines the decay rate of correlation.
This argument is only utilized when corr.structure %in% c("exponential",
"gaussian").

w, h If neighborhood = "rectangle" then w and h are the number of locations to
the left/right and above/below a location i that define its neighborhood. Any
locations outside this neighborhood have have zero correlation with location i.

r If neighborhood = "round", then if locations i,j are separated by distance d ≥
r, the correlation between them is zero.

print.all If print.all = TRUE, then prints each correlation and allows you to check whether
the correlations are as you intended. This option is NOT recommended for large
point lattices/images.

round.d If round.d = TRUE, then d is rounded to the nearest whole number.
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Value

Returns (nr ∗ nc)by(nr ∗ nc) correlation matrix.

Note

Caution is recommended when using corr.min or neighborhood to set many correlations to 0, as
not all specifications will result in a positive definite matrix. In particular, sharp drop-offs tend to
result in non-positive definite matrices.

Examples

## examples
correlation_builder(corr.structure = "ar1", im.res = c(3, 3), rho = 0.5,

neighborhood = "round", r = 6, print.all = TRUE)

correlation_builder(corr.structure = "exponential", im.res = c(3, 3),
phi = 0.5,
neighborhood = "round", r = 3, print.all = TRUE)

correlation_builder(corr.structure = "CS", im.res = c(3, 3),
rho = 0.5, print.all = TRUE)

## no "true" zeros, but gets close
c.nr <- correlation_builder(corr.structure = "ar1", neighborhood = "none",

corr.min = NULL, im.res = c(15, 15), rho = 0.5)
length(c.nr[c.nr > 0])
min(c.nr)

## set corr.min gives many zero entries; sparser structure
c.r <- correlation_builder(corr.structure = "ar1", neighborhood = "none",

corr.min = 0.01, im.res = c(15, 15), rho = 0.5)
## raw number > 0
length(c.r[c.r > 0])
## proportion > 0
length(c.r[c.r > 0]) / length(c.nr)

corr_fun Specify the Correlation Function between Two Locations

Description

This is primarily for use within correlation builder, and may be altered/expanded to handle more
complicated correlation functions if desired.

Usage

corr_fun(
corr.structure,
im.res,
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corr.min = NULL,
rho = NULL,
phi = NULL,
neighborhood = "none",
round.d = FALSE,
w = NULL,
h = NULL,
r = NULL,
i,
j,
k,
v

)

Arguments

corr.structure One of "ar1", "exponential", "gaussian", or "CS". Correlations between
locations i and j are rhod for corr.structure = "ar1", exp(−phi ∗ d) for
corr.structure = "exponential", exp(−phi∗d2) for corr.structure = "gaussian",
and rho when corr.structure = "CS". Note that d is the Euclidean distance
between locations i and j.

im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

corr.min Scalar value to specify the minimum non-zero correlation. Any correlations
below corr.min are set to 0. Especially for high image resolution using this
option can result in a sparser covariance matrix, which may significantly speed
up draws when using spam. This option is preferred to using neighborhood and
associated arguments when the primary concern is to avoid very small corre-
lations and improve computation efficiency. Default is NULL, which places no
restrictions on the correlations.

rho This is the maximum possible correlation between locations i and j. For all i,j
rho MUST be between -1 and 1.

phi A scalar value greater than 0 that determines the decay of correlation. This argu-
ment is only utilized when corr.structure %in% c("exponential", "gaussian").

neighborhood Defines the neighborhood within which marginal correlations are non-zero. The
default is "none", which allows marginal correlations to extend indefinitely.
neighborhood = "round" defines a circular neighborhood about locations and
neighborhood = "rectangle" defines a rectangular neighborhood about loca-
tions.

round.d If round.d = TRUE, then d is rounded to the nearest whole number.
w, h If neighborhood = "rectangle" then w and h are the number of locations to

the left/right and above/below a location i that define its neighborhood. Any
locations outside this neighborhood have have zero correlation with location i.

r If neighborhood = "round", then if locations i,j are separated by distance d ≥
r, the correlation between them is zero.

i, j, k, v These are the coordinates for the two locations. Location 1 has coordinates (i, j)
and location 2 has coordinates (k, v).
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Value

A single element vector containing the correlation between spatial locations with indices (i, j) and
(k, v).

Examples

## examples
corr_fun(corr.structure = "ar1", im.res = c(3, 3), rho = 0.5,

neighborhood = "round", r = 6, i = 1, j = 2, k = 2, v = 3)

corr_fun(corr.structure = "ar1", im.res = c(3, 3), rho = 0.5,
neighborhood = "rectangle", w = 1, h = 1,
i = 1, j = 2, k = 2, v = 3)

generate_grid Convert a 2D Space to Grid Coordinates

Description

Input the limits of a 2D space and the desired image resolution, then the function outputs the appro-
priate grid/lattice coordinates.

Usage

generate_grid(im.res, xlim = c(0, 1), ylim = c(0, 1))

Arguments

im.res A vector specifying the dimension/resolution of the image. The first entry is
the number of ’rows’ in the lattice/image, and the second entry is the number of
columns’ in the lattice/image.

xlim, ylim These are the 2D image limits. Defaults for both are c(0, 1). It is not rec-
ommended to alter these arguments unless changing the limits has a specific
practical utility.

Value

A data frame whose first column is x-coordinates and whose second column is y-coordinates.
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generate_multinom_probs

Generate Probabilities for Multinomial Draws

Description

Obtain probabilities for each category of a multinomial distribution based on covariate and param-
eter values based on the logit models for the multinomial distribution.

Usage

generate_multinom_probs(V = NULL, B = NULL, X = NULL, X.incl.X0 = FALSE)

Arguments

V A numeric value stating the number of categories desired.

B A list, each element of which contains a parameter vector. The list should have
length V - 1, i.e., should contain parameter values associated with all categories
except the reference category, following Agresti (2007). Alternatively, B may be
a list of length V if one desires to specify parameters for every category, i.e., the
over-parameterized model used in Friedman (2010).

X A matrix, each row of which contains subject covariate/predictor values.

X.incl.X0 Logical. When TRUE, X should contain column of 1’s for the intercept. Other-
wise, a column of 1’s is generated internally. Default is FALSE.

Value

A matrix containing subject-specific probabilities for each category of the multinomial distribution.
The number of rows equals nrow(X) and the number of columns equals V.

References

Agresti A (2007). An Introduction to Categorical Analysis, 2nd edition. John Wiley & Sons,
Hoboken, New Jersey.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models via
coordinate descent.” Journal of Statistical Software, 33, 1-22. doi:10.18637/jss.v033.i01.

Examples

## number of categories
vt <- 3

## covariate values
xt <- matrix(rnorm(10 * 2), ncol = 2, nrow = 10)

## list of parameter vectors
bt <- list(b1 = c(1, 0.25, -0.25),

https://doi.org/10.18637/jss.v033.i01
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b2 = c(-0.5, 0.15, 0.15))

## list of parameter vectors (over-parameterized model)
bu <- list(b1 = c(1, 0.25, -0.25),

b2 = c(-0.5, 0.15, 0.15),
b3 = c(-1, 0.1, -0.20))

## subject specific probabilities for each category
generate_multinom_probs(V = vt, X = xt, B = bt)

## subject specific probabilities for each category
## (over-parameterized model)
generate_multinom_probs(V = vt, X = xt, B = bu)

inf_2D_image Display Inference Results for 2D Predictors

Description

Provide graphics for spatial extent of predictor parameters, rejections and/or the truth/falsity of the
rejections.

Usage

inf_2D_image(
rejections = NULL,
B = NULL,
im.res,
test.statistic = NULL,
reject.threshold = NULL,
binarize.B = TRUE,
grid.color = "grey",
n.colors = length(unique(B)),
B.incl.B0 = TRUE,
plot.title = TRUE,
manual.title = NULL,
title.size = 1

)

Arguments

rejections A binary vector; rejection[i] = 1 means the null hypothesis is rejected for
parameter B[i], whereas rejection[i] = 0 means that the null hypothesis was
not rejected for parameter B[i].

B A vector of "true" parameter values. For inference purposes, this can be a vector
of actual parameter values, or a binary vector indicating non-zero status.
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im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

test.statistic A vector of test statistics; e.g., t-statistics or p-values that are used to determine
whether or not to reject the null hypothesis.

reject.threshold

A list whose first element is the rejection criteria, e.g., the minimum t-statistic or
maximum p-value for which to reject the null hypothesis. The second element is
one of c("greater", "less", "2-tailed"), which tell the function to reject
when the values in test.statistic are greater than or less than the thresh-
old, the test is a 2-tailed, respectively. In the latter case the function internally
calculates the upper or lower threshold needed for the 2-tailed test.

binarize.B Either TRUE (default) or FALSE. When binarize.B = TRUE the parameter vec-
tor is converted to a binary vector where 1 indicates non-zero parameter and 0
indicates zero-valued parameter.

grid.color Specify the color for the grid lines.

n.colors Determines the number of colors in the printed image. Default is length(unique(B)),
but it is recommended to use trial and error to determine the ideal setting for spe-
cific situations.

B.incl.B0 If B.incl.B0 = TRUE then the first entry should be the intercept, B0. B.incl.B0
= FALSE indicates that the first entry of B is not an intercept.

plot.title When plot.title = TRUE a title accompanies the output graph, and plot.title
= FALSE suppresses the title.

manual.title When plot.title = TRUE, use manual.title to specify a title manually.

title.size Specifies the size of the title text. This is based on cex.main within the image()
function. Default is 1.

Value

An image depicting the spatial extent of some image characteristic.

Note

If both rejections and B are specified then the function provides an image with separate color
each for:

• No rejection and B[i] = 0 (i.e. True Negative).

• No rejection and B[i] != 0 (i.e. False Negative).

• Rejection and B[i] = 0 (i.e. False Positive).

• Rejection and B[i] != 0 (i.e. True Positive).

Examples

## parameter vector
Bex <- beta_builder(row.index = c(rep(5, 3), rep(6, 3), rep(7, 3)),

col.index = rep(c(5, 6, 7), 3),
im.res = c(10, 10), index.type = "manual",
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B0 = 0, B.values = 1:9,
output.indices = FALSE)

## co-opt beta builder to get rejections
rejex <- beta_builder(row.index = c(rep(4, 3), rep(5, 3), rep(6, 3)),

col.index = rep(c(4, 5, 6), 3),
im.res = c(10, 10), index.type = "manual",
B0 = 0, B.values = rep(1, 9),
output.indices = FALSE)[-1]

rejex.sm2 <- beta_builder(row.index = 5:6, col.index = 5:6,
im.res = c(10, 10),
B0 = 0, B.values = 1,
output.indices = FALSE)[-1]

## just B
inf_2D_image(B = Bex, im.res = c(10, 10))
## just rejections
inf_2D_image(rejections = rejex, im.res = c(10, 10))

## both B and rejections
inf_2D_image(rejections = rejex, B = Bex, im.res = c(10, 10))
inf_2D_image(rejections = rejex.sm2, B = Bex, im.res = c(10, 10))

## larger dimension example
Bex2 <- beta_builder(row.index = 5:15, col.index = 16:20,

im.res = c(50, 50), B0 = 0,
B.values = 1:(length(5:15) * length(16:20)),
index.type = "rectangle",
output.indices = FALSE)

rejex2 <- beta_builder(row.index = 13:21, col.index = 30:41,
im.res = c(50, 50), B0 = 0,
B.values = rep(1, (length(13:21) * length(30:41))),
index.type = "rectangle",
output.indices = FALSE)[-1]

rejex3 <- beta_builder(row.index = 5:20, col.index = 16:30,
im.res = c(50, 50), B0 = 0,
B.values = rep(1, (length(5:20) * length(16:30))),
index.type = "rectangle",
output.indices = FALSE)[-1]

rejex4 <- beta_builder(row.index = 5:10, col.index = 16:17,
im.res = c(50, 50), B0 = 0,
B.values = rep(1, (length(5:10) * length(16:17))),
index.type = "rectangle",
output.indices = FALSE)[-1]

## images
inf_2D_image(B = Bex2, im.res = c(50, 50))
inf_2D_image(B = Bex2, im.res = c(50, 50), binarize.B = FALSE)
inf_2D_image(rejections = rejex2, im.res = c(50, 50))

## No TP
inf_2D_image(rejections = rejex2, B = Bex2, im.res = c(50, 50))
## ALL TP
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inf_2D_image(rejections = Bex2[-1], B = Bex2, im.res = c(50, 50))
## No FN
inf_2D_image(rejections = rejex3, B = Bex2, im.res = c(50, 50))
## No FP, but FN
inf_2D_image(rejections = rejex4, im.res = c(50, 50))
inf_2D_image(B = Bex2, im.res = c(50, 50))
inf_2D_image(rejections = rejex4, B = Bex2, im.res = c(50, 50))

make_rejection Determine rejections

Description

Determine rejections

Usage

make_rejection(B, reject.threshold, test.statistic)

Arguments

B A vector of "true" parameter values. For inference purposes, this can be a vector
of actual parameter values, or a binary vector indicating non-zero status.

reject.threshold

A list whose first element is the rejection criteria, e.g., the minimum t-statistic or
maximum p-value for which to reject the null hypothesis. The second element is
one of c("greater", "less", "2-tailed"), which tell the function to reject
when the values in test.statistic are greater than or less than the thresh-
old, the test is a 2-tailed, respectively. In the latter case the function internally
calculates the upper or lower threshold needed for the 2-tailed test.

test.statistic A vector of test statistics; e.g., t-statistics or p-values that are used to determine
whether or not to reject the null hypothesis.

Value

A vector of hypothesis testing rejection indicators, where 1 indicates a rejection and 0 otherwise.
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neighbors_by_dist Determine and store neighbors by Euclidean Distance Constraints

Description

Determine and store neighbors by Euclidean Distance Constraints

Usage

neighbors_by_dist(x, y, coords, im.res, r, print.ring = FALSE)

Arguments

x, y are the row and column coordinates, respectively.

coords A dataframe containing indices and coordinates for the image.

im.res A vector containing the number of rows and columns, respectively.

r A scalar value determining the radius within which other locations are neighbors
to the current location (x, y).

print.ring When print.ring = TRUE, each iteration is shown, with corresponding infor-
mation regarding the number of neighbors present in each ring. This argument
primarily exists to allow the user to test whether the neighborhood structure
specified is as desired.

Value

A tibble whose first column contains x indices, second column contains y indices, and third column
denotes the current ring about a location.

Note

This function avoids testing all points for being with a certain distance in order to determine neigh-
bor status of a given point by progressively widening a box around the point. Each iteration widens
the box by an extra ring, and we only test points in the new ring. If at the end of testing a ring
there are no new neighbors then we stop expanding the box and return the neighbors’ coordinates.
For computational efficiency, this function assumes that all arguments except the current point’s
coordinates have been specified.

Examples

## Necessary pre-specified arguments required for the function to work.

## image resoluation + number of spatial predictors
im.res <- c(5, 5)
J <- prod(im.res)

## create predictor indices w/ coordinates
row.id <-rep(1, im.res[2])
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for (i in 2:im.res[1]) {
row.id <- c(row.id, rep(i, im.res[2]))

}
coords <- data.frame(index = 1:J,

row.id = row.id,
col.id = rep(c(1:im.res[2]), im.res[1]) )

neighbors_by_dist(x = 2, y = 2, im.res = im.res, coords = coords, r = 2)

precision_builder Construct a Precision Matrix

Description

This function constructs the precision matrix for a Conditional Autoregression (CAR).

Usage

precision_builder(
im.res,
tau = 1,
alpha = 0.75,
neighborhood = "ar1",
weight = "binary",
phi = 1,
r = NULL,
w = NULL,
h = NULL,
digits.Q = 10

)

Arguments

im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

tau A vector containing precision parameters. If of length 1, then all precisions
are assumed equal. Otherwise the length of tau should equal the number of
variables.

alpha A scalar value between 0 and 1 that defines the strength of correlations. Note
that when alpha = 0 the data are independent and when alpha = 1, the joint
distribution is the improper Intrinsic Autoregression (IAR), which cannot be
used to generate data. Note also that while alpha does control dependence it is
not interpretable as a correlation.

neighborhood Defines the neighborhood within which conditional correlations are non-zero.
This differs from use in correlation_builder, where the neighborhood de-
fines non-zero marginal correlations. The default is "ar1", which creates a
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neighborhood where the spatial locations directly above, below, left, and right of
a location are included in the neighborhood. More complicated neighborhoods
can be specified by neighborhood = "round", which defines a circular neigh-
borhood about each location, and neighborhood = "rectangle", which defines
a rectangular neighborhood about each location.

weight Determines how weights are assigned. "distance" assigns weights as the in-
verse of Euclidean distance times a constant, phi. "binary" assigns weights to
1 for neighbors and 0 otherwise.

phi When weight = "distance" a constant by which to multiply the inverse of Eu-
clidean distance. Defaults to 1, and must exceed 0.

r If neighborhood = "round", then locations i,j are separated by distance d ≥ r
are conditionally independent.

w, h If neighborhood = "rectangle" then w and h are the number of locations to
the left/right and above/below a location i that define its neighborhood. Any lo-
cations outside this neighborhood are conditionally independent of the specified
location.

digits.Q Determines the number of digits to round entries in the precision matrix. Default
is 10.

Details

This formulation of the CAR model is based on a formulation found in (Banerjee et al. 2015)
where the joint distribution of the of the conditionally specified random variables are assumed to be
N(0, [diag(tau2)(D − alphaW )]−1) and all neighbors are weighted 1. When weights other than
1 are desired, the joint distribution is N(0, [diag(tau2)D(I − alphaD−1W )]−1), e.g. as in (Jin et
al. 2005).

Value

A (precision) matrix.

References

Banerjee S, Carlin BP, Gelfand AE (2015). Hierarchical Modeling and Analysis for Spatial Data,
Second edition. Chapman & Hall/CRC, Boca Raton, Florida.

Jin X, Carlin BP, Banerjee S (2005). “Generalized Hierarchical Multivariate CAR Models for Areal
Data.” Biometrics, 61(4), 950-961. doi:10.1111/j.15410420.2005.00359.x.

Examples

## Not run:
precision_builder(im.res = c(3, 3), tau = 1, alpha = 0.75,

neighborhood = "ar1")

## binary weights
precision_builder(im.res = c(3, 3), tau = 1, alpha = 0.75,

neighborhood = "round", r = 3)

https://doi.org/10.1111/j.1541-0420.2005.00359.x
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## weights based on distance
precision_builder(im.res = c(3, 3), tau = 1, alpha = 0.75,

weight = "distance", phi = 1,
neighborhood = "round", r = 3)

precision_builder(im.res = c(3, 3), tau = 1, alpha = 0.75,
neighborhood = "rectangle", w = 2, h = 2)

## End(Not run)

proximity_builder Generate a Proximity Matrix

Description

Generates a proximity matrix where non-zero entries are the weights associated with neighbors, and
zero entries are not neighbors.

Usage

proximity_builder(
im.res,
neighborhood = "ar1",
type = c("sparse", "full"),
weight = "binary",
phi = 1,
r = NULL,
h = NULL,
w = NULL,
include.coords = FALSE,
print.im = FALSE

)

Arguments

im.res A vector defining the dimension of spatial data. The first entry is the number of
rows and the second entry is the number of columns.

neighborhood Determines how to assign neighbor status to locations; i.e. 1 for neighbors,
0 otherwise. type = "round" assigns neighbor status to locations within ra-
dius r. type = "ar1" assigns 1 to locations directly above or beside. type =
"rectangle" assigns neighbor status to locations within w units to the left or
right and h units up or down.

type Specifies either sparse (type = "sparse") or full (type = "full") proximity
matrix.

weight Determines how weights are assigned. "distance" assigns weights as the in-
verse of Euclidean distance times a constant, phi. "binary" assigns weights to
1 for neighbors and 0 otherwise.
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phi When weight = "distance" a constant by which to multiply the inverse of Eu-
clidean distance. Defaults to 1.

r, h, w When neighborhood = "round", r specifies the radius within which other loca-
tions are neighbors. When neighborhood = "rectangle", w and h specify the
number of units to the left/right and above/below the location are to be counted
as neighbors.

include.coords If type = "sparse" and include.coords = TRUE, then the coordinates of neigh-
bors are returned along with their indices.

print.im Allows user to print the 2D "image" matrix with index labels to visually verify
that the proximity matrix is as expected.

Value

A (proximity) matrix.

Examples

## Not run:
## adjacency matrix with sparse structure (i.e., 2 columns)
## and ar1 neighborhood
sp.ar1 <- proximity_builder(im.res = c(3, 3),

weight = "binary",
neighborhood = "ar1",
type = "sparse")

## adjacency matrix with full structure
## (i.e., prod(im.dim) rows & columns) and ar1 neighborhood
full.ar1 <- proximity_builder(im.res = c(3, 3),

weight = "binary",
neighborhood = "ar1",
type = "full")

## proximity matrix weighted by distance (sparse)
sp.rnd <- proximity_builder(im.res = c(3, 3),

weight = "distance",
neighborhood = "round", r = 2,
type = "sparse",
include.coords = TRUE)

## proximity matrix weighted by distance (full)
full.rnd <- proximity_builder(im.res = c(3, 3),

weight = "distance",
neighborhood = "round", r = 2,
type = "full")

## End(Not run)
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sample_FP_Power Obtain Sample False Positive Rates and Power

Description

This function calculates sample FDR, FWER, and Power for large numbers of predictors, given a
vector of "true" parameter values and a vector of associated rejections. In the case that more than
1 predictor has a "true" non-zero parameter, then Power is defined as the proportion/percentage of
those "true" parameters identified.

Usage

sample_FP_Power(
rejections = NULL,
FP = NULL,
TP = NULL,
test.statistic = NULL,
reject.threshold = NULL,
B = NULL,
B.incl.B0 = TRUE,
full.summary = FALSE

)

Arguments

rejections A binary vector; rejection[i] = 1 means the null hypothesis is rejected for
parameter B[i], whereas rejection[i] = 0 means that the null hypothesis was
not rejected for parameter B[i].

FP, TP Binary vectors of false positive and true positive indicators, respectively. FP[i]
= 1 means the null hypothesis was incorrectly rejected, and TP[i] = 1 means the
null hypothesis was correctly rejected. If either argument is NULL, then these
vectors are computed; this is the default setting.

test.statistic A vector of test statistics; e.g., t-statistics or p-values that are used to determine
whether or not to reject the null hypothesis.

reject.threshold

A list whose first element is the rejection criteria, e.g., the minimum t-statistic or
maximum p-value for which to reject the null hypothesis. The second element is
one of c("greater", "less", "2-tailed"), which tell the function to reject
when the values in test.statistic are greater than or less than the thresh-
old, the test is a 2-tailed, respectively. In the latter case the function internally
calculates the upper or lower threshold needed for the 2-tailed test.

B A vector of "true" parameter values. For inference purposes, this can be a vector
of actual parameter values, or a binary vector indicating non-zero status.

B.incl.B0 If B.incl.B0 = TRUE then the first entry should be the intercept, B0. B.incl.B0
= FALSE indicates that the first entry of B is not an intercept.
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full.summary If full.summary = TRUE then the total numbers of rejections, false positives,
true positives, and non-zero parameters are output along with FDR, FWER, and
Power; otherwise, only FDR, FWER, and Power are output.

Value

A data frame with columns for sample FDR, FWER, and Power.

Note

The default operating approach is that the null hypothesis is B[i] = 0 for each parameter. If other
hypotheses are being tested then B should be converted to a binary vector indicating whether the
null hypothesis should have been rejected.

Examples

## example 1

## rejection vector
rej.ex <- c(0, 1, 1, 0, 0, 1, 0)
## false positive vector
fp.ex <- c(0, 0, 1, 0, 0, 0, 0)
## true positive vector
tp.ex <- c(0, 1, 0, 0, 0, 1, 0)
## parameter vector
par.ex <- c(0, 4, 0, 0, 3, 9, 0)

sample_FP_Power(rej.ex, fp.ex, tp.ex, par.ex, B.incl.B0 = FALSE)

## Function can calculate TP and FP vectors
sample_FP_Power(rejections = rej.ex,

FP = NULL, TP = NULL,
B = par.ex, B.incl.B0 = FALSE)

## example 2: sum(FP, TP) must equal sum(rejections) or
## function stops execution

rej.ex2 <- c(0, 1, 0, 0, 0, 1, 0)
fp.ex2 <- c(0, 0, 1, 0, 0, 0, 0)
tp.ex2 <- c(0, 1, 0, 0, 0, 1, 0)
par.ex2 <- c(0, 4, 0, 0, 3, 9, 0)

## Not run: sample_FP_Power(rej.ex2,
fp.ex2, tp.ex2, par.ex2,
B.incl.B0 = FALSE)

## End(Not run)

## example 3: calculate rejections from vector of test statistics
zstat <- c(-0.5, 1.98, 2.01, 1.45, -1.99)
# 2-tailed
sample_FP_Power(test.statistic = zstat,

reject.threshold = list(1.96, "2-tailed"),



sim2D_binarymap 27

B = c(0, 0, 4, 1, -2), B.incl.B0 = FALSE)
# 1-tailed (upper)
sample_FP_Power(test.statistic = zstat,

reject.threshold = list(1.96, "greater"),
B = c(0, 0, 4, 1, -2), B.incl.B0 = FALSE)

## p-value
sample_FP_Power(test.statistic = c(0.44, 0.04, 0.01, 0.06, 0.02 ),

reject.threshold = list(0.05, "less"),
B = c(0, 0, 4, 1, -2), B.incl.B0 = FALSE)

sim2D_binarymap Generate a Binary Map via the Boolean Method

Description

Use a Homogenous Poisson Process to generate random "events", a uniform distribution to generate
circles of random radii about the events, and take the union to obtain a random set. This is mapped
onto a lattice to obtain a binary map.

Usage

sim2D_binarymap(
N,
xlim = c(0, 1),
ylim = c(0, 1),
im.res,
radius.bounds = c(0.02, 0.1),
lambda = 50,
random.lambda = FALSE,
lambda.sd = 10,
lambda.bound = NULL,
prior = "gamma",
sub.area = FALSE,
min.sa = c(0.1, 0.1),
max.sa = c(0.3, 0.3),
radius.bounds.min.sa = c(0.02, 0.05),
radius.bounds.max.sa = c(0.08, 0.15),
print.subj.sa = FALSE,
print.lambda = FALSE,
print.iter = FALSE,
store.type = "list",
output.randset = FALSE

)

Arguments

N A scalar value determining the number of images to create.
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xlim, ylim These are the 2D image limits. Defaults for both are c(0, 1). It is not rec-
ommended to alter these arguments unless changing the limits has a specific
practical utility.

im.res A vector specifying the dimension/resolution of the image. The first entry is
the number of ’rows’ in the lattice/image, and the second entry is the number of
columns’ in the lattice/image.

radius.bounds A 2-element vector whose first and second entries determine the minimum and
maximum radius sizes, respectively; these will be the bounds of the uniform dis-
tribution used to draw the radii. If sub.area = TRUE, then use radius.bounds.min.sa
and radius.bounds.max.sa.

lambda A scalar value specifying the mean/intensity value of the Poisson process. If
random.lambda = FALSE then this is the parameter used to generate the binary
image for each subject. If random.lambda = TRUE, then this is the mean param-
eter in the distribution used to draw subject-specific lambda.

random.lambda random.lambda = TRUE allows the lambda (mean/intensity) parameter in the
Poisson process to vary randomly by subject.

lambda.sd Only utilized when random.lambda = TRUE, and specifies the standard deviation
in the distribution used to draw subject-specific lambda.

lambda.bound Only utilized when random.lambda = TRUE, and allows the user to specify a
lower and upper bound for the subject-specific lambda; if the randomly selected
value is outside of this range, then another draw is taken. This continues until
a value is selected within the specified bounds. If no bounds are desired then
specify lambda.bound = NULL.

prior Only utilized when random.lambda = TRUE, and specifies the distribution from
which to draw the subject-specific lambda. Options are c("gaussian", "gamma").

sub.area When sub.area = TRUE, a random sub-section of the image is chosen, within
which the Poisson process is used to generate the binary image.

min.sa, max.sa Only utilized when sub.area = TRUE, and determines the width and height of
the minimum and maximum sub-areas; e.g., if min.sa = c(0.1, 0.1), then the
smallest possible random sub-area is a 0.1 x 0.1 square.

radius.bounds.min.sa, radius.bounds.max.sa

Only utilized when sub.area = TRUE, and specifies radius.bounds for the min-
imum and maximum sub-areas, respectively. This information is used to adap-
tively alter the bounds in between the minimum and maximum sub-areas.

print.subj.sa, print.lambda, print.iter

These arguments are either TRUE or FALSE, and define print options for check-
ing that the function is working as the user intends. print.subj.sa = TRUE
prints the x-and y-limits for each subject’s sub-area. print.lambda = TRUE
prints each subject’s mean and realized events; the means will be the same un-
less random.lambda = TRUE, but the number of realized events will always vary.
print.iter = TRUE is only used when random.lambda = TRUE and is.null(lambda.bound)
= FALSE, and shows iterations for re-drawing when the randomly selected inten-
sity is outside the specified bounds.

store.type One of c("list", "matrix", "all"). When store.type = "list", the out-
put is a list where each element is a matrix defining a subject image. If store.type
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= "matrix", then the images are vectorized by row and each row of the output
matrix contains an image vector for a single subject.

output.randset Logical. When TRUE, stores the data frame of original draws from the HPPP and
and random radii from sim2D_RandSet_HPPP(). This data frame is stored in
the first element of the output list named randset. The second element of the
output list is a list/matrix of the final subject images depending on store.type
and named images.

Value

A list; each element is a matrix of zeroes and ones.

References

Cressie N, Wikle CK (2011). Statistics for Spatio-Temporal Data, Wiley Series in Probability and
Statistics. John Wiley & Sons, Hoboken, NJ.

Examples

bin_ims <- sim2D_binarymap(N = 5, im.res = c(10, 10), store.type = "list",
lambda = 50, sub.area = TRUE,
min.sa = c(0.10, 0.10), max.sa = c(0.5, 0.5),
radius.bounds.min.sa = c(0.015, 0.04),
radius.bounds.max.sa = c(0.041, 0.06))

rotate = function(x){
t(apply(x, 2, rev))

}

for (i in 1:length(bin_ims)) {
image(rotate(bin_ims[[i]]),

col = c("white", "darkgreen"),
axes = FALSE)

box()
grid(nx = 10, ny = 10, col = "black",

lty = 1)
}

sim2D_RandSet_HPPP Generate a Random Set Using a Poisson Process and Random Radii
About Events

Description

A random set is generated by using a Poisson process in 2D space to choose ’event’ locations, about
which a circle of random radius is ’drawn’. The union of the circles defines ultimately defines the
set.
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Usage

sim2D_RandSet_HPPP(
N,
xlim = c(0, 1),
ylim = c(0, 1),
radius.bounds = c(0.02, 0.1),
lambda = 50,
lambda.sd = 10,
lambda.bound = NULL,
prior = "gamma",
random.lambda = FALSE,
sub.area = FALSE,
min.sa = c(0.1, 0.1),
max.sa = c(0.3, 0.3),
radius.bounds.min.sa = c(0.02, 0.05),
radius.bounds.max.sa = c(0.08, 0.15),
print.subj.sa = FALSE,
print.lambda = FALSE,
print.iter = FALSE

)

Arguments

N A scalar value determining the number of images to create.

xlim, ylim These are the 2D image limits. Defaults for both are c(0, 1). It is not rec-
ommended to alter these arguments unless changing the limits has a specific
practical utility.

radius.bounds A 2-element vector whose first and second entries determine the minimum and
maximum radius sizes, respectively; these will be the bounds of the uniform dis-
tribution used to draw the radii. If sub.area = TRUE, then use radius.bounds.min.sa
and radius.bounds.max.sa.

lambda A scalar value specifying the mean/intensity value of the Poisson process. If
random.lambda = FALSE then this is the parameter used to generate the binary
image for each subject. If random.lambda = TRUE, then this is the mean param-
eter in the distribution used to draw subject-specific lambda.

lambda.sd Only utilized when random.lambda = TRUE, and specifies the standard deviation
in the distribution used to draw subject-specific lambda.

lambda.bound Only utilized when random.lambda = TRUE, and allows the user to specify a
lower and upper bound for the subject-specific lambda; if the randomly selected
value is outside of this range, then another draw is taken. This continues until
a value is selected within the specified bounds. If no bounds are desired then
specify lambda.bound = NULL.

prior Only utilized when random.lambda = TRUE, and specifies the distribution from
which to draw the subject-specific lambda. Options are c("gaussian", "gamma").

random.lambda random.lambda = TRUE allows the lambda (mean/intensity) parameter in the
Poisson process to vary randomly by subject.
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sub.area When sub.area = TRUE, a random sub-section of the image is chosen, within
which the Poisson process is used to generate the binary image.

min.sa, max.sa Only utilized when sub.area = TRUE, and determines the width and height of
the minimum and maximum sub-areas; e.g., if min.sa = c(0.1, 0.1), then the
smallest possible random sub-area is a 0.1 x 0.1 square.

radius.bounds.min.sa, radius.bounds.max.sa

Only utilized when sub.area = TRUE, and specifies radius.bounds for the min-
imum and maximum sub-areas, respectively. This information is used to adap-
tively alter the bounds in between the minimum and maximum sub-areas.

print.subj.sa, print.lambda, print.iter

These arguments are either TRUE or FALSE, and define print options for check-
ing that the function is working as the user intends. print.subj.sa = TRUE
prints the x-and y-limits for each subject’s sub-area. print.lambda = TRUE
prints each subject’s mean and realized events; the means will be the same un-
less random.lambda = TRUE, but the number of realized events will always vary.
print.iter = TRUE is only used when random.lambda = TRUE and is.null(lambda.bound)
= FALSE, and shows iterations for re-drawing when the randomly selected inten-
sity is outside the specified bounds.

Value

A dataframe with columns for subject ID, x-coordinates, y-coordinates, and associated radii.

References

Cressie N, Wikle CK (2011). Statistics for Spatio-Temporal Data, Wiley Series in Probability and
Statistics. John Wiley & Sons, Hoboken, NJ.

sim_MVN_X Simulate Spatially Correlated MVN Data

Description

Takes N draws from a Multivariate Normal (MVN) distribution using either base R or the R package
spam. This function requires the Cholesky decomposition of the desired covariance matrix.

Usage

sim_MVN_X(
N,
mu = 0,
L = NULL,
R = NULL,
S = NULL,
Q = NULL,
use.spam = FALSE,
use.MASS = FALSE,
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X.categorical = FALSE,
X.num.categories = 2,
X.category.type = "percentile",
X.percentiles = NULL,
X.manual.thresh = NULL,
X.cat.names = NULL

)

Arguments

N The number of draws to take from MVN; i.e., the number of subjects.
mu One of the following:

• A single scalar value for common mean.
• A vector of length nrow(R) (equivalently nrow(R)) containing means for

the MVN.
L, R L and R are lower and upper triangular matrices, respectively, and are the Cholesky

factor(s) of the desired covariance matrix for the MVN. Obtain L or R via chol_s2Dp()
with settings triangle = "lower" or triangle = "upper", respectively. Spec-
ify either L or R, but NOT both.

S, Q A covariance or precision matrix respectively. These are for use with spam, and
can be extracted from output of chol_s2Dp after choosing return.cov = TRUE
or return.prec = TRUE, respectively.

use.spam Logical. If use.spam = TRUE then use tools from the R package spam; other-
wise, base R functions are employed. For large dimension MVN with sparse
correlation structure, spam is recommended; otherwise, base R may be faster.
Defaults to FALSE. Requires either the covariance matrix S or precision matrix,
Q, that corresponds to the Cholesky factor.

use.MASS Logical. When TRUE draws X from MVN using mvrnorm from MASS. Note that
this requires specification of the covariance matrix, S. Specifying the precision
matrix instead may slow down the process for large dimensions. Recommended
to use spam to generate draws when specifying a precision matrix, Q.

X.categorical Default is X.categorical = FALSE. If X.categorical = TRUE then thresholds
are applied to categorize each predictor/image value.

X.num.categories

A scalar value denoting the number of categories in which to divide the data.
X.category.type

Tells R how to categorize the data. Options are X.category.type = c("percentile",
"manual"). If X.category.type = "percentile" then the data are divided
into percentiles based on X.num.categories; e.g. if X.num.categories =
4 then the values are divided into quartiles, and values in Q1 equal 0, be-
tween Q1 and Q2 equal 1, between Q2 and Q3 equal 2, and greater than Q3
equal 3. If X.category.type = "manual" then specify the cutoff points with
X.manual.thresh.

X.percentiles A vector of percentiles to be used in thresholding when X.categorical = TRUE
and X.category.type = "percentile". The length of this vector should equal
the number of categories minus one, and all values should be between zero and
one.
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X.manual.thresh

A vector containing the thresholds for categorizing the values; e.g. if X.num.categories
= 4 and X.manual.thresh = c(-3, 1, 17), then values less than -3 are set to 0,
equal or greater than -3 and less than 1 are set to 1, equal or greater than 1 but
less than 17 are set to 2, and equal or greater than 17 are set to 3. Note that
length(X.manual.thresh) must always equal X.num.categories - 1.

X.cat.names A vector of category names. If X.cat.names = NULL then the initial integers
assigned are left as the values; the names in X.cat.names are assigned in as-
cending order.

Value

Matrix of dimension N x (nrow(L)) (or equivalently N x (nrow(R))) where each row is draw from
MVN, and each column represents a different "variable"; e.g. location in an image.

Note

This function requires the Cholesky decomposition of the desired covariance matrix for the MVN;
this allows for using this function in simulating multiple datasets of N MVN draws while only taking
the Cholesky decomposition of the covariance matrix once.

References

Furrer R, Sain SR (2010). “spam: A Sparse Matrix R Package with Emphasis on MCMC Methods
for Gaussian Markov Random Fields.” Journal of Statistical Software, 36(10), 1-25. https://
www.jstatsoft.org/v36/i10/.

Ripley BD (1987). Stochastic Simulation. John Wiley & Sons. doi:10.1002/9780470316726.

Rue H (2001). “Fast Sampling of Gaussian Markov Random Fields.” Journal of the Royal Statisti-
cal Society B, 63, 325-338. doi:10.1111/14679868.00288.

Examples

## verify MVN with base R
set.seed(732)
Lex <- chol_s2Dp(corr.structure = "ar1",

im.res = c(3, 3),
rho = 0.25,
sigma = 1,
use.spam = FALSE,
corr.min = 0.02,
triangle = "lower",
return.cov = TRUE)

XbR = sim_MVN_X(N = 1000, mu = 0, L = Lex$L)

apply(XbR, 2, mean)
cov(XbR)
Lex$S

## verify MVN with \code{spam}
set.seed(472)

https://www.jstatsoft.org/v36/i10/
https://www.jstatsoft.org/v36/i10/
https://doi.org/10.1002/9780470316726
https://doi.org/10.1111/1467-9868.00288
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Rex <- chol_s2Dp(im.res = c(3, 3), matrix.type = "prec",
use.spam = TRUE, neighborhood = "ar1",
triangle = "upper", return.prec = TRUE)

Xspam = sim_MVN_X(N = 1000, mu = 0, R = Rex$R, Q = Rex$Q)

apply(Xspam, 2, mean)
solve(cov(Xspam))
as.matrix(Rex$Q)

## Categories
set.seed(832)
Xtest <- sim_MVN_X(N = 30, mu = 0, L = Lex$L,

X.categorical = TRUE,
X.num.categories = 3,
X.category.type = "percentile",
X.cat.names = c("A", "B", "C"))

Xtest

sim_Y_Binary_X Simulate Scalar Outcomes from Simulated Spatially Dependent Binary
Predictors

Description

N spatially dependent binary design vectors are simulated using sim2D_binarymap. These design
vectors are used to then simulate scalar outcomes that have one of Gaussian, Binomial, or Poisson
distributions.

Usage

sim_Y_Binary_X(
N,
B,
rand.err = 1,
dist,
incl.subjectID = TRUE,
binomial.method = "traditional",
count.method = "traditional",
Y.thresh = NULL,
print.out = FALSE,
xlim = c(0, 1),
ylim = c(0, 1),
im.res,
radius.bounds = c(0.02, 0.1),
lambda = 50,
random.lambda = FALSE,
lambda.sd = 10,
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lambda.bound = NULL,
prior = "gamma",
sub.area = FALSE,
min.sa = c(0.1, 0.1),
max.sa = c(0.3, 0.3),
radius.bounds.min.sa = c(0.02, 0.05),
radius.bounds.max.sa = c(0.08, 0.15),
print.subj.sa = FALSE,
print.lambda = FALSE,
print.iter = FALSE

)

Arguments

N A scalar value determining the number of images to create.

B A vector parameter values; i.e. "betas". Note that length(B) must equal p + 1
= n.row * n.col + 1; e.g. for normal outcomes Y = XB + e with Y a scalar
outcome and e the random error.

rand.err A scalar for the random error variance when dist = "gaussian".

dist The distribution of the scalar outcome.

• dist = "gaussian" has Y = XB + e, where e N(0, rand.err).
• dist = "binomial" is drawn from eqnBin(XB, XB(1-XB)) using rbinom()

when binary.method = "Traditional". If binary.method = "Gaussian",
then simulation is based on a cutoff using binary.cutoff.

• dist = "poisson" is drawn from Poisson(XB) using rpois().

incl.subjectID When incl.subjectID = TRUE a column of subject indices is generated. Y.thresh
= NULL (default). If binomial.method = "gaussian manual", then Y.thresh
should be any scalar real number; values equal or above this cutoff are as-
signed 1 and values below are assigned 0. If binomial.method = "gaussian
percentile", then values equal or above this percentile are assigned 1, and
other wise 0; in this case values should be between 0 and 1. For example, if
Y.thresh = 0.9, then the cutoff is the 90th percentile.

binomial.method

One of c("traditional", "gaussian manual","gaussian percentile"). Only
specified when dist = "binomial", and determines whether draws are directly
taken from a binomial distribution or if draws are taken from a Multivariate Nor-
mal Distribution (in the manner of dist = "gaussian") and thresholds imposed
to binarize the outcomes. binomial.method = "gaussian manual" allows the
user to specify specific values for categorizing outcomes. binomial.method
= "gaussian percentile" allows the user to specify percentiles for binariz-
ing the data. Both approaches use Y.thresh to specify the cutoff value(s). If
binomial.method = "gaussian percentile" and Y.thresh = NULL then the
median is used as the threshold. If binomial.method = "gaussian manual"
and Y.thresh = NULL, then 0 is used as the threshold. Default is binomial.method
= "traditional".

count.method One of c("traditional", "rounding"). When count.method = "traditional",
the outcomes are drawn sequentially using rpois(). When count.method =
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"traditional", the outcomes are drawn from an MVN, then values less than
or equal to 0 are set to 0, and all other values are rounded to the nearest whole
number.

Y.thresh When binomial.method = "traditional"

print.out If print.out = TRUE then print the following for each subject, indexed y:

• X[y] %*% B

• p[y], lambda[y] for Binomial, Poisson, respectively.

This is useful to see the effect of image parameter selection and beta parameter
selection on distributional parameters for the outcome of interest.

xlim, ylim These are the 2D image limits. Defaults for both are c(0, 1). It is not rec-
ommended to alter these arguments unless changing the limits has a specific
practical utility.

im.res A vector specifying the dimension/resolution of the image. The first entry is
the number of ’rows’ in the lattice/image, and the second entry is the number of
columns’ in the lattice/image.

radius.bounds A 2-element vector whose first and second entries determine the minimum and
maximum radius sizes, respectively; these will be the bounds of the uniform dis-
tribution used to draw the radii. If sub.area = TRUE, then use radius.bounds.min.sa
and radius.bounds.max.sa.

lambda A scalar value specifying the mean/intensity value of the Poisson process. If
random.lambda = FALSE then this is the parameter used to generate the binary
image for each subject. If random.lambda = TRUE, then this is the mean param-
eter in the distribution used to draw subject-specific lambda.

random.lambda random.lambda = TRUE allows the lambda (mean/intensity) parameter in the
Poisson process to vary randomly by subject.

lambda.sd Only utilized when random.lambda = TRUE, and specifies the standard deviation
in the distribution used to draw subject-specific lambda.

lambda.bound Only utilized when random.lambda = TRUE, and allows the user to specify a
lower and upper bound for the subject-specific lambda; if the randomly selected
value is outside of this range, then another draw is taken. This continues until
a value is selected within the specified bounds. If no bounds are desired then
specify lambda.bound = NULL.

prior Only utilized when random.lambda = TRUE, and specifies the distribution from
which to draw the subject-specific lambda. Options are c("gaussian", "gamma").

sub.area When sub.area = TRUE, a random sub-section of the image is chosen, within
which the Poisson process is used to generate the binary image.

min.sa, max.sa Only utilized when sub.area = TRUE, and determines the width and height of
the minimum and maximum sub-areas; e.g., if min.sa = c(0.1, 0.1), then the
smallest possible random sub-area is a 0.1 x 0.1 square.

radius.bounds.min.sa, radius.bounds.max.sa

Only utilized when sub.area = TRUE, and specifies radius.bounds for the min-
imum and maximum sub-areas, respectively. This information is used to adap-
tively alter the bounds in between the minimum and maximum sub-areas.
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print.subj.sa, print.lambda, print.iter

These arguments are either TRUE or FALSE, and define print options for check-
ing that the function is working as the user intends. print.subj.sa = TRUE
prints the x-and y-limits for each subject’s sub-area. print.lambda = TRUE
prints each subject’s mean and realized events; the means will be the same un-
less random.lambda = TRUE, but the number of realized events will always vary.
print.iter = TRUE is only used when random.lambda = TRUE and is.null(lambda.bound)
= FALSE, and shows iterations for re-drawing when the randomly selected inten-
sity is outside the specified bounds.

Value

A data frame where each row consists of a single subject’s data. Col 1 is the outcome, Y, and each
successive column contains the subject predictor values.

Note

Careful parameter selection, i.e. B, is necessary to ensure that simulated outcomes are reasonable;
in particular, counts arising from the Poisson distribution can be unnaturally large.

References

Cressie N, Wikle CK (2011). Statistics for Spatio-Temporal Data, Wiley Series in Probability and
Statistics. John Wiley & Sons, Hoboken, NJ.

Ripley BD (1987). Stochastic Simulation. John Wiley & Sons. doi:10.1002/9780470316726.

Examples

## Define non-zero beta values
Bex <- beta_builder(row.index = c(3, 3, 4),

col.index = c(3, 4, 3),
im.res = c(5, 5),
B0 = 0, B.values = rep(1/3, 3),
output.indices = FALSE)

## Simulate Datasets
## parameter values
Nex = 10
set.seed(28743)

Gauss.ex <- sim_Y_Binary_X(N = Nex,
B = Bex,
dist = "gaussian",
im.res = c(5, 5))

hist(Gauss.ex$Y)

## direct draws from binomial
Bin.ex <- sim_Y_Binary_X(N = Nex,

B = Bex,
im.res = c(5, 5),
dist = "binomial",

https://doi.org/10.1002/9780470316726
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print.out = TRUE)
table(Bin.ex$Y)

sim_Y_MVN_X Simulate Scalar Outcomes from Simulated Spatially Correlated Pre-
dictors

Description

N spatially correlated design vectors are simulated from an MVN. These design vectors are used
to then simulate scalar outcomes that have one of Gaussian, Binomial, Multinomial or Poisson
distributions.

Usage

sim_Y_MVN_X(
N,
B,
L = NULL,
R = NULL,
S = NULL,
Q = NULL,
use.spam = TRUE,
mu = 0,
rand.err = 1,
dist = "gaussian",
V = NULL,
incl.subjectID = TRUE,
threshold.method = "none",
Y.thresh = NULL,
X.categorical = FALSE,
X.num.categories = 2,
X.category.type = "percentile",
X.manual.thresh = NULL,
X.cat.names = NULL,
print.out = FALSE

)

Arguments

N The number of draws to take from MVN; i.e., the number of subjects.

B A vector parameter values; i.e. "betas". Note that length(B) must equal p + 1
= n.row * n.col + 1; e.g. for normal outcomes Y = XB + e with Y a scalar
outcome and e the random error. Note that when dist = "multinomial" then B
should be a list with length equal to V - 1, i.e., should contain parameter values
associated with all categories except the reference category. Alternatively, when
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dist = "multinomial" B may be a list of length V if one desires to specify pa-
rameters for every category, i.e., the over-parameterized model used in Friedman
(2010).

L, R L and R are lower and upper triangular matrices, respectively, and are the Cholesky
factor(s) of the desired covariance matrix for the MVN. Obtain L or R via chol_s2Dp()
with settings triangle = "lower" or triangle = "upper", respectively. Spec-
ify either L or R, but NOT both.

S, Q A covariance or precision matrix respectively. These are for use with spam, and
can be extracted from output of chol_s2Dp after choosing return.cov = TRUE
or return.prec = TRUE, respectively.

use.spam Logical. If use.spam = TRUE then use tools from the R package spam; other-
wise, base R functions are employed. For large dimension MVN with sparse
correlation structure, spam is recommended; otherwise, base R may be faster.
Defaults to FALSE. Requires either the covariance matrix S or precision matrix,
Q, that corresponds to the Cholesky factor.

mu One of the following:
• A single scalar value for common mean.
• A vector of length nrow(R) (equivalently nrow(R)) containing means for

the MVN.
rand.err A vector for the random error standard deviation when dist = "gaussian", or

thresholding is used to obtain non-Normal draws. Must have length 1 or length
N.

dist The distribution of the scalar outcome.
• dist = "gaussian" has Y = XB + e, where e N(0, rand.err).
• dist = "binomial": Y is drawn from a binomial distribution with prob-

ability of "success" equal to 1/(1 + 1/exp(XB)) using rbinom() when
binary.method = "traditional". If binary.method = "gaussian", then
simulation is based on a cutoff using binary.cutoff.

• dist = "multinomial": Y is drawn from sample() using probabilities
generated based on Chapter 6.1.3 of Agresti (2007) when length(B) =
V - 1 or Friedman (2010) when the length(B) = V. Threshold-based ap-
proaches are not currently supported.

• dist = "poisson": Y is drawn from Poisson(exp(XB)) using rpois().
V A numeric value stating the number of categories desired when dist = "multinomial".
incl.subjectID When incl.subjectID = TRUE a column of subject indices is generated.
threshold.method

One of "none", "manual", "percentile", "round". When "none" draws
from Binomial or Poisson distributions are taken subject-wise using base R func-
tions. For the remaining options, draws are first taken from a Normal distribu-
tion and then thresholded. "manual" uses Y.thresh to manually select a cutoff,
"percentile" uses Y.thresh to select percentiles used to bin outcomes, and
"round" sets values equal or less than 0 to 0, and rounds all positive values to
the nearest whole number.

Y.thresh A manual value used to threshold when threshold.method = "manual"; val-
ues equal or greater than the cutoff are assigned 1 and all others 0. When
threshold.method = "percentile", a percentile to use to bin outcomes.
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X.categorical Default is X.categorical = FALSE. If X.categorical = TRUE then thresholds
are applied to categorize each predictor/image value.

X.num.categories

A scalar value denoting the number of categories in which to divide the data.
X.category.type

Tells R how to categorize the data. Options are X.category.type = c("percentile",
"manual"). If X.category.type = "percentile" then the data are divided
into percentiles based on X.num.categories; e.g. if X.num.categories =
4 then the values are divided into quartiles, and values in Q1 equal 0, be-
tween Q1 and Q2 equal 1, between Q2 and Q3 equal 2, and greater than Q3
equal 3. If X.category.type = "manual" then specify the cutoff points with
X.manual.thresh.

X.manual.thresh

A vector containing the thresholds for categorizing the values; e.g. if X.num.categories
= 4 and X.manual.thresh = c(-3, 1, 17), then values less than -3 are set to 0,
equal or greater than -3 and less than 1 are set to 1, equal or greater than 1 but
less than 17 are set to 2, and equal or greater than 17 are set to 3. Note that
length(X.manual.thresh) must always equal X.num.categories - 1.

X.cat.names A vector of category names. If X.cat.names = NULL then the initial integers
assigned are left as the values; the names in X.cat.names are assigned in as-
cending order.

print.out If print.out = TRUE then print the following for each subject, indexed y:

• X[y] %*% B

• p[y], lambda[y] for Binomial, Poisson, respectively.

This is useful to see the effect of image parameter selection and beta parameter
selection on distributional parameters for the outcome of interest.

Value

A data frame where each row consists of a single subject’s data. Col 1 is the outcome, Y, and each
successive column contains the subject predictor values.

Note

Careful parameter selection, i.e. B, is necessary to ensure that simulated outcomes are reasonable;
in particular, counts arising from the Poisson distribution can be unnaturally large.

References

Furrer R, Sain SR (2010). “spam: A Sparse Matrix R Package with Emphasis on MCMC Methods
for Gaussian Markov Random Fields.” Journal of Statistical Software, 36(10), 1-25. https://
www.jstatsoft.org/v36/i10/.

Ripley BD (1987). Stochastic Simulation. John Wiley & Sons. doi:10.1002/9780470316726.

Rue H (2001). “Fast Sampling of Gaussian Markov Random Fields.” Journal of the Royal Statisti-
cal Society B, 63, 325-338. doi:10.1111/14679868.00288.

Agresti A (2007). An Introduction to Categorical Analysis, 2nd edition. John Wiley & Sons,
Hoboken, New Jersey.

https://www.jstatsoft.org/v36/i10/
https://www.jstatsoft.org/v36/i10/
https://doi.org/10.1002/9780470316726
https://doi.org/10.1111/1467-9868.00288
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Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models via
coordinate descent.” Journal of Statistical Software, 33, 1-22. doi:10.18637/jss.v033.i01.

Examples

## generate precision matrix and take Cholesky decomposition
Rpre <- chol_s2Dp(im.res = c(3, 3), matrix.type = "prec",

use.spam = TRUE, neighborhood = "ar1",
triangle = "upper", return.prec = TRUE)

## Generate correlation matrix & take Cholesky decomposition
Rcov <- chol_s2Dp(corr.structure = "ar1", im.res = c(3, 3),

rho = 0.5,
triangle = "upper",
use.spam = FALSE, neighborhood = "none")

## Define non-zero beta values
Bex <- beta_builder(row.index = c(2, 3),

col.index = c(3, 3),
im.res = c(3, 3),
B0 = 0, B.values = rep(1, 2),
output.indices = FALSE)

## Simulate Datasets
## parameter values
Nex = 100
set.seed(28743)

## with precision matrix
Gauss.exp <- sim_Y_MVN_X(N = Nex, B = Bex,

R = Rpre$R, Q = Rpre$Q,
dist = "gaussian")

hist(Gauss.exp$Y)

## with covariance matrix
Gauss.exc <- sim_Y_MVN_X(N = Nex, B = Bex,

R = Rcov$R, S = Rcov$S,
dist = "gaussian")

hist(Gauss.exc$Y)

## direct draws from binomial
Bin.ex <- sim_Y_MVN_X(N = Nex, B = Bex, R = Rcov$R, S = Rcov$S,

dist = "binomial", print.out = TRUE)
table(Bin.ex$Y)

## manual cutoff
Bin.ex2 <- sim_Y_MVN_X(N = Nex, B = Bex,

R = Rcov$R, S = Rcov$S,
dist = "binomial",
threshold.method = "manual",
Y.thresh = 1.25)

table(Bin.ex2$Y)

## percentile cutoff
Bin.ex3 <- sim_Y_MVN_X(N = Nex, B = Bex,
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R = Rcov$R, S = Rcov$S,
dist = "binomial",
threshold.method = "percentile",
Y.thresh = 0.75)

table(Bin.ex3$Y)

## Poisson Example - note the large counts
Pois.ex <- sim_Y_MVN_X(N = Nex, B = Bex,

R = Rcov$R, S = Rcov$S,
dist = "poisson", print.out = TRUE)

mean(Pois.ex$Y)
quantile(Pois.ex$Y,

probs = c(0, 0.1, 0.25, 0.45, 0.5,
0.75, 0.9, 0.95, 0.99, 1))

hist(Pois.ex$Y)

within_area Determine Whether Lattice Points are Within or Without a Random Set

Description

Determine whether locations in the image/lattice (from generate.grid) are within or without the
union of a random set generated by sim2D_HPPP_coords(). If the Euclidean distance between a
lattice location and any ’event’ is less than the radius about the ’event’, then the location is said to
be within the random set. Otherwise, it is without the random set.

Usage

within_area(grid.centers, radii, event.xcoord, event.ycoord)

Arguments

grid.centers Output from generate.grid() that specifies the coordinates of the lattice loca-
tions in native space.

radii A vector of radii values.
event.xcoord, event.ycoord

Paired vectors specifying the x- and y- coordinates, respectively, of each ’event’
from the Poisson process.

Value

A data frame with lattice x- and y- coordinates, and a binary vector where 1 indicates the location
is within the random set, and 0 indicates the location is without the random set.
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