Package ‘shiny.fluent’

May 21, 2024

Title Microsoft Fluent UI for Shiny Apps

Version 0.4.0

Description A rich set of Ul components for building Shiny applications,
including inputs, containers, overlays, menus, and various utilities.
All components from Fluent UI (the underlying JavaScript library)
are available and have usage examples in R.

URL https://appsilon.github.io/shiny.fluent/,
https://github.com/appsilon/shiny.fluent

License LGPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Depends R (>=2.10)

Imports htmltools, jsonlite, purrr, shiny, shiny.react (>= 0.4.0)

Suggests chromote, covr, dplyr, DT, ggplot2, glue, imola, knitr,
leaflet, mockery, plotly, rcmdcheck, RColorBrewer, rmarkdown,
sass, shiny.i18n (>= 0.3.0), shiny.router (>= 0.3.1), shinyjs,
shinytest2, sortable, stringi, testthat (>= 3.0.0), tibble,
withr

Config/testthat/edition 3

NeedsCompilation no

Author Jakub Sobolewski [aut, cre],
Kamil Zyla [aut],
Marek Rogala [aut],
Appsilon Sp. z o0.0. [cph]

Maintainer Jakub Sobolewski <opensource+jakub.sobolewski@appsilon.com>
Repository CRAN
Date/Publication 2024-05-21 10:40:02 UTC

https://appsilon.github.io/shiny.fluent/
https://github.com/appsilon/shiny.fluent

2 R topics documented:

R topics documented:

ActionButton L 3
Activityltemo 13
Announced e e 15
BasePickerListBelow e 17
Breadcrumb e e e 24
Calendar e e e e 26
Callout. e e e e 29
CheckboX e e e 34
ChoiceGroup o i it e 37
Coachmark e e e 40
ColorPicker e e e 44
ComboBOX e e e e 48
CommandBar e e 51
CommandBarltem 56
CompactPeoplePicker 57
ContextualMenu e e e 60
DatePicker. e e e e e 66
DetailsList e e e e e e e e 71
Dialog e 85
DocumentCard e 90
Dropdown e 96
Facepile e 100
fluentPage 103
fluentPeople 103
fluentSalesDeals e e 104
FocusTrapCallout e 104
FocusZone 107
Fontlcon e 110
GroupedList e 112
HoverCard e e e 118
Image e 122
Keytip e 123
KeytipLayer o e 124
Label e 128
Layer 130
Link . . . e e e e e 132
List . . e e 134
MarqueeSelection 138
MaskedTextField 142
MessageBar 147
Modal e 150
Nav . . e e e e 153
OverflowSet e e e e e e 157
Overlay e 160
Panel e 161

parseTheme L 166

ActionButton 3

Persona 166
Pivot e 170
ProgressIndicator 172
Rating e 174
ResizeGroup e 177
runExample L. e e 179
ScrollablePane L 180
SearchBox e 182
Separator L e e e e e e e 185
Shimmer e e e e e e e 186
shinyFluentDependency 189
Slider o e 189
SpinButton L e e e 192
SpINnero e e 196
Stack . . . e e e e 197
SwatchColorPicker 200
TeachingBubble 204
TeXt . . . e e 208
ThemeProvider e e 209
Toggle e 212
TooltipHost 214
VerticalDivider e 218
Index 219
ActionButton Button
Description

Buttons give people a way to trigger an action. They’re typically found in forms, dialog panels, and
dialogs. Some buttons are specialized for particular tasks, such as navigation, repeated actions, or
presenting menus.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ActionButton(...)

CommandBarButton(...)

CommandButton(...)

CompoundButton(...)

DefaultButton(...)

https://developer.microsoft.com/en-us/fluentui#/controls/web/Button

IconButton(...)
PrimaryButton(...)
ActionButton.shinyInput(inputld, ...)
updateActionButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputld,
)
CommandBarButton.shinyInput(inputld, ...)
updateCommandBarButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputld,
)
CommandButton.shinyInput(inputld, ...)
updateCommandButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputld,
)
CompoundButton.shinyInput(inputId, ...)
updateCompoundButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputld,
)
DefaultButton.shinyInput(inputld, ...)
updateDefaultButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputld,
)

IconButton.shinyInput(inputld, ...)

updateIconButton.shinyInput(

ActionButton

ActionButton 5

session = shiny::getDefaultReactiveDomain(),
inputld,

)
PrimaryButton.shinyInput(inputId, ...)

updatePrimaryButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
session Object passed as the session argument to Shiny server.
Details

* baseClassName string
¢ variantClassName string

¢ allowDisabledFocus boolean
Whether the button can have focus in disabled mode

e ariaDescription string
Detailed description of the button for the benefit of screen readers.

Besides the compound button, other button types will need more information provided to screen
reader.

» ariaHidden boolean
If provided and is true it adds an ’aria-hidden’ attribute instructing screen readers to ignore the
element.

e ariaLabel string
The aria label of the button for the benefit of screen readers.

* buttonType ButtonType
Deprecated at v1.2.3, to be removed at \>= v2.0.0. Use specific button component instead.

¢ checked boolean
Whether the button is checked

e className string
If provided, additional class name to provide on the root element.

* componentRef IRefObject<IButton>
Optional callback to access the IButton interface. Use this instead of ref for accessing the
public methods and properties of the component.

ActionButton

data any
Any custom data the developer wishes to associate with the menu item.

defaultRender any
yet unknown docs

description IStyle
Style for the description text if applicable (for compound buttons.) Deprecated, use secondaryText
instead.

disabled boolean
Whether the button is disabled

getClassNames (theme: ITheme, className: string, variantClassName: string, iconClassName: string
Method to provide the classnames to style a button. The default value for this prop is the get-
Classnames func defined in BaseButton.classnames.

getSplitButtonClassNames (disabled: boolean, expanded: boolean, checked: boolean, allowDisabledFoc
Method to provide the classnames to style a button. The default value for this prop is the get-
Classnames func defined in BaseButton.classnames.

href string
If provided, this component will be rendered as an anchor.

iconProps IIconProps
The props for the icon shown in the button.

keytipProps IKeytipProps
Optional keytip for this button

menuAs IComponentAs<IContextualMenuProps>
Render a custom menu in place of the normal one.

menulconProps IIconProps
The props for the icon shown when providing a menu dropdown.

menuProps IContextualMenuProps

Props for button menu. Providing this will default to showing the menu icon. See menulcon-
Props for overriding how the default icon looks. Providing this in addition of onClick and
setting the split property to true will render a SplitButton.

menuTriggerKeyCode KeyCodes | null

Provides a custom KeyCode that can be used to open the button menu. The default KeyCode
is the down arrow. A value of null can be provided to disable the key codes for opening the
button menu.

onAfterMenuDismiss () => void
Callback that runs after Button’s contextualmenu was closed (removed from the DOM)

onMenuClick (ev?: React.MouseEvent<HTMLElement> | React.KeyboardEvent<HTMLElement>, button?: IBL
Optional callback when menu is clicked.

onRenderAriaDescription IRenderFunction<IButtonProps>
Custom render function for the aria description element.

onRenderChildren IRenderFunction<IButtonProps>
Custom render function for rendering the button children.

onRenderDescription IRenderFunction<IButtonProps>
Custom render function for the desciption text.

ActionButton 7

Note:
perf.

onRenderIcon IRenderFunction<IButtonProps>
Custom render function for the icon

onRenderMenu IRenderFunction<IContextualMenuProps>
Deprecated at v6.3.2, to be removed at \>= v7.0.0. Use menuAs instead.

onRenderMenulcon IRenderFunction<IButtonProps>
Custom render function for button menu icon

onRenderText IRenderFunction<IButtonProps>
Custom render function for the label text.

persistMenu boolean

Menu will not be created or destroyed when opened or closed, instead it will be hidden. This
will improve perf of the menu opening but could potentially impact overall perf by having
more elements in the dom. Should only be used when perf is important. Note: This may
increase the amount of time it takes for the button itself to mount.

primary boolean
Changes the visual presentation of the button to be emphasized (if defined)

primaryActionButtonProps IButtonProps
Optional props to be applied only to the primary action button of SplitButton and not to the
overall SplitButton container

primaryDisabled boolean
If set to true and if this is a splitButton (split == true) then the primary action of a split button
is disabled.

renderPersistedMenuHiddenOnMount boolean
If true, the persisted menu is rendered hidden when the button initially mounts. Non-persisted
menus will not be in the component tree unless they are being shown

This increases the time the button will take to mount, but can improve perceived menu open
when the user opens the menu.

rootProps React.ButtonHTMLAttributes<HTMLButtonElement> | React.AnchorHTMLAttributes<HTMLAnchorE
Deprecated at v0.56.2, to be removed at \>= v1.0.0. Just pass in button props instead. they
will be mixed into the button/anchor element rendered by the component.

secondaryText string
Description of the action this button takes. Only used for compound buttons

split boolean
If set to true, and if menuProps and onClick are provided, the button will render as a SplitBut-
ton.

splitButtonAriaLabel string
Accessible label for the dropdown chevron button if this button is split.

splitButtonMenuProps IButtonProps
Experimental prop that get passed into the menuButton that’s rendered as part of split button.
Anything passed in will likely need to have accompanying style changes.

styles IButtonStyles
Custom styling for individual elements within the button DOM.

text string
Text to render button label. If text is supplied, it will override any string in button children.
Other children components will be passed through after the text.

Value

ActionButton

theme ITheme
Theme provided by HOC.

toggle boolean

Whether button is a toggle button with distinct on and off states. This should be true for
buttons that permanently change state when a press event finishes, such as a volume mute
button.

toggled boolean
Any custom data the developer wishes to associate with the menu item. Deprecated, use
checked if setting state.

uniqueld string | number
Unique id to identify the item. Typically a duplicate of key value.

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

For dialog boxes and panels, where people are moving through a sequence of screens, right-
align buttons with the container.

For single-page forms and focused tasks, left-align buttons with the container.
Always place the primary button on the left, the secondary button just to the right of it.

Show only one primary button that inherits theme color at rest state. If there are more than
two buttons with equal priority, all buttons should have neutral backgrounds.

Don’t use a button to navigate to another place; use a link instead. The exception is in a
wizard where "Back" and "Next" buttons may be used.

Don’t place the default focus on a button that destroys data. Instead, place the default focus
on the button that performs the "safe act" and retains the content (such as "Save") or cancels
the action (such as "Cancel").

Content:

Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.
Make sure it’s clear what will happen when people interact with the button. Be concise;

usually a single verb is best. Include a noun if there is any room for interpretation about what
the verb means. For example, "Delete folder" or "Create account".

Examples

Example 1
library(shiny)
library(shiny.fluent)

tokens <- list(childrenGap = 20)

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

ActionButton

ui <- function(id) {
ns <- NS(id)
tags$div(
Stack(
DefaultButton.shinyInput(
ns("button1”),
text = "Default Button”,
styles = list("background: green")
),
PrimaryButton.shinyInput(
ns("button2"),
text = "Primary Button”
),
CompoundButton.shinyInput(
ns("button3”),
secondaryText = "Compound Button has additional text”,
text = "Compound Button”
),
ActionButton.shinyInput(
ns("button4"),
iconProps = list("”iconName"” = "AddFriend"),
text = "Action Button”
),
horizontal = TRUE,
tokens = tokens
),
textOutput(ns("text"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
clicks <- reactiveVal(®)
addClick <- function() { clicks(isolate(clicks() + 1)) }
observeEvent (input$button@, addClick())
observeEvent (input$button1, addClick())
observeEvent (input$button2, addClick())
observeEvent (input$button3, addClick())
observeEvent (input$button4, addClick())
output$text <- renderText({
paste@("Clicks:", clicks())
»
b))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Example 2
library(shiny)
library(shiny.fluent)

10 ActionButton

Split button with menu
menuProps <- list(
items = list(

list(
key = "emailMessage",
text = "Email message”,

onClick = JS("() => alert('Email message clicked')"),
iconProps = list(

iconName = "Mail”
)
),
list(
key = "calendarEvent”,
text = "Calendar event”,

onClick = JS("() => alert('Calendar event clicked')"),
iconProps = list(
iconName = "Calendar”
)
)
)
)

ui <- function(id) {
ns <- NS(id)
fluentPage(
Stack(
horizontal = TRUE,
wrap = TRUE,
tokens = list(
childrenGap = 40
),
DefaultButton.shinyInput(
inputId = ns("button_1"),
text = "Standard”,
primary = FALSE,

split = TRUE,
splitButtonArialabel = "See 2 options”,
‘aria-roledescription® = "split button”,

menuProps = menuProps,
disabled = FALSE,
checked = FALSE
),
DefaultButton.shinyInput(
inputId = ns("button_2"),

text = "Primary”,

primary = TRUE,

split = TRUE,

splitButtonArialLabel = "See 2 options”,
‘aria-roledescription® = "split button”,

menuProps = menuProps,
disabled = FALSE,
checked = FALSE

ActionButton

DefaultButton.shinyInput(
inputId = ns("button_3"),

text = "Main action disabled”,
primaryDisabled = NA,

split = TRUE,

splitButtonArialLabel = "See 2 options”,
‘aria-roledescription® = "split button”,

menuProps = menuProps,
checked = FALSE
),
DefaultButton.shinyInput(
inputId = ns("button_4"),
text = "Disabled”,
disabled = TRUE,

split = TRUE,
splitButtonArialabel = "See 2 options”,
‘aria-roledescription® = "split button”,

menuProps = menuProps,
checked = FALSE
)
),
uiOutput(ns("text"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$text <- renderUI({
lapply(seq_len(4), function(i) {
paste@("button_", i, ": ", input[[paste@("button_", i)11)
1))
»
1))
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Example 3
library(shiny)
library(shiny.fluent)
library(shinyjs)

This example app shows how to use a Fluent UI Button to trigger a file upload.
File upload is not natively supported by shiny.fluent so shinyjs is used
to trigger the file upload input.
ui <- function(id) {
ns <- NS(id)
fluentPage(
useShinyjs(),
Stack(
tokens = list(

11

12 ActionButton

childrenGap = 10L
),
horizontal = TRUE,
DefaultButton.shinyInput(
inputId = ns("uploadFileButton"),
text = "Upload File",
iconProps = list(iconName = "Upload")
),
div(
style =
visibility: hidden;
height: 0;
width: 0;

n

n

fileInput(
inputId = ns("uploadFile"),
label = NULL
)
)
),
textOutput(ns(”"file_path"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
observeEvent (input$uploadFileButton, {
click("uploadFile")
»

output$file_path <- renderText({
input$uploadFile$name
»
H
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Example 4
library(shiny)
library(shiny.fluent)
library(shinyjs)

This example app shows how to use a Fluent UI Button to trigger a file download.
File download is not natively supported by shiny.fluent so shinyjs is used
to trigger the file download.
ui <- function(id) {
ns <- NS(id)
fluentPage(
useShinyjs(),
DefaultButton.shinyInput(

Activityltem 13

inputId = ns("downloadButton"),

text = "Download”,
iconProps = list(iconName = "Download")
),
div(
style = "visibility: hidden;",
downloadButton(ns(”"download”), label = "")
)

)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {
observeEvent (input$downloadButton, {
click("download")
D

output$download <- downloadHandler(
filename = function() {
paste("data-", Sys.Date(), ".csv", sep="")
+
content = function(file) {
write.csv(iris, file)
}
)
b))
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

ActivityItem Activityltem

Description

An activity item (ActivityItem) represents a person’s actions, such as making a comment, men-
tioning someone with an @mention, editing a document, or moving a file.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
ActivityItem(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ActivityItem

14

Details

Value

Activityltem

 activityDescription React.ReactNode[] | React.ReactNode

An element describing the activity that took place. If no activityDescription, activityDescrip-
tionText, or onRenderActivityDescription are included, no description of the activity is shown.

activityDescriptionText string
Text describing the activity that occurred and naming the people involved in it. Deprecated,
use activityDescription instead.

activitylcon React.ReactNode
An element containing an icon shown next to the activity item.

activityPersonas Array<IPersonaSharedProps>
If activityIcon is not set, then the persona props in this array will be used as the icon for this
activity item.

animateBeaconSignal boolean
Enables/Disables the beacon that radiates from the center of the center of the activity icon.
Signals an activity has started.

beaconColorOne string
Beacon color one

beaconColorTwo string
Beacon color two

comments React.ReactNode[] | React.ReactNode
An element containing the text of comments or \@mention messages. If no comments, com-
mentText, or onRenderComments are included, no comments are shown.

commentText string
Text of comments or \@mention messages. Deprecated, use comments instead.

isCompact boolean
Indicated if the compact styling should be used.

onRenderActivityDescription IRenderFunction<IActivityItemProps>
A renderer for the description of the current activity.

onRenderComments IRenderFunction<IActivityItemProps>
A renderer that adds the text of a comment below the activity description.

onRenderIcon IRenderFunction<IActivityItemProps>
A renderer to create the icon next to the activity item.

onRenderTimeStamp IRenderFunction<IActivityItemProps>

A renderer adds a time stamp. If not included, timeStamp is shown as plain text below the
activity.

styles IActivityItemStyles

Optional styling for the elements within the Activity Item.

timeStamp string | React.ReactNode[] | React.ReactNode
Element shown as a timestamp on this activity. If not included, no timestamp is shown.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Announced 15

Best practices

Layout:

e Use a list of multiple activity items to indicate a history of events relating to a single file,
folder, person, or other entity. Alternatively, use a single activity item to indicate the most
recent event on an entity.

* Group multiple similar events occurring near the same time into a single activity item.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ActivityItem(
activityDescription = taglList(
Link(key = 1, "Philippe Lampros”),
tags$span(key = 2, " commented")
),
activityIcon = Icon(iconName = "Message"),
comments = taglList(
tags$span(key = 1, "Hello! I am making a comment.”)
),
timeStamp = "Just now”
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Announced Announced

Description

The Announced component aims to fill several of the accessibility gaps that exist in various web
application experiences. It provides text for the screen reader in certain scenarios that are lack-
ing comprehensive updates, particularly those showing the completion status or progress of opera-
tion(s).

Some real-world applications of the component include copying, uploading, or moving many files;
deleting or renaming a single file; "lazy loading" of page sections that do not appear all at once; and
appearance of search results.

The Announced component currently has the following documented use cases:

16 Announced

1. Quick Actions: Operations such as editing text or deletion that are short enough that they do
not require a status during progress.

2. Search Results: Appearance of search results such as in contact fields or search boxes.
3. Lazy Loading: "Lazy loading" of page sections that do not appear all at once.
4. Bulk Operations: Operations that require multiple sub operations, such as the moving of sev-

eral files.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Announced(...)

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details
e "aria-live'" 'off' | 'polite' | 'assertive'

Priority with which the screen reader should treat updates to this region @default *polite’

e as React.ElementType
Optionally render the root of this component as another component type or primitive. The
custom type must preserve any children or native props passed in. @default "div’

* message string
The status message provided as screen reader output

o styles IStyleFunctionOrObject<{}, IAnnouncedStyles>
Call to provide customized styling that will layer on top of the variant rules.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
Announced(message = "Screen reader message")

3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

https://developer.microsoft.com/en-us/fluentui#/controls/web/Announced

BasePickerListBelow 17

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

BasePickerListBelow Pickers

Description

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Pickers are used to select one or more items, such as tags or files, from a large list.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

BasePickerListBelow(...)

TagPicker(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e className string
ClassName for the picker.

* componentRef IRefObject<IBasePicker<T>>
Optional callback to access the IBasePicker interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ createGenericltem (input: string, ValidationState: ValidationState) => ISuggestionModel<T> | T
Function that specifies how arbitrary text entered into the well is handled.

* defaultSelectedItems T[]
Initial items that have already been selected and should appear in the people picker.

* disabled boolean
Flag for disabling the picker.

* enableSelectedSuggestionAlert boolean
Adds an additional alert for the currently selected suggestion. This prop should be set to true
for IE11 and below, as it enables proper screen reader behavior for each suggestion (since
aria-activedescendant does not work with IE11). It should not be set for modern browsers
(Edge, Chrome).

https://developer.microsoft.com/en-us/fluentui#/controls/web/Pickers
https://developer.microsoft.com/en-us/fluentui#/controls/web/pickers

BasePickerListBelow

getTextFromItem (item: T, currentValue?: string) => string
A callback to get text from an item. Used to autofill text in the pickers.

inputProps IInputProps
AutoFill input native props

itemLimit number
Restrict the amount of selectable items.

onBlur React.FocusEventHandler<HTMLInputElement | Autofill>

A callback for when the user moves the focus away from the picker

onChange (items?: T[]) => void

A callback for when the selected list of items changes.

onDismiss (ev?: any, selectedItem?: T) => boolean | void

A callback to override the default behavior of adding the selected suggestion on dismiss. If it

returns true or nothing, the selected item will be added on dismiss. If false, the selected item
will not be added on dismiss.

onEmptyInputFocus (selectedItems?: T[]) => T[] | PromiselLike<T[]>
A callback for what should happen when a user clicks within the input area.

onEmptyResolveSuggestions (selectedItems?: T[]1) => T[] | PromiseLike<T[]>
A callback for what should happen when suggestions are shown without input provided. Re-
turns the already selected items so the resolver can filter them out. If used in conjunction with
resolveDelay this will only kick off after the delay throttle.

onFocus React.FocusEventHandler<HTMLInputElement | Autofill>
A callback for when the user put focus on the picker

onGetMoreResults (filter: string, selectedItems?: T[]) => T[] | PromiseLike<T[]>
A callback that gets the rest of the results when a user clicks get more results.

onlnputChange (input: string) => string

A callback used to modify the input string.

onltemSelected (selectedItem?: T) => T | PromiseLike<T> | null

A callback to process a selection after the user selects something from the picker. If the
callback returns null, the item will not be added to the picker.

onRemoveSuggestion (item: T) => void
A callback for when an item is removed from the suggestion list

onRenderltem (props: IPickerItemProps<T>) => JSX.Element
Function that specifies how the selected item will appear.

onRenderSuggestionsItem (props: T, itemProps: ISuggestionItemProps<T>) => JSX.Element
Function that specifies how an individual suggestion item will appear.

onResolveSuggestions (filter: string, selectedItems?: T[]) => T[] | PromiseLike<T[]>
A callback for what should happen when a person types text into the input. Returns the already
selected items so the resolver can filter them out. If used in conjunction with resolveDelay this

will only kick off after the delay throttle.

onValidateInput (input: string) => ValidationState
A function used to validate if raw text entered into the well can be added into the selected
items list

pickerCalloutProps ICalloutProps
The properties that will get passed to the Callout component.

BasePickerListBelow 19

* pickerSuggestionsProps IBasePickerSuggestionsProps
The properties that will get passed to the Suggestions component.

¢ removeButtonAriaLabel string
Aria label for the "X" button in the selected item component.

* resolveDelay number
The delay time in ms before resolving suggestions, which is kicked off when input has been
changed. e.g. If a second input change happens within the resolveDelay time, the timer will
start over. Only until after the timer completes will onResolveSuggestions be called.

» searchingText ((props: { input: string; }) => string) | string
The text to display while searching for more results in a limited suggestions list

» selectedItems T[]
The items that the base picker should currently display as selected. If this is provided then the
picker will act as a controlled component.

e styles IStyleFunctionOrObject<IBasePickerStyleProps, IBasePickerStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by styled() function.

e '"aria-label" string
Screen reader label to apply to an input element.

¢ defaultVisibleValue string
The default value to be visible when the autofill first created. This is different than placeholder
text because the placeholder text will disappear and re-appear. This text persists until deleted
or changed.

¢ componentRef IRefObject<IPickerItem>
Optional callback to access the IPickerItem interface. Use this instead of ref for accessing the
public methods and properties of the component.

* index number
Index number of the item in the array of picked items.

e item T
The item of Type T (Persona, Tag, or any other custom item provided).

e key string | number
Unique key for each picked item.

e onltemChange (item: T, index: number) => void
Internal Use only, gives a callback to the renderer to call when an item has changed. This
allows the base picker to keep track of changes in the items.

¢ onRemoveltem () => void
Callback issued when the item is removed from the array of picked items.

* removeButtonArialabel string
Aria-label for the picked item remove button.

» selected boolean
Whether the picked item is selected or not.

¢ className string
Optional className for the root element of the suggestion item.

20

BasePickerListBelow

componentRef IRefObject<ISuggestionsItem>

Optional callback to access the ISuggestionltem interface. Use this instead of ref for accessing
the public methods and properties of the component.

id string

Unique id of the suggested item.

isSelectedOverride boolean
An override for the ’selected’ property of the SuggestionModel.

onClick (ev: React.MouseEvent<HTMLButtonElement>) => void
Callback for when the user clicks on the suggestion.

onRemoveltem (ev: React.MouseEvent<HTMLButtonElement>) => void
Callback for when the item is removed from the array of suggested items.

removeButtonAriaLabel string
The ARIA label for the button to remove the suggestion from the list.

RenderSuggestion (item: T, suggestionItemProps: ISuggestionItemProps<T>) => JSX.Element

Optional renderer to override the default one for each type of picker.

showRemoveButton boolean
Whether the remove button should be rendered or not.

styles IStyleFunctionOrObject<ISuggestionsItemStyleProps, ISuggestionsItemStyles>

Call to provide customized styling that will layer on top of the variant rules.

suggestionModel ISuggestionModel<T>
Individual suggestion object containing its properties.

theme ITheme
Theme provided by High-Order Component.

className string
The CSS className of the suggestions root.

componentRef IRefObject<ISuggestions<T>>
Optional callback to access the ISuggestions interface. Use this instead of ref for accessing
the public methods and properties of the component.

createGenericltem () => void
The callback that should be called when the user attempts to use the input text as as item

forceResolveText string
The text that appears indicating to the use to force resolve the input

isLoading boolean
Used to indicate whether or not the suggestions are loading.

isMostRecentlyUsedVisible boolean
Indicates if a short list of recent suggestions should be shown.

isResultsFooterVisible boolean
Indicates if the text in resultsFooter or resultsFooterFull should be shown at the end of the
suggestion list.

isSearching boolean
Used to indicate whether or not the component is searching for more results.

loadingText string
The text to display while the results are loading.

BasePickerListBelow 21

* moreSuggestionsAvailable boolean
Used to indicate whether or not the user can request more suggestions. Dictates whether or
not the searchForMore button is displayed.

* mostRecentlyUsedHeaderText string
The text that should appear at the top of the most recently used box.

¢ noResultsFoundText string
The text that should appear if no results are found when searching.

¢ onGetMoreResults () => void
The callback that should be called when the user attempts to get more results

* onRenderNoResultFound IRenderFunction<void>
How the "no result found" should look in the suggestion list.

* onRenderSuggestion (props: T, suggestionItemProps: ISuggestionItemProps<T>) => JSX.Element
How the suggestion should look in the suggestion list.

* onSuggestionClick (ev?: React.MouseEvent<HTMLElement>, item?: any, index?: number) => void
What should occur when a suggestion is clicked

¢ onSuggestionRemove (ev?: React.MouseEvent<HTMLElement>, item?: T | IPersonaProps, index?: number)
Function to fire when one of the optional remove buttons on a suggestion is clicked.

TODO (adjective-object) remove IPersonaprops before the next major version bump

¢ refocusSuggestions (keyCode: KeyCodes) => void
A function that resets focus to the expected item in the suggestion list

* removeSuggestionArial.abel string
An ARIA label to use for the buttons to remove individual suggestions.

¢ resultsFooter (props: ISuggestionsProps<T>) => JSX.Element
A renderer that adds an element at the end of the suggestions list it has fewer items than
resultsMaximumNumber.

¢ resultsFooterFull (props: ISuggestionsProps<T>) => JSX.Element
A renderer that adds an element at the end of the suggestions list it has more items than
resultsMaximumNumber.

* resultsMaximumNumber number
Maximum number of suggestions to show in the full suggestion list.

¢ searchErrorText string
The text that should appear if there is a search error.

¢ searchForMoreText string
The text that appears indicating to the user that they can search for more results.

¢ searchingText string
The text to display while searching for more results in a limited suggestions list.

¢ showForceResolve () => boolean
The callback that should be called to see if the force resolve command should be shown

* showRemoveButtons boolean
Indicates whether to show a button with each suggestion to remove that suggestion.

* styles IStyleFunctionOrObject<any, any>
Call to provide customized styling that will layer on top of the variant rules.

22

Value

BasePickerListBelow

suggestions ISuggestionModel<T>[]
The list of Suggestions that will be displayed

suggestionsAvailableAlertText string
Screen reader message to read when there are suggestions available.

suggestionsClassName string
The CSS className of the suggestions list

suggestionsContainerArial.abel string
An ARIA label for the container that is the parent of the suggestions.

suggestionsHeaderText string
The text that appears at the top of the suggestions list.

suggestionsItemClassName string
The className of the suggestion item.

suggestionsListld string
The string that will be used as the suggestionsListld. Will be used by the BasePicker to keep
track of the list for aria.

theme ITheme
Theme provided by High-Order Component.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

» Use a picker to quickly search for a few tags or files.
 Use a picker to manage a group of tags or files.

Examples

library(shiny)
library(shiny.fluent)

makeScript <- function(js) {
htmltools: :htmlDependency(

}

name = "TagPickerExample”,
version = "@", # Not used.
src = cChref = ""), # Not used.
head = paste@("<script>", js, "</script>")
)
ui <- function(id) {
ns <- NS(id)
taglist(
makeScript ("
testTags = [

'black’,

BasePickerListBelow 23

'blue',
'brown',
‘cyan',
'green',
'magenta’,
'mauve’,
'orange',
'pink',
'purple’,
'red’',
'rose’,
'violet',
'white',
'yellow',
1.map(item => ({ key: item, name: item }));

function listContainsTaglList(tag, taglList) {

if (!taglList || !tagList.length || taglList.length === @) {
return false;

}

return taglList.some(compareTag => compareTag.key === tag.key);

3

function filterSuggestedTags(filterText, tagList) {
return filterText
? testTags.filter(
tag => tag.name.tolLowerCase().indexOf (filterText.toLowerCase()) === 0 &&
IlistContainsTaglList(tag, taglList),

[1;

"y,
textOutput(ns(”selectedTags")),

TagPicker(
onResolveSuggestions = JS("filterSuggestedTags"),
onEmptyInputFocus = JS(
"function(taglList) { return testTags.filter(tag => !listContainsTaglList(tag, taglList)); }"
),
getTextFromItem = JS("function(item) { return item.text }"),
pickerSuggestionsProps = list(
suggestionsHeaderText = 'Suggested tags',
noResultsFoundText = 'No color tags found'
),
itemLimit = 2,
onChange = JS(paste®(
"function(selection) {",
" Shiny.setInputValue('", ns("selectedTags"”) ,"', JSON.stringify(selection));",
nyn
))

24 Breadcrumb

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$selectedTags <- renderText({
if (is.null(input$selectedTags)) {
"Select up to 2 colors below:"

} else {
paste(
"You have selected:”,
paste(jsonlite::fromJSON(input$selectedTags)$name, collapse = ", ")
)
}
»

D
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"))
3

Breadcrumb Breadcrumb

Description

Breadcrumbs should be used as a navigational aid in your app or site. They indicate the current
page’s location within a hierarchy and help the user understand where they are in relation to the rest
of that hierarchy. They also afford one-click access to higher levels of that hierarchy.

Breadcrumbs are typically placed, in horizontal form, under the masthead or navigation of an expe-
rience, above the primary content area.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Breadcrumb(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e ariaLabel string
Aria label for the root element of the breadcrumb (which is a navigation landmark).

¢ className string
Optional class for the root breadcrumb element.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Breadcrumb

Breadcrumb 25

Value

componentRef IRefObject<IBreadcrumb>
Optional callback to access the IBreadcrumb interface. Use this instead of ref for accessing
the public methods and properties of the component.

dividerAs IComponentAs<IDividerAsProps>
Render a custom divider in place of the default chevron >

focusZoneProps IFocusZoneProps
Extra props for the root FocusZone.

items IBreadcrumbItem[]
Collection of breadcrumbs to render

maxDisplayedItems number
The maximum number of breadcrumbs to display before coalescing. If not specified, all bread-
crumbs will be rendered.

onGrowData (data: IBreadcrumbData) => IBreadcrumbData | undefined
Method that determines how to group the length of the breadcrumb. Return undefined to never
increase breadcrumb length.

onReduceData (data: IBreadcrumbData) => IBreadcrumbData | undefined
Method that determines how to reduce the length of the breadcrumb. Return undefined to
never reduce breadcrumb length.

onRenderltem IRenderFunction<IBreadcrumbItem>
Custom render function for each breadcrumb item.

onRenderOverflowlcon IRenderFunction<IButtonProps>
Render a custom overflow icon in place of the default icon . . .

overflowAriaLabel string
Aria label for the overflow button.

overflowIndex number
Optional index where overflow items will be collapsed. Defaults to O.

styles IStyleFunctionOrObject<IBreadcrumbStyleProps, IBreadcrumbStyles>
theme ITheme

tooltipHostProps ITooltipHostProps
Extra props for the TooltipHost which wraps each breadcrumb item.

item IBreadcrumbItem
Breadcrumb item to left of the divider to be passed for custom rendering. For overflowed
items, it will be last item in the list.

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

26 Calendar
items <- list(
list(text = "Files", key = "Files”, href = "#/page"),
list(text = "Folder 1", key = "f1", href = "#/page"),
list(text = "Folder 2", key = "f2", href = "#/page"),
list(text = "Folder 3", key = "f3", href = "#/page"),
list(text = "Folder 4 (non-clickable)", key = "f4"),
list(text = "Folder 5", key = "f5", href = "#/page"”, isCurrentItem = TRUE)
)
ui <- function(id) {
Breadcrumb(
items = items,
maxDisplayedItems = 3,
arialabel = "Breadcrumb with items rendered as links",
overflowArialLabel = "More links”
)
}
server <- function(id) {
moduleServer(id, function(input, output, session) { })
}
if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3
Calendar Calendar
Description
The calendar control lets people select and view a single date or a range of dates in their calendar.
It’s made up of 3 separate views: the month view, year view, and decade view.
For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.
Usage

Calendar(...)
Calendar.shinyInput(inputld, ..., value = shiny.react::JS("new Date()"))
updateCalendar.shinyInput(

session = shiny::getDefaultReactiveDomain(),
inputlId,

https://developer.microsoft.com/en-us/fluentui#/controls/web/Calendar

Calendar 27

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

 allFocusable boolean
Allows all dates and buttons to be focused, including disabled ones

« autoNavigateOnSelection boolean
Whether the month view should automatically navigate to the next or previous date range
depending on the selected date. If this property is set to true and the currently displayed
month is March 2017, if the user clicks on a day outside the month, i.e., April 1st, the picker
will automatically navigate to the month of April.

e className string
Optional class name to add to the root element.

¢ componentRef IRefObject<ICalendar>
Optional callback to access the ICalendar interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ dateRangeType DateRangeType
The date range type indicating how many days should be selected as the user selects days

* dateTimeFormatter ICalendarFormatDateCallbacks
Apply additional formating to dates, for example localized date formatting.

* firstDayOfWeek DayOfWeek
The first day of the week for your locale.

* firstWeekOfYear FirstWeekOfYear
Defines when the first week of the year should start, FirstWeekOf Year.FirstDay, FirstWeekO-
fYear.FirstFullWeek or FirstWeekOf Year.FirstFourDayWeek are the possible values

 highlightCurrentMonth boolean
Whether the month picker should highlight the current month

 highlightSelectedMonth boolean
Whether the month picker should highlight the selected month

 isDayPickerVisible boolean
Whether the day picker is shown beside the month picker or hidden.

» isMonthPickerVisible boolean
Whether the month picker is shown beside the day picker or hidden.

* maxDate Date
If set the Calendar will not allow navigation to or selection of a date later than this value.

* minDate Date
If set the Calendar will not allow navigation to or selection of a date earlier than this value.

28

Value

Calendar

navigationlcons ICalendarIconStrings
Customize navigation icons using ICalendarIconStrings
onDismiss () => void

Callback issued when calendar is closed

onSelectDate (date: Date, selectedDateRangeArray?: Date[]) => void
Callback issued when a date is selected

restrictedDates Date[]

If set the Calendar will not allow selection of dates in this array.
selectDateOnClick boolean

When clicking on "Today", select the date and close the calendar.
shouldFocusOnMount boolean

This property has been removed at 0.80.0 in place of the focus method, to be removed \@
1.0.0.

showCloseButton boolean
Whether the close button should be shown or not

showGoToToday boolean
Whether the "Go to today" link should be shown or not

showMonthPickerAsOverlay boolean
Show month picker on top of date picker when visible.

showSixWeeksByDefault boolean
Whether the calendar should show 6 weeks by default.

showWeekNumbers boolean
Whether the calendar should show the week number (weeks 1 to 53) before each week row

strings ICalendarStrings | null
Localized strings to use in the Calendar

today Date
Value of today. If null, current time in client machine will be used.

value Date
Default value of the Calendar, if any

workWeekDays DayOfWeek[]
The days that are selectable when dateRangeType is WorkWeek. If dateRangeType is not
WorkWeek this property does nothing.

yearPickerHidden boolean
Whether the year picker is enabled

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

* Don’t break the control apart.

Callout 29

¢ Include an up and down arrow for navigating between time ranges and a chevron to make the
calendar collapsible.

Content:

* Use the following format for dates: month, day, year, as in July 31, 2016. When space is
limited, use numbers and slashes for dates if the code supports that format and automatically
displays the appropriate date format for different locales. For example, 2/16/19.

* Don’t use ordinal numbers (such as 1st, 12th, or 23rd) to indicate a date.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
Calendar.shinyInput(ns(”calendar”), value = "2020-06-25T22:00:00.000Z"),
textOutput(ns("calendarValue")),
h3("If ‘value‘ is missing, default to system date”),
Calendar.shinyInput(ns(”calendar2")),
textOutput (ns("”calendarDefault”)),
h3("If ‘value‘ is NULL, also default to system date"),
Calendar.shinyInput(ns(”calendar3”), value = NULL),
textOutput(ns(”calendarNull”))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$calendarValue <- renderText({
sprintf(”Value: %s”, input$calendar)
»
output$calendarDefault <- renderText({
sprintf(”Value: %s", input$calendar?2)
»
output$calendarNull <- renderText({
sprintf(”Value: %s”, input$calendar3)
»
1))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Callout Callout

30 Callout

Description
A callout is an anchored tip that can be used to teach people or guide them through the app with-
out blocking them.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Callout(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

o alignTargetEdge boolean
If true the positioning logic will prefer to flip edges rather than to nudge the rectangle to fit
within bounds, thus making sure the element aligns perfectly with target’s alignment edge

» ariaDescribedBy string
Defines the element id referencing the element containing the description for the callout.

e arialabel string
Accessible label text for callout.

« arialLabelledBy string
Defines the element id referencing the element containing label text for callout.

¢ backgroundColor string
The background color of the Callout in hex format ie. #ffffff.

* beakWidth number
The width of the beak.

* bounds IRectangle | ((target?: Target, targetWindow?: Window) => IRectangle | undefined)
The bounding rectangle (or callback that returns a rectangle) for which the contextual menu
can appear in.

¢ calloutMaxHeight number
Set max height of callout When not set the callout will expand with contents up to the bottom
of the screen

 calloutMaxWidth number
Custom width for callout including borders. If value is 0, no width is applied.

* calloutWidth number
Custom width for callout including borders. If value is 0, no width is applied.

e className string
CSS class to apply to the callout.

* coverTarget boolean

If true the position returned will have the menu element cover the target. If false then it will
position next to the target;

https://developer.microsoft.com/en-us/fluentui#/controls/web/Callout

Callout 31

e directionalHint DirectionalHint
How the element should be positioned

* directionalHintFixed boolean
If true the position will not change sides in an attempt to fit the callout within bounds. It will
still attempt to align it to whatever bounds are given.

* directionalHintForRTL DirectionalHint
How the element should be positioned in RTL layouts. If not specified, a mirror of the
directionalHint alignment edge will be used instead. This means thatDirectionalHint.BottomLeft
will change to DirectionalHint.BottomRight but DirectionalHint.LeftAuto will not
change.

* doNotLayer boolean
If true do not render on a new layer. If false render on a new layer.

 finalHeight number
Specify the final height of the content. To be used when expanding the content dynamically
so that callout can adjust its position.

» gapSpace number
The gap between the Callout and the target

* hidden boolean
If specified, renders the Callout in a hidden state. Use this flag, rather than rendering a callout
conditionally based on visibility, to improve rendering performance when it becomes visible.
Note: When callout is hidden its content will not be rendered. It will only render once the
callout is visible.

* hideOverflow boolean
Manually set Overflow YHidden style prop to true on calloutMain element A variety of callout
load animations will need this to hide the scollbar that can appear

¢ isBeakVisible boolean
If true then the beak is visible. If false it will not be shown.

* layerProps ILayerProps
Optional props to pass to the Layer component hosting the panel.

¢ minPagePadding number
The minimum distance the callout will be away from the edge of the screen.

¢ onDismiss (ev?: any) => void
Callback when the Callout tries to close.

* onLayerMounted () => void
Optional callback when the layer content has mounted.

¢ onPositioned (positions?: ICalloutPositionedInfo) => void
Optional callback that is called once the callout has been correctly positioned.

* onRestoreFocus (options: { originalElement?: HTMLElement | Window; containsFocus: boolean; }) => v«
Called when the component is unmounting, and focus needs to be restored. Argument passed
down contains two variables, the element that the underlying popup believes focus should go
to * and whether or not the popup currently contains focus. If this is provided, focus will not
be restored automatically, you’ll need to call originalElement.focus()

e onScroll () => void
Callback when the Callout body is scrolled.

32 Callout

* preventDismissOnLostFocus boolean
If true then the callout will not dismiss when it loses focus

* preventDismissOnResize boolean
If true then the callout will not dismiss on resize

* preventDismissOnScroll boolean
If true then the callout will not dismiss on scroll

* role string
Aria role assigned to the callout (Eg. dialog, alertdialog).
+ setInitialFocus boolean
If true then the callout will attempt to focus the first focusable element that it contains. If it

doesn’t find an element, no focus will be set and the method will return false. This means that
it’s the contents responsibility to either set focus or have focusable items.

¢ shouldRestoreFocus boolean
If true, when this component is unmounted, focus will be restored to the element that had
focus when the component first mounted.

* shouldUpdateWhenHidden boolean
If true, the component will be updated even when hidden=true. Note that this would consume
resources to update even though nothing is being shown to the user. This might be helpful
though if your updates are small and you want the callout to be revealed fast to the user when
hidden is set to false.

» style React.CSSProperties
CSS style to apply to the callout.

If you set overflowY in this object, it provides a performance optimization by preventing Popup
(underlying component of Callout) from calculating whether it needs a scroll bar.
* styles IStyleFunctionOrObject<ICalloutContentStyleProps, ICalloutContentStyles>
Optional styles for the component.

* target Target
The target that the Callout should try to position itself based on. It can be either an Element
a querySelector string of a valid Element or a MouseEvent. If MouseEvent is given then the
origin point of the event will be used.

* theme ITheme
Optional theme for component

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:
* Don’t use a callout to ask for action confirmation; use a dialog instead.
* Place a callout near the object being described. At the pointer’s tail or head, if possible.

e Don’t use large, unformatted blocks of text in your callout. They’re difficult to read and
overwhelming.

Callout 33

* Don’t block important UI with the placement of your callout. It’s a poor user experience that
will lead to frustration.

* Don’t open a callout from within another callout.
* Don’t show callouts on hidden elements.

* Don’t overuse callouts. Too many callouts opening automatically can be perceived as inter-
rupting someone’s workflow.

* For a particularly complex concept that needs explanation, place an info icon (iconClassNames. info)
next to the concept to indicate there’s more helpful information available. When someone
hovers over or selects the icon, the callout should appear.

Content:

* Because the content inside of a callout isn’t always visible, don’t put required information in
a callout.

 Short sentences or sentence fragments are best.

* Don’t use obvious tip text or text that simply repeats what is already on the screen. Limit the
information inside of a callout to supplemental information.

* When additional context or a more advanced description is necessary, consider placing a link
to "Learn more" at the bottom of the callout. When clicked, open the additional content in a
new window or panel.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(ns(”toggleCallout”), text = "Toggle Callout”),
reactOutput(ns(”callout”))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
show <- reactiveVal(FALSE)
observeEvent (input$toggleCallout, show(!show()))
output$callout <- renderReact({
if (show()) {
Callout(
tags$div(
style = "margin: 10px",
"Callout contents”

b
D

34 Checkbox

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Checkbox Checkbox

Description

Check boxes (Checkbox) give people a way to select one or more items from a group, or switch
between two mutually exclusive options (checked or unchecked, on or off).

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
Checkbox(...)

Checkbox.shinyInput(inputld, ..., value = defaultValue)

updateCheckbox.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

e ariaDescribedBy string
ID for element that provides extended information for the checkbox.

e ariaLabel string
Accessible label for the checkbox.

e ariaLabelledBy string
ID for element that contains label information for the checkbox.

* ariaPositionInSet number
The position in the parent set (if in a set) for aria-posinset.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Checkbox

Checkbox 35

e ariaSetSize number
The total size of the parent set (if in a set) for aria-setsize.

¢ boxSide 'start' | 'end'
Allows you to set the checkbox to be at the before (start) or after (end) the label.

* checked boolean
Checked state. Mutually exclusive to "defaultChecked". Use this if you control the checked
state at a higher level and plan to pass in the correct value based on handling onChange events
and re-rendering.

e checkmarkIconProps IIconProps
Custom icon props for the check mark rendered by the checkbox

¢ className string
Additional class name to provide on the root element, in addition to the ms-Checkbox class.

¢ componentRef IRefObject<ICheckbox>
Optional callback to access the ICheckbox interface. Use this instead of ref for accessing the
public methods and properties of the component.

* defaultChecked boolean
Default checked state. Mutually exclusive to "checked". Use this if you want an uncontrolled
component, and want the Checkbox instance to maintain its own state.

* defaultIndeterminate boolean
Optional uncontrolled indeterminate visual state for checkbox. Setting indeterminate state
takes visual precedence over checked or defaultChecked props given but does not affect
checked state. This is not a toggleable state. On load the checkbox will receive indetermi-
nate visual state and after the user’s first click it will be removed exposing the true state of the
checkbox.

¢ disabled boolean
Disabled state of the checkbox.

* indeterminate boolean
Optional controlled indeterminate visual state for checkbox. Setting indeterminate state takes
visual precedence over checked or defaultChecked props given but does not affect checked
state. This should not be a toggleable state. On load the checkbox will receive indeterminate
visual state and after the first user click it should be removed by your supplied onChange
callback function exposing the true state of the checkbox.

* inputProps React.ButtonHTMLAttributes<HTMLElement | HTMLButtonElement>
Optional input props that will be mixed into the input element, before other props are ap-
plied. This allows you to extend the input element with additional attributes, such as data-
automation-id needed for automation. Note that if you provide, for example, "disabled" as
well as "inputProps.disabled”, the former will take precedence over the later.

* KeytipProps IKeytipProps
Optional keytip for this checkbox

¢ label string
Label to display next to the checkbox.

¢ onChange (ev?: React.FormEvent<HTMLElement | HTMLInputElement>, checked?: boolean) => void
Callback that is called when the checked value has changed.

¢ onRenderLabel IRenderFunction<ICheckboxProps>
Custom render function for the label.

36 Checkbox

o styles IStyleFunctionOrObject<ICheckboxStyleProps, ICheckboxStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by HOC.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

 Use a single check box when there’s only one selection to make or choice to confirm. Select-
ing a blank check box selects it. Selecting it again clears the check box.

* Use multiple check boxes when one or more options can be selected from a group. Unlike
radio buttons, selecting one check box will not clear another check box.

Content:

* Separate two groups of check boxes with headings rather than positioning them one after the
other.

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

* Don’t use end punctuation (unless the check box label absolutely requires multiple sen-
tences).

¢ Use a sentence fragment for the label, rather than a full sentence.

* Make it easy for people to understand what will happen if they select or clear a check box.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
Checkbox.shinyInput(ns(”checkbox"), value = FALSE),
textOutput (ns("checkboxValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$checkboxValue <- renderText({
sprintf("Value: %s”, input$checkbox)
»
b))
3

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

ChoiceGroup 37

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

ChoiceGroup ChoiceGroup

Description

Radio buttons (ChoiceGroup) let people select a single option from two or more choices.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ChoiceGroup(...)
ChoiceGroup.shinyInput(inputld, ..., value = defaultValue)

updateChoiceGroup.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

¢ componentRef IRefObject<IChoiceGroupOption>
Optional callback to access the IChoiceGroup interface. Use this instead of ref for accessing
the public methods and properties of the component.

* focused boolean
Indicates if the ChoiceGroupOption should appear focused, visually

* name string
This value is used to group each ChoiceGroupOption into the same logical ChoiceGroup

e onBlur (ev: React.FocusEvent<HTMLElement>, props?: IChoiceGroupOption) => void
A callback for receiving a notification when the choice has lost focus.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ChoiceGroup

38 ChoiceGroup

* onChange (evt?: React.FormEvent<HTMLElement | HTMLInputElement>, props?: IChoiceGroupOption) =>
A callback for receiving a notification when the choice has been changed.

¢ onFocus (ev?: React.FocusEvent<HTMLElement | HTMLInputElement>, props?: IChoiceGroupOption) => vo
A callback for receiving a notification when the choice has received focus.

* required boolean
If true, it specifies that an option must be selected in the ChoiceGroup before submitting the
form

* theme ITheme
Theme (provided through customization.)

e ariaLabelledBy string
ID of an element to use as the aria label for this ChoiceGroup.

* componentRef IRefObject<IChoiceGroup>
Optional callback to access the IChoiceGroup interface. Use this instead of ref for accessing
the public methods and properties of the component.

¢ defaultSelectedKey string | number
The key of the option that will be initially checked.

e label string
Descriptive label for the choice group.

¢ onChange (ev?: React.FormEvent<HTMLElement | HTMLInputElement>, option?: IChoiceGroupOption) =>
A callback for receiving a notification when the choice has been changed.

¢ onChanged (option: IChoiceGroupOption, evt?: React.FormEvent<HTMLElement | HTMLInputElement>) =>
Deprecated and will be removed by 07/17/2017. Use onChange instead.

e options IChoiceGroupOption[]
The options for the choice group.

* selectedKey string | number
The key of the selected option. If you provide this, you must maintain selection state by
observing onChange events and passing a new value in when changed.

o styles IStyleFunctionOrObject<IChoiceGroupStyleProps, IChoiceGroupStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization).

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:
» Use radio buttons when there are two to seven options, you have enough screen space, and
the options are important enough to be a good use of that screen space.
e If there are more than seven options, use a drop-down menu instead.
 To give people a way to select more than one option, use check boxes instead.

ChoiceGroup 39

e If a default option is recommended for most people in most situations, use a drop-down menu
instead.

 Align radio buttons vertically instead of horizontally, if possible. Horizontal alignment is
harder to read and localize. If there are only two mutually exclusive options, combine them
into a single check box or toggle. For example, use a check box for "I agree" statements
instead of radio buttons for "I agree" and "I disagree".

Content:

* List the options in a logical order, such as most likely to be selected to least, simplest op-
eration to most complex, or least risk to most. Listing options in alphabetical order isn’t
recommended because the order will change when the text is localized.

* Select the safest (to prevent loss of data or system access), most secure, and most private
option as the default. If safety and security aren’t factors, select the most likely or convenient
option.

* Use a phrase for the label, rather than a full sentence.

* Make sure to give people the option to not make a choice. For example, include a "None"
option.

Examples

library(shiny)
library(shiny.fluent)

options <- list(
list(key = "A", text = "Option A"),
list(key = "B", text = "Option B"),
list(key = "C", text = "Option C")
)

ui <- function(id) {
ns <- NS(id)
div(
ChoiceGroup.shinyInput(ns(”choice”), value = "B"”, options = options),
textOutput(ns(”groupValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$groupValue <- renderText({
sprintf("Value: %s", input$choice)
»
i)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

40 Coachmark

Coachmark Coachmark

Description
Coach marks (Coachmark) are used to draw a person’s attention to parts of the UI and increase en-
gagement with those elements. A teaching bubble appears on hover or selection of the coach mark.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
Coachmark(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e ariaAlertText string
Text to announce to screen reader / narrator when Coachmark is displayed

* ariaDescribedBy string
Defines the element id referencing the element containing the description for the Coachmark.

» ariaDescribedByText string
Defines the text content for the ariaDescribedBy element

e ariaLabelledBy string
Defines the element id referencing the element containing label text for Coachmark.

e arialLabelledByText string
Defines the text content for the arialL.abelledBy element

¢ beaconColorOne string
Beacon color one.

¢ beaconColorTwo string
Beacon color two.

¢ beakHeight number
The height of the Beak component.

* beakWidth number
The width of the Beak component.

¢ className string
If provided, additional class name to provide on the root element.

* collapsed boolean
The starting collapsed state for the Coachmark. Use isCollapsed instead.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Coachmark

Coachmark 41

e color string
Color of the Coachmark/TeachingBubble.

* componentRef IRefObject<ICoachmark>
Optional callback to access the ICoachmark interface. Use this instead of ref for accessing the
public methods and properties of the component.

* delayBeforeCoachmarkAnimation number
Delay in milliseconds before Coachmark animation appears.

¢ delayBeforeMouseOpen number
Delay before allowing mouse movements to open the Coachmark.

* height number
The height of the Coachmark.

* isCollapsed boolean
The starting collapsed state for the Coachmark.

* isPositionForced boolean
Whether or not to force the Coachmark/TeachingBubble content to fit within the window
bounds.

¢ mouseProximityOffset number
The distance in pixels the mouse is located before opening up the Coachmark.

¢ onAnimationOpenEnd () => void
Callback when the opening animation completes.

¢ onAnimationOpenStart () => void
Callback when the opening animation begins.

¢ onDismiss (ev?: any) => void
Callback when the Coachmark tries to close.

¢ onMouseMove (e: MouseEvent) => void
Callback to run when the mouse moves.

e persistentBeak boolean
If true then the Coachmark beak (arrow pointing towards target) will always be visible as long
as Coachmark is visible

* positioningContainerProps IPositioningContainerProps
Props to pass to the PositioningContainer component. Specify the directionalHint to indi-
cate on which edge the Coachmark/TeachingBubble should be positioned.

* preventDismissOnLostFocus boolean
If true then the Coachmark will not dismiss when it loses focus

¢ preventFocusOnMount boolean
If true then focus will not be set to the Coachmark when it mounts. Useful in cases where
focus on coachmark is causing other components in page to dismiss upon losing focus.

» styles IStyleFunctionOrObject<ICoachmarkStyleProps, ICoachmarkStyles>
Call to provide customized styling that will layer on top of the variant rules

e target HTMLElement | string | null
The target that the Coachmark should try to position itself based on.

¢ teachingBubbleRef ITeachingBubble
Ref for TeachingBubble

42

Coachmark

theme ITheme
Theme provided by higher order component.

width number
The width of the Coachmark.

ariaDescribedBy string
Defines the element id referencing the element containing the description for the positioning-
Container.

arialLabel string
Accessible label text for positioningContainer.

ariaLabelledBy string
Defines the element id referencing the element containing label text for positioningContainer.

backgroundColor string
The background color of the positioningContainer in hex format ie. #ffffff.

bounds IRectangle
The bounding rectangle for which the contextual menu can appear in.

className string
CSS class to apply to the positioningContainer.

componentRef IRefObject<IPositioningContainer>
All props for your component are to be defined here.

coverTarget boolean
If true the position returned will have the menu element cover the target. If false then it will
position next to the target;

directionalHint DirectionalHint

How the element should be positioned

directionalHintFixed boolean

If true the position will not change sides in an attempt to fit the positioningContainer within
bounds. It will still attempt to align it to whatever bounds are given.

directionalHintForRTL DirectionalHint

How the element should be positioned in RTL layouts. If not specified, a mirror of directionalHint

will be used instead

doNotLayer boolean
If true do not render on a new layer. If false render on a new layer.

finalHeight number
Specify the final height of the content. To be used when expanding the content dynamically
so that positioningContainer can adjust its position.

minPagePadding number
The minimum distance the positioningContainer will be away from the edge of the screen.

offsetFromTarget number

The gap between the positioningContainer and the target
onDismiss (ev?: any) => void

Callback when the positioningContainer tries to close.

onLayerMounted () => void
Optional callback when the layer content has mounted.

Coachmark 43

Value

onPositioned (positions?: IPositionedData) => void
Optional callback that is called once the positioningContainer has been correctly positioned.

positioningContainerMaxHeight number
Set max height of positioningContainer When not set the positioningContainer will expand
with contents up to the bottom of the screen

positioningContainerWidth number
Custom width for positioningContainer including borders. If value is 0, no width is applied.

preventDismissOnScroll boolean
If true then the onClose will not not dismiss on scroll

role string
Aria role assigned to the positioningContainer (Eg. dialog, alertdialog).

setInitialFocus boolean

If true then the positioningContainer will attempt to focus the first focusable element that it
contains. If it doesn’t find an element, no focus will be set and the method will return false.
This means that it’s the contents responsibility to either set focus or have focusable items.

target HTMLElement | string | MouseEvent | Point | null

The target that the positioningContainer should try to position itself based on. It can be ei-
ther an HTMLElement a querySelector string of a valid HTMLElement or a MouseEvent. If
MouseEvent is given then the origin point of the event will be used.

targetPoint Point
Point used to position the positioningContainer. Deprecated, use target instead.

useTargetPoint boolean
If true use a point rather than rectangle to position the positioningContainer. For example it
can be used to position based on a click.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

Only one coach mark and teaching bubble combo should be displayed at a time.

Coach marks can be standalone or sequential. Sequential coach marks should be used spar-
ingly to walk through complex multistep interactions. It’s recommended that a sequence
of coach marks doesn’t exceed three steps.

Coach marks are designed to only hold teaching bubbles.
Coach mark size, color, and animation shouldn’t be altered.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns

<= NS(id)

44 ColorPicker

taglist(
uiOutput(ns(”coachmark”)),
DefaultButton.shinyInput(ns(”toggleCoachmark"),
id = "target”, text = "Toggle coachmark”
)
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns
coachmarkVisible <- reactiveVal(FALSE)
observeEvent (input$toggleCoachmark, coachmarkVisible(!coachmarkVisible()))
observeEvent (input$hideCoachmark, coachmarkVisible(FALSE))
output$coachmark <- renderUI({
if (coachmarkVisible()) Coachmark(
target = "#target"”,
TeachingBubbleContent(
hasCloseButton = TRUE,
onDismiss = triggerEvent(ns("hideCoachmark")),
headline = "Example title”,
primaryButtonProps = list(text = "Try it"),
secondaryButtonProps = list(text = "Try it again”),
"Welcome to the land of coachmarks!”
)
)
»
b))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

ColorPicker ColorPicker

Description

The color picker (ColorPicker) is used to browse through and select colors. By default, it lets
people navigate through colors on a color spectrum; or specify a color in either Red-Green-Blue
(RGB); or alpha color code; or Hexadecimal textboxes.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ColorPicker(...)

https://developer.microsoft.com/en-us/fluentui#/controls/web/ColorPicker

ColorPicker 45

ColorPicker.shinyInput(inputId, ..., value = defaultValue)

updateColorPicker.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

» alphal.abel string
Label for the alpha textfield.

 alphaSliderHidden boolean
Whether to hide the alpha (or transparency) slider and text field.

» alphaType 'alpha' | 'transparency' | 'none'
alpha (the default) means display a slider and text field for editing alpha values. transparency
also displays a slider and text field but for editing transparency values. none hides these con-
trols.

Alpha represents the opacity of the color, whereas transparency represents the transparentness of
the color: i.e. a 30% transparent color has 70% opaqueness.

e blueLabel string
Label for the blue text field.

* className string
Additional CSS class(es) to apply to the ColorPicker.

e color IColor | string
Object or CSS-compatible string to describe the color.

e componentRef IRefObject<IColorPicker>
Gets the component ref.

* greenlLabel string
Label for the green text field.

¢ hexLabel string
Label for the hex text field.

e onChange (ev: React.SyntheticEvent<HTMLElement>, color: IColor) => void
Callback for when the user changes the color. (Not called when the color is changed via
props.)

46

ColorPicker

redLabel string
Label for the red text field.

showPreview boolean
Whether to show color preview box.

strings IColorPickerStrings
Labels for elements within the ColorPicker. Defaults are provided in English only.

styles IStyleFunctionOrObject<IColorPickerStyleProps, IColorPickerStyles>
Call to provide customized styling that will layer on top of the variant rules.

theme ITheme
Theme (provided through customization).

ariaDescription string
Detailed description for how to use the color rectangle. Moving the thumb horizontally adjusts
saturation and moving it vertically adjusts value (essentially, brightness).

arialLabel string
Label of the ColorRectangle for the benefit of screen reader users.

ariaValueFormat string

Format string for the color rectangle’s current value as read by screen readers. The string must
include descriptions and two placeholders for the current values: {0} for saturation and {1}
for value/brightness.

className string
Additional CSS class(es) to apply to the ColorRectangle.

color IColor
Current color of the rectangle.

componentRef IRefObject<IColorRectangle>
Gets the component ref.

minSize number
Minimum width and height.

onChange (ev: React.MouseEvent | React.KeyboardEvent, color: IColor) => void
Callback for when the color changes.

styles IStyleFunctionOrObject<IColorRectangleStyleProps, IColorRectangleStyles>

Call to provide customized styling that will layer on top of the variant rules.

theme ITheme
Theme (provided through customization).

arial.abel string
Label of the ColorSlider for the benefit of screen reader users.

className string
Additional CSS class(es) to apply to the ColorSlider.

componentRef IRefObject<IColorSlider>
Gets the component ref.

isAlpha boolean
If true, the slider represents an alpha slider and will display a gray checkered pattern in the
background. Otherwise, the slider represents a hue slider.

ColorPicker 47

¢ maxValue number
Maximum value of the slider.

¢ minValue number
Minimum value of the slider.

* onChange (event: React.MouseEvent | React.KeyboardEvent, newValue?: number) => void
Callback issued when the value changes.

* overlayColor string
Hex color to use when rendering an alpha or transparency slider’s overlay, without the #.

* overlayStyle React.CSSProperties
Custom style for the overlay element.

o styles IStyleFunctionOrObject<IColorSliderStyleProps, IColorSliderStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization).

¢ thumbColor string
CSS-compatible string for the color of the thumb element.

* type 'hue' | 'alpha' | 'transparency'’
Type of slider to display.

e value number
Current value of the slider.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
ColorPicker.shinyInput(ns(”color”), value = "#0@0FFQ1"),
textOutput(ns(”colorValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$colorValue <- renderText({
sprintf(”Value: %s", input$color)
»
D)
}

if (interactive()) {

48 ComboBox

shinyApp(ui("app”), function(input, output) server("app"))
3

ComboBox ComboBox

Description

A combo box (ComboBox) combines a text field and a drop-down menu, giving people a way to
select an option from a list or enter their own choice.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
ComboBox(...)

VirtualizedComboBox(...)
ComboBox.shinyInput(inputId, ..., value = defaultValue)

updateComboBox.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

» allowFreeform boolean
Whether the ComboBox is free form, meaning that the user input is not bound to provided
options. Defaults to false.

¢ ariaDescribedBy string
Optional prop to add a string id that can be referenced inside the aria-describedby attribute

e autoComplete 'on' | 'off"’
Whether the ComboBox auto completes. As the user is inputing text, it will be suggested
potential matches from the list of options. If the combo box is expanded, this will also scroll
to the suggested option, and give it a selected style.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ComboBox

ComboBox 49

autofill TAutofillProps
The AutofillProps to be passed into the Autofill component inside combobox

buttonlconProps IIconProps
The IconProps to use for the button aspect of the combobox

caretDownButtonStyles Partial<IButtonStyles>
Styles for the caret down button.

comboBoxOptionStyles Partial<IComboBoxOptionStyles>
Default styles that should be applied to ComboBox options, in case an option does not come
with user-defined custom styles

componentRef IRefObject<IComboBox>
Optional callback to access the IComboBox interface. Use this instead of ref for accessing the
public methods and properties of the component.

dropdownMaxWidth number
Custom max width for dropdown

dropdownWidth number
Custom width for dropdown (unless useComboBoxAsMenuWidth is undefined or false)

getClassNames (theme: ITheme, isOpen: boolean, disabled: boolean, required: boolean, focused: bool
Custom function for providing the classNames for the ComboBox. Can be used to provide all
styles for the component instead of applying them on top of the default styles.

iconButtonProps IButtonProps
Optional iconButton props on combo box

isButtonAriaHidden boolean

Sets the ’aria-hidden’ attribute on the ComboBox’s button element instructing screen readers
how to handle the element. This element is hidden by default because all functionality is
handled by the input element and the arrow button is only meant to be decorative.

keytipProps IKeytipProps
Optional keytip for this combo box

multiSelectDelimiter string
When multiple items are selected, this will be used to separate values in the combobox input.

onChange (event: React.FormEvent<IComboBox>, option?: IComboBoxOption, index?: number, value?: s
Callback issued when either: 1) the selected option changes 2) a manually edited value is sub-

mitted. In this case there may not be a matched option if allowFreeform is also true (and hence

only value would be true, the other parameter would be null in this case)

onltemClick (event: React.FormEvent<IComboBox>, option?: IComboBoxOption, index?: number) => void
Callback issued when a ComboBox item is clicked.

onMenuDismiss () => void
Function that gets invoked before the menu gets dismissed

onMenuDismissed () => void
Function that gets invoked when the ComboBox menu is dismissed

onMenuOpen () => void
Function that gets invoked when the ComboBox menu is launched

onPendingValueChanged (option?: IComboBoxOption, index?: number, value?: string) => void
Callback issued when the user changes the pending value in ComboBox. This will be called

50

Value

ComboBox

any time the component is updated and there is a current pending value. Option, index, and
value will all be undefined if no change has taken place and the previously entered pending
value is still valid.

onRenderLabel IRenderFunction<IOnRenderComboBoxLabelProps>
Custom render function for the label text.

onRenderLowerContent IRenderFunction<IComboBoxProps>
Add additional content below the callout list.

onRenderUpperContent IRenderFunction<IComboBoxProps>
Add additional content above the callout list.

onResolveOptions (options: IComboBoxOption[]) => IComboBoxOption[] | PromiselLike<IComboBoxOption[

Callback issued when the options should be resolved, if they have been updated or if they need
to be passed in the first time

onScrollToltem (itemIndex: number) => void
Callback issued when the ComboBox requests the list to scroll to a specific element

options IComboBoxOption[]
Collection of options for this ComboBox

persistMenu boolean

Menu will not be created or destroyed when opened or closed, instead it will be hidden. This
will improve perf of the menu opening but could potentially impact overall perf by having
more elements in the dom. Should only be used when perf is important. Note: This may
increase the amount of time it takes for the comboBox itself to mount.

scrollSelectedToTop boolean
When options are scrollable the selected option is positioned at the top of the callout when it
is opened (unless it has reached the end of the scrollbar).

shouldRestoreFocus boolean

When specified, determines whether the callout (the menu which drops down) should restore
the focus after being dismissed or not. If false, then the menu will not try to set focus to
whichever element had focus before the menu was opened.

styles Partial<IComboBoxStyles>

Custom styles for this component

text string
Value to show in the input, does not have to map to a combobox option

theme ITheme
Theme provided by HOC.

useComboBoxAsMenuWidth boolean
Whether to use the ComboBoxes width as the menu’s width

multiselectAccessibleText string
Accessible text for label when combobox is multiselected.

props IComboBoxProps
Props to render the combobox.

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

CommandBar 51

Best practices

Layout:

* Use a combo box when there are multiple choices that can be collapsed under one title, when
the list of items is long, or when space is constrained.

Content:

* Use single words or shortened statements as options.

* Don’t use punctuation at the end of options.

Examples

library(shiny)
library(shiny.fluent)

options <- list(
list(key = "A", text = "Option A"),
list(key = "B", text = "Option B"),
list(key = "C", text = "Option C")

)
ui <- function(id) {
ns <- NS(id)
div(
ComboBox.shinyInput(ns(”"combo”), value = list(text = "some text"),
options = options, allowFreeform = TRUE
)’
textOutput(ns(”comboValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$comboValue <- renderText({
sprintf("Value: %s", input$combo$text)
»
D)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
3

CommandBar CommandBar

52 CommandBar

Description

CommandBar is a surface that houses commands that operate on the content of the window, panel,
or parent region it resides above. CommandBars are one of the most visible and recognizable
ways to surface commands, and can be an intuitive method for interacting with content on the
page; however, if overloaded or poorly organized, they can be difficult to use and hide valuable
commands from your user. CommandBars can also display a search box for finding content, hold
simple commands as well as menus, or display the status of ongoing actions.

Commands should be sorted in order of importance, from left-to-right or right-to-left depending on
the culture. Secondarily, organize commands in logical groupings for easier recall. CommandBars
work best when they display no more than 5-7 commands. This helps users quickly find your most
valuable features. If you need to show more commands, consider using the overflow menu. If you
need to render status or viewing controls, these go on the right side of the CommandBar (or left side
if in a left-to-right experience). Do not display more than 2-3 items on the right side as it will make
the overall CommandBar difficult to parse.

All command items should have an icon and a label. Commands can render as labels only as well. In

smaller widths, commands can just use icon only, but only for the most recognizable and frequently
used commands. All other commands should go into an overflow where text labels can be shown.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

CommandBar(...)

CommandBar.shinyInput(inputId, ..., itemValueGetter = function(el) el$key)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

inputId ID of the component. Value of the clicked CommandBarItem will be sent to this
ID.

itemValueGetter
A function that takes a CommandBarltem and returns a value to be sent to Shiny.
By default it returns key of the item.

Details

¢ buttonStyles IButtonStyles
Custom styles for individual button

* cacheKey string
A custom cache key to be used for this item. If cacheKey is changed, the cache will invalidate.
Defaults to key value.

¢ commandBarButtonAs IComponentAs<ICommandBarItemProps>
Method to override the render of the individual command bar button. Not used when item is
rendered in overflow.

https://developer.microsoft.com/en-us/fluentui#/controls/web/CommandBar

CommandBar 53

* iconOnly boolean
Show only an icon for this item, not text. Does not apply if item is in the overflow.

* renderedInOverflow boolean
Context under which the item is being rendered. This value is mutated by the CommandBar
and is useful for adjusting the onRender function.

* tooltipHostProps ITooltipHostProps
Props for the tooltip when in iconOnly mode.

e arialLabel string
Accessibility text to be read by the screen reader when the user’s focus enters the command
bar. The screen reader will read this text after reading information about the first focusable
item in the command bar.

¢ buttonAs IComponentAs<IButtonProps>
Custom component for the near and far item buttons. Not used for overflow menu items.

e className string
Additional css class to apply to the command bar

e componentRef IRefObject<ICommandBar>
Optional callback to access the ICommandBar interface. Use this instead of ref for accessing
the public methods and properties of the component.

¢ dataDidRender (renderedData: any) => void
Function to be called every time data is rendered. It provides the data that was actually ren-
dered. A use case would be adding telemetry when a particular control is shown in an overflow
or dropped as a result of onReduceData, or to count the number of renders that an implemen-
tation of onReduceData triggers.

e farltems ICommandBarItemProps[]
Items to render on the right side (or left, in RTL). ICommandBarltemProps extends IContex-
tualMenultem.

e items ICommandBarItemProps[]
Items to render. ICommandBarltemProps extends IContextualMenultem.

¢ onDataGrown (movedItem: ICommandBarItemProps) => void
Callback invoked when data has been grown.

¢ onDataReduced (movedItem: ICommandBarItemProps) => void
Callback invoked when data has been reduced.

¢ onGrowData (data: ICommandBarData) => ICommandBarData | undefined
Custom function to grow data if items are too small for the given space. Return undefined if
no more steps can be taken to avoid infinate loop.

¢ onReduceData (data: ICommandBarData) => ICommandBarData | undefined
Custom function to reduce data if items do not fit in given space. Return undefined if no
more steps can be taken to avoid infinate loop.

¢ overflowButtonAs IComponentAs<IButtonProps>
Custom component for the overflow button.

* overflowButtonProps IButtonProps
Props to be passed to overflow button. If menuProps are passed through this prop, any items
provided will be prepended to any computed overflow items.

54 CommandBar

e overflowltems ICommandBarItemProps[]
Default items to have in the overflow menu. ICommandBarltemProps extends IContextual-
Menultem.

shiftOnReduce boolean
When true, items will be ’shifted’ off the front of the array when reduced, and unshifted during
grow.

e styles IStyleFunctionOrObject<ICommandBarStyleProps, ICommandBarStyles>
Customized styling that will layer on top of the variant rules.

theme ITheme
Theme provided by HOC.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

items <- function(ns) {
list(
CommandBarItem(
key = ns("newItem"),
text = "New”,
cacheKey = "myCacheKey",
split = TRUE,
iconProps = list(iconName = "Add"),
subMenuProps = list(
items = list(
CommandBarItem(
key = ns("emailMessage"),
text = "Email message”,
iconProps = list(iconName = "Mail”)
),
CommandBarItem(
key = ns("calendarEvent"),
text = "Calendar event”,
iconProps = list(iconName = "Calendar")

)
)
),
CommandBarItem(
key = ns("upload”),
text = "Upload”,
iconProps = list(iconName = "Upload")
),
CommandBarItem(
key = ns("share"),
text = "Share”,

CommandBar 55

iconProps = list(iconName = "Share")

),

CommandBarItem(
key = ns("download"),
text = "Download”,
iconProps = list(iconName = "Download")

)

)
3

farItems <- function(ns) {
list(
CommandBarItem(
key = ns("tile"),
text = "Grid view”,
ariaLabel = "Grid view",
iconOnly = TRUE,
iconProps = list(iconName = "Tiles")
),
CommandBarItem(
key = ns("info"),
text = "Info”,
ariaLabel = "Info",
iconOnly = TRUE,
iconProps = list(iconName = "Info")
)
)
}

ui <- function(id) {
ns <- NS(id)
taglist(
CommandBar (
items = items(ns),
farItems = farItems(ns)
),
textOutput(ns(”commandBarItems")),
CommandBar . shinyInput(
inputId = ns("commandBar"),
items = items(identity),
farItems = farItems(identity)
),
textOutput(ns(”commandBar"))

server <- function(id) {
moduleServer(id, function(input, output, session) {
commandBarItemClicked <- reactiveVal()
observeEvent (input$newItem, commandBarItemClicked("newItem clicked (explicitly observed)"))
observeEvent (input$upload, commandBarItemClicked("upload clicked (explicitly observed)"))
output$commandBarItems <- renderText(commandBarItemClicked())
output$commandBar <- renderText(input$commandBar)

56 CommandBarltem

»
}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

CommandBarItem Command bar item

Description

Helper function for constructing items for CommandBar and CommandBar.shinyInput.

Usage

CommandBarItem(
key,
text,
onClick = setInputValue(inputld = key, value = @, event = TRUE),

)
Arguments
key Key of the item.
text Text to be displayed on the menu.
onClick AJS function that runs on item click. By default it sends input value to input[[key]].
If used within CommandBar . shinyInput, it will send the value to the input ID
specified in inputId argument of CommandBar.shinyInput.
Additional props to pass to CommandBarltem.
Value

Item suitable for use in the CommandBar and CommandBar. shinyInput.

See Also

CommandBar

CompactPeoplePicker 57

CompactPeoplePicker PeoplePicker

Description

The people picker (PeoplePicker) is used to select one or more entities, such as people or groups, from
a list. It makes composing an email to someone, or adding them to a group, easy if you don’t know
their full name or email address.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
CompactPeoplePicker(...)
NormalPeoplePicker(...)
NormalPeoplePicker.shinyInput(inputld, ..., value = defaultValue)

updateNormalPeoplePicker.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

* styles IStyleFunctionOrObject<IPeoplePickerItemSelectedStyleProps, IPeoplePickerItemSelectedStyli
Call to provide customized styling that will layer on top of the variant rules.

¢ ValidationState ValidationState

¢ className string
Additional CSS class(es) to apply to the PeoplePickerltem root element.

e theme ITheme
Theme provided by High-Order Component.

https://developer.microsoft.com/en-us/fluentui#/controls/web/PeoplePicker

58 CompactPeoplePicker

e compact boolean
Flag that controls whether each suggested PeoplePicker item (Persona) is rendered with or
without secondary text for compact look.

* personaProps IPersonaProps
Persona props for each suggested for picking PeoplePicker item.

* styles IStyleFunctionOrObject<IPeoplePickerItemSuggestionStyleProps, IPeoplePickerItemSuggestion!
Call to provide customized styling that will layer on top of the variant rules.

* suggestionsProps IBasePickerSuggestionsProps
General common props for all PeoplePicker items suggestions.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

 Use the people picker to add someone to the To line of an email, or to add someone to a list.
* Use the MemberList PeoplePicker to display selections below the input field.

Examples

library(shiny)
library(shiny.fluent)

assetsUrl <- "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/"
malePersonalrl <- paste@(assetsUrl, "persona-male.png")
femalePersonalrl <- paste@(assetsUrl, "persona-female.png")

people <- tibble::tibble(

key = c(1, 2, 3, 4, 5, 6, 7),

imageUrl = c(
femalePersonalrl,
malePersonaUlrl,
malePersonaUlrl,
malePersonalrl,
malePersonaUlrl,
femalePersonalrl,
malePersonalrl

),

imagelnitials = c("PV", "AR", "AL", "RK", "CB", "VL", "MS"),

text = c(
"Annie Lindqvist”,
"Aaron Reid”,
"Alex Lundberg”,
"Roko Kolar"”,
"Christian Bergqvist”,
"Valentina Lovric”,
"Maor Sharett”

CompactPeoplePicker

),

secondaryText = c(
"Designer”,
"Designer”,
"Software Developer”,
"Financial Analyst”,
"Sr. Designer”,
"Design Developer”,
"UX Designer”

),

tertiaryText = c(
"In a meeting”,

"In a meeting”,
"In a meeting”,
"In a meeting”,
"In a meeting”,
"In a meeting”,
"In a meeting”

),

optionalText = c(
"Available at 4:00pm",
"Available at 4:00pm",
"Available at 4:00pm",
"Available at 4:00pm",
"Available at 4:00pm",
"Available at 4:00pm",
"Available at 4:00pm"

))

isValid = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE),
presence = c(2, 6, 4, 1, 2, 2, 3),

canExpand = c(NA, NA, NA, NA, NA, NA, NA)

ui <- function(id) {
ns <- NS(id)
taglist(
textOutput(ns(”selectedPeople”)),
NormalPeoplePicker.shinyInput(
ns("selectedPeople”),
options = people,
pickerSuggestionsProps = list(
suggestionsHeaderText = 'Matching people’,
mostRecentlyUsedHeaderText = 'Sales reps',
noResultsFoundText = 'No results found',
showRemoveButtons = TRUE

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$selectedPeople <- renderText({

59

60 ContextualMenu
if (length(input$selectedPeople) == 0) {
"Select recipients below:"
} else {
selectedPeople <- dplyr::filter(people, key %in% input$selectedPeople)
paste("You have selected:”, paste(selectedPeople$text, collapse=", "))
}
»
1))
3
if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
}
ContextualMenu ContextualMenu
Description

ContextualMenus are lists of commands that are based on the context of selection, mouse hover or
keyboard focus. They are one of the most effective and highly used command surfaces, and can be
used in a variety of places.

There are variants that originate from a command bar, or from cursor or focus. Those that come
from CommandBars use a beak that is horizontally centered on the button. Ones that come from
right click and menu button do not have a beak, but appear to the right and below the cursor.
ContextualMenus can have submenus from commands, show selection checks, and icons.

Organize commands in groups divided by rules. This helps users remember command locations, or
find less used commands based on proximity to others. One should also group sets of mutually ex-
clusive or multiple selectable options. Use icons sparingly, for high value commands, and don’t mix
icons with selection checks, as it makes parsing commands difficult. Avoid submenus of submenus
as they can be difficult to invoke or remember.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ContextualMenu(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ContextualMenu

ContextualMenu 61

Details
e className string
Additional css class to apply to the ContextualMenultem

e classNames IMenuItemClassNames
Classnames for different aspects of a menu item

¢ componentRef IRefObject<IContextualMenuRenderItem>
Optional callback to access the IContextualMenuRenderItem interface. Use this instead of ref
for accessing the public methods and properties of the component.

¢ dismissMenu (ev?: any, dismissAll?: boolean) => void
This prop will get set by ContextualMenu and can be called to close the menu this item belongs
to. If dismissAll is true, all menus will be closed.

¢ dismissSubMenu () => void
This prop will get set by ContextualMenu and can be called to close this item’s subMenu, if
present.

e getSubmenuTarget () => HTMLElement | undefined
This prop will get set by the wrapping component and will return the element that wraps this
ContextualMenultem. Used for openSubMenu.

¢ haslcons boolean | undefined
If this item has icons

e index number
Index of the item

e item IContextualMenultem
The item to display

¢ onCheckmarkClick (item: IContextualMenultem, ev: React.MouseEvent<HTMLElement>) => void
Click handler for the checkmark

¢ openSubMenu (item: any, target: HTMLElement) => void
This prop will get set by ContextualMenu and can be called to open this item’s subMenu, if
present.

* styles IStyleFunctionOrObject<IContextualMenuItemStyleProps, IContextualMenuItemStyles>
Call to provide customized styling that will layer on top of the variant rules.

e theme ITheme
Theme provided by High-Order Component.
¢ focusableElementIndex number
¢ hasCheckmarks boolean
¢ haslcons boolean

¢ index number

¢ totalltemCount number

62

ContextualMenu

defaultMenultemRenderer (item: IContextualMenultemRenderProps) => React.ReactNode

hasCheckmarks boolean

hasIcons boolean

items IContextualMenuItem[]

role string

totalltemCount number

alignTargetEdge boolean
If true the positioning logic will prefer to flip edges rather than to nudge the rectangle to fit
within bounds, thus making sure the element aligns perfectly with target’s alignment edge

ariaLabel string
Accessible label for the ContextualMenu’s root element (inside the callout).

beakWidth number
The width of the beak.

bounds IRectangle | ((target?: Target, targetWindow?: Window) => IRectangle | undefined)
The bounding rectangle (or callback that returns a rectangle) which the contextual menu can
appear in.

calloutProps ICalloutProps
Additional custom props for the Callout.

className string
Additional CSS class to apply to the ContextualMenu.

componentRef IRefObject<IContextualMenu>
Optional callback to access the IContextualMenu interface. Use this instead of ref for access-
ing the public methods and properties of the component.

contextualMenultemAs React.ComponentClass<IContextualMenultemProps> | React.FunctionComponent<I

Custom component to use for rendering individual menu items.

coverTarget boolean
If true, the menu will be positioned to cover the target. If false, it will be positioned next to
the target.

delayUpdateFocusOnHover boolean
If true, the contextual menu will not be updated until focus enters the menu via other means.
This will only result in different behavior when shouldFocusOnMount = false.

directionalHint DirectionalHint
How the menu should be positioned

directionalHintFixed boolean
If true the position will not change sides in an attempt to fit the ContextualMenu within
bounds. It will still attempt to align it to whatever bounds are given.

ContextualMenu 63

¢ directionalHintForRTL DirectionalHint
How the menu should be positioned in RTL layouts. If not specified, a mirror of directionalHint
will be used.

* doNotLayer boolean
If true do not render on a new layer. If false render on a new layer.

¢ focusZoneProps IFocusZoneProps
Props to pass down to the FocusZone. NOTE: the default FocusZoneDirection will be used
unless a direction is specified in the focusZoneProps (even if other focusZoneProps are de-
fined)

* gapSpace number
The gap between the ContextualMenu and the target

» getMenuClassNames (theme: ITheme, className?: string) => IContextualMenuClassNames
Method to provide the classnames to style the contextual menu.

¢ hidden boolean
If true, renders the ContextualMenu in a hidden state. Use this flag, rather than rendering a
ContextualMenu conditionally based on visibility, to improve rendering performance when it
becomes visible. Note: When ContextualMenu is hidden its content will not be rendered. It
will only render once the ContextualMenu is visible.

e id string
ID for the ContextualMenu’s root element (inside the callout). Should be used for aria-owns
and other such uses, rather than direct reference for programmatic purposes.

* isBeakVisible boolean
If true then the beak is visible. If false it will not be shown.

¢ isSubMenu boolean
Whether this menu is a submenu of another menu.

e items IContextualMenuItem[]
Menu items to display.

¢ labelElementld string
Used as aria-labelledby for the menu element inside the callout.

e onDismiss (ev?: React.MouseEvent | React.KeyboardEvent, dismissAll?: boolean) => void
Callback when the ContextualMenu tries to close. If dismissAll is true then all submenus
will be dismissed.

¢ onltemClick (ev?: React.MouseEvent<HTMLElement> | React.KeyboardEvent<HTMLElement>, item?: IConte
Click handler which is invoked if onClick is not passed for individual contextual menu item.
Returning true will dismiss the menu even if ev.preventDefault() was called.

¢ onMenuDismissed (contextualMenu?: IContextualMenuProps) => void
Callback for when the menu is being closed (removing from the DOM).

¢ onMenuOpened (contextualMenu?: IContextualMenuProps) => void
Callback for when the menu has been opened.

¢ onRenderMenuList IRenderFunction<IContextualMenulListProps>
Method to override the render of the list of menu items.

¢ onRenderSubMenu IRenderFunction<IContextualMenuProps>
Custom render function for a submenu.

64 ContextualMenu

¢ onRestoreFocus (options: { originalElement?: HTMLElement | Window; containsFocus: boolean; }) => v
Called when the component is unmounting, and focus needs to be restored. Argument passed
down contains two variables, the element that the underlying popup believes focus should go
to and whether or not the popup currently contains focus. If this prop is provided, focus will
not be restored automatically, you’ll need to call originalElement.focus()

* shouldFocusOnContainer boolean
Whether to focus on the contextual menu container (as opposed to the first menu item).

¢ shouldFocusOnMount boolean
Whether to focus on the menu when mounted.

¢ shouldUpdateWhenHidden boolean
If true, the menu will be updated even when hidden=true. Note that this will consume
resources to update even when nothing is being shown to the user. This might be helpful if
your updates are small and you want the menu to display quickly when hidden is set to false.

* styles IStyleFunctionOrObject<IContextualMenuStyleProps, IContextualMenuStyles>
Call to provide customized styling that will layer on top of the variant rules.

¢ subMenuHoverDelay number
Delay (in milliseconds) to wait before expanding / dismissing a submenu on mouseEnter or
mouseLeave

* target Target
The target that the ContextualMenu should try to position itself based on. It can be either an el-
ement, a query selector string resolving to a valid element, or a MouseEvent. If a MouseEvent
is given, the origin point of the event will be used.

* theme ITheme
Theme provided by higher-order component.

e title string
Title to be displayed at the top of the menu, above the items.

useTargetAsMinWidth boolean
If true the context menu will have a minimum width equal to the width of the target element

useTargetWidth boolean
If true the context menu will render as the same width as the target element

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(
ns("toggleContextualMenu"),
id = "target",
text = "Toggle menu”

ContextualMenu

),
reactOutput(ns(”contextualMenu”))
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns

showContextualMenu <- reactiveVal(FALSE)
observeEvent (input$toggleContextualMenu, {
showContextualMenu(!showContextualMenu())

byl

output$contextualMenu <- renderReact ({
menultems <- JS("[
{
key: 'newltem',
text: 'New',
onClick: () => console.log('New clicked'),
i
{
key: 'divider_1',
itemType: 1,
3
{
key: 'rename',
text: 'Rename',
onClick: () => console.log('Rename clicked'),
i
{
key: 'edit',
text: 'Edit',
onClick: () => console.log('Edit clicked'),
i
{
key: 'properties',
text: 'Properties',
onClick: () => console.log('Properties clicked'),
1
{
key: 'linkNoTarget',
text: 'Link same window',
href: 'http://bing.com’',
3,
{
key: 'linkWithTarget',
text: 'Link new window',
href: 'http://bing.com’',
target: '_blank',
3,
{
key: 'linkWithOnClick',

65

66 DatePicker

name: 'Link click',

href: 'http://bing.com',

onClick: function(){
alert('Link clicked');
ev.preventDefault();

}7
target: '_blank',

3
{
key: 'disabled',
text: 'Disabled item',
disabled: true,
onClick: () => console.error('Disabled item should not be clickable.'),
3
1)
ContextualMenu(
items = menultems,
hidden = !showContextualMenu(),

target = "#target"”,
onItemClick = JS(pasted(
"function() {",

" Shiny.setInputValue('", ns("toggleContextualMenu”), "', Math.random());",
"y
),
onDismiss = JS(paste@(
"function() {",
" Shiny.setInputValue('", ns("toggleContextualMenu"), "', Math.random());",
"y
D))
)
»
b))

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

DatePicker DatePicker

Description

Picking a date can be tough without context. A date picker (DatePicker) offers a drop-down control
that’s optimized for picking a single date from a calendar view where contextual information like
the day of the week or fullness of the calendar is important. You can modify the calendar to provide
additional context or to limit available dates.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

https://developer.microsoft.com/en-us/fluentui#/controls/web/DatePicker

DatePicker 67
Usage

DatePicker(...)

DatePicker.shinyInput(inputId, ..., value = defaultValue)

updateDatePicker.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

¢ allFocusable boolean
Allows all elements to be focused, including disabled ones

* allowTextInput boolean
Whether the DatePicker allows input a date string directly or not

e ariaLabel string
Aria Label for TextField of the DatePicker for screen reader users.

¢ borderless boolean
Determines if DatePicker has a border.

¢ calendarAs IComponentAs<ICalendarProps>
Custom Calendar to be used for date picking

* calendarProps ICalendarProps
Pass calendar props to calendar component

e calloutProps ICalloutProps
Pass callout props to callout component

* className string
Optional Classname for datepicker root element .

¢ componentRef IRefObject<IDatePicker>
Optional callback to access the IDatePicker interface. Use this instead of ref for accessing the
public methods and properties of the component.

* dateTimeFormatter ICalendarFormatDateCallbacks
Apply additional formating to dates, for example localized date formatting.

* disableAutoFocus boolean
Whether the DatePicker should open automatically when the control is focused

68

DatePicker

disabled boolean
Disabled state of the DatePicker.

firstDayOfWeek DayOfWeek
The first day of the week for your locale.

firstWeekOfYear FirstWeekOfYear
Defines when the first week of the year should start, FirstWeekOf Year.FirstDay, FirstWeekO-
fYear.FirstFullWeek or FirstWeekOf Year.FirstFourDayWeek are the possible values

formatDate (date?: Date) => string
Optional method to format the chosen date to a string to display in the DatePicker

highlightCurrentMonth boolean
Whether the month picker should highlight the current month

highlightSelectedMonth boolean
Whether the month picker should highlight the selected month

initialPickerDate Date
The initially highlighted date in the calendar picker

isMonthPicker Visible boolean
Whether the month picker is shown beside the day picker or hidden.

isRequired boolean
Whether the DatePicker is a required field or not

label string
Label for the DatePicker

maxDate Date
The maximum allowable date.

minDate Date
The minimum allowable date.

onAfterMenuDismiss () => void
Callback that runs after DatePicker’s menu (Calendar) is closed

onSelectDate (date: Date | null | undefined) => void
Callback issued when a date is selected

parseDateFromString (dateStr: string) => Date | null
Optional method to parse the text input value to date, it is only useful when allowTextInput is
set to true

pickerAriaLabel string
Aria label for date picker popup for screen reader users.

placeholder string
Placeholder text for the DatePicker

showCloseButton boolean
Whether the CalendarDay close button should be shown or not.

showGoToToday boolean
Whether the "Go to today" link should be shown or not

showMonthPickerAsOverlay boolean
Show month picker on top of date picker when visible.

DatePicker 69

¢ showWeekNumbers boolean
Whether the calendar should show the week number (weeks 1 to 53) before each week row

e strings IDatePickerStrings
Localized strings to use in the DatePicker

* styles IStyleFunctionOrObject<IDatePickerStyleProps, IDatePickerStyles>
Call to provide customized styling that will layer on top of the variant rules.

* tabIndex number
The tabIndex of the TextField

e textField ITextFieldProps
Pass textField props to textField component. Prop name is "textField" for compatiblity with
upcoming slots work.

* theme ITheme
Theme provided by High-Order Component.

* today Date
Value of today. If null, current time in client machine will be used.

¢ underlined boolean
Whether or not the Textfield of the DatePicker is underlined.

* value Date
Default value of the DatePicker, if any

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:
* Use the control the way it’s designed and built. Don’t break it apart.

Content:

* The control provides the date in a specific format. If the date can be entered in an input field,
provide helper text in the appropriate format.

Examples

Example 1
library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DatePicker.shinyInput(ns(”date”), value = "2020-06-25T22:00:00.000Z"),
textOutput(ns("dateValue")),
h3("If ‘value‘ is missing, default to system date"),
DatePicker.shinyInput(ns("date2")),

70

DatePicker

textOutput(ns("dateDefault”)),
h3("If ‘value‘ is NULL, return NULL"),
DatePicker.shinyInput(ns("date3”), value = NULL, placeholder = "I am placeholder!"),
textOutput(ns("dateNull"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$dateValue <- renderText({
sprintf("Value: %s”, input$date)
»
output$dateDefault <- renderText({
sprintf("Value: %s", input$date2)
»
output$dateNull <- renderText({
sprintf("Value: %s", deparse(input$date3))
»
»
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Example 2
library(shiny)
library(shiny.fluent)

Supplying custom strings for DatePicker
ui <- function(id) {
fluentPage(
DatePicker.shinyInput(
"date",
value = Sys.Date(),
strings = list(
months = list(

"January", "February", "March”, "April”,
"May”, "June”, "July”, "August”,
"September”, "October"”, "November", "December"

)Y

shortMonths = list(
IIJ'anII’ IIFeblI’ lIMarII, VIAprII’ IIMayII’ IVJ'unlI’
"Jul”, "Aug”, "Sep”, "Oct”, "Nov", "Dec”

)?

days = list(
"Sunday”, "Monday"”, "Tuesday”, "Wednesday”,
"Thursday”, "Friday", "Saturday”

)’

shortDays = list("s", "M", "T", "w", "T", "F", "S"),
goToToday = "Go to today”,

prevMonthArialabel = "Go to previous month"”,
nextMonthArialLabel = "Go to next month"”,

DetailsList 71

prevYearArialLabel = "Go to previous year",
nextYearArialLabel = "Go to next year”

)
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

DetailslList DetailsList

Description

A details list (DetailsList) is a robust way to display an information-rich collection of items, and
allow people to sort, group, and filter the content. Use a details list when information density is
critical.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

DetailsList(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e onColumnDragEnd (props: { dropLocation?: ColumnDragEndLocation; }, event: MouseEvent) => void
Callback to notify the column dragEnd event to List Need this to check whether the dragEnd
has happened on corresponding list or outside of the list

cellStyleProps ICellStyleProps
Custom styles for cell rendering.

e column IColumn
The column definition for the component instance.

* columnIndex number
The column index for the component instance.

https://developer.microsoft.com/en-us/fluentui#/controls/web/DetailsList

72

DetailsList

componentRef () => void
A reference to the component instance.

dragDropHelper IDragDropHelper | null
The drag and drop helper for the component instance.

isDraggable boolean
Whether or not the column can be re-ordered via drag and drop.

isDropped boolean
Whether or not the column has been dropped via drag and drop.

onColumnClick (ev: React.MouseEvent<HTMLElement>, column: IColumn) => void
Callback fired when click event occurs.

onColumnContextMenu (column: IColumn, ev: React.MouseEvent<HTMLElement>) => void
Callback fired on contextual menu event to provide contextual menu UL

onRenderColumnHeaderTooltip IRenderFunction<IDetailsColumnRenderTooltipProps>
Render function for providing a column header tooltip.

parentld string
Parent ID used for accessibility label(s).

setDraggedItemIndex (itemIndex: number) => void

styles IStyleFunctionOrObject<IDetailsColumnStyleProps, IDetailsColumnStyles>
The component styles to respect during render.

theme ITheme
The theme object to respect during render.

updateDragInfo (props: { itemIndex: number; 3}, event?: MouseEvent) => void
Callback on drag and drop event.

useFastIcons boolean
Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

columns IColumn[]
Column metadata

selection ISelection
Selection from utilities

selectionMode SelectionMode
Selection mode

onRenderFooter IRenderFunction<IDetailsGroupDividerProps>
onRenderHeader IRenderFunction<IDetailsGroupDividerProps>

arialabel string
arialLabel for the entire header

ariaLabelForSelectAllCheckbox string
arialLabel for the header checkbox that selects or deselects everything

ariaLabelForSelectionColumn string
arialLabel for the selection column

DetailsList 73

« arialabelForToggleAllGroupsButton string
ariaLabel for expand/collapse group button

¢ className string
Overriding class name

¢ collapseAllVisibility CollapseAllVisibility
Whether to collapse for all visibility

e columnReorderOptions IColumnReorderOptions
Column reordering options

* columnReorderProps IColumnReorderHeaderProps
Column reordering options

* componentRef IRefObject<IDetailsHeader>
Ref to the component itself

* isAllCollapsed boolean
Whether or not all is collapsed

* layoutMode DetailslListlLayoutMode
Layout mode - fixedColumns or justified

¢ minimumPixelsForDrag number
Minimum pixels to be moved before dragging is registered

¢ onColumnAutoResized (column: IColumn, columnIndex: number) => void
Callback for when column is automatically resized

e onColumnClick (ev: React.MouseEvent<HTMLElement>, column: IColumn) => void
Callback for when the column is clicked

¢ onColumnContextMenu (column: IColumn, ev: React.MouseEvent<HTMLElement>) => void
Callback for when the column needs to show a context menu

¢ onColumnlIsSizingChanged (column: IColumn, isSizing: boolean) => void
Callback for when column sizing has changed

¢ onColumnResized (column: IColumn, newWidth: number, columnIndex: number) => void
Callback for when column is resized

* onRenderColumnHeaderTooltip IRenderFunction<IDetailsColumnRenderTooltipProps>
Callback to render a tooltip for the column header

¢ onRenderDetailsCheckbox IRenderFunction<IDetailsCheckboxProps>
If provided, can be used to render a custom checkbox

* onToggleCollapseAll (isAllCollapsed: boolean) => void
Callback for when collapse all is toggled

* selectAllVisibility SelectAllVisibility
Select all button visibility

» styles IStyleFunctionOrObject<IDetailsHeaderStyleProps, IDetailsHeaderStyles>
Call to provide customized styling that will layer on top of the variant rules.

e theme ITheme
Theme from the Higher Order Component

» useFastlcons boolean

Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

DetailsList

columns IColumn[]
Column metadata

selection ISelection
Selection from utilities

selectionMode SelectionMode
Selection mode

cellStyleProps ICellStyleProps
Rules for rendering column cells.

checkboxVisibility CheckboxVisibility | undefined
Checkbox visibility

columns IColumn[]
Column metadata

groupNestingDepth number
Nesting depth of a grouping
indentWidth number | undefined
How much to indent

rowWidth number
Minimum width of the row.

selection ISelection | undefined
Selection from utilities

selectionMode SelectionMode | undefined
Selection mode

viewport IViewport | undefined
View port of the virtualized list

arial.abel string
Accessible label describing or summarizing the list.

ariaLabelForGrid string
Accessible label for the grid within the list.

ariaL.abelForListHeader string
Accessible label for the list header.

ariaLabelForSelectAllCheckbox string
Accessible label for the select all checkbox.

ariaLabelForSelectionColumn string
Accessible label for the name of the selection column.

cellStyleProps ICellStyleProps

Props impacting the render style of cells. Since these have an impact on calculated column
widths, they are handled separately from normal theme styling, but they are passed to the
styling system.

checkboxCellClassName string

Class name to add to the cell of a checkbox.

checkboxVisibility CheckboxVisibility
Controls the visibility of selection check box.

DetailsList 75

checkButtonArial.abel string
Accessible label for the check button.

className string
Class name to add to the root element.

columnReorderOptions IColumnReorderOptions
Options for column reordering using drag and drop.

columns IColumn[]
column defitions. If none are provided, default columns will be created based on the items’
properties.

compact boolean
Whether to render in compact mode.

componentRef IRefObject<IDetailslList>
Callback to access the IDetailsList interface. Use this instead of ref for accessing the public
methods and properties of the component.

constrainMode ConstrainMode
Controls how the list contrains overflow.

disableSelectionZone boolean
Whether to disable the built-in SelectionZone, so the host component can provide its own.

dragDropEvents IDragDropEvents
Map of callback functions related to row drag and drop functionality.

enableUpdateAnimations boolean
Whether to animate updates

enterModalSelectionOnTouch boolean
Whether the selection zone should enter modal state on touch.

getCellValueKey (item?: any, index?: number, column?: IColumn) => string
If provided, will be the "default" item column cell value return. A column’s getValueKey can
override getCellValueKey.

getGroupHeight IGroupedListProps['getGroupHeight']
Callback to override default group height calculation used by list virtualization.

getKey (item: any, index?: number) => string
Callback to get the item key, to be used in the selection and on render. Must be provided if
sorting or filtering is enabled.

getRowAriaDescribedBy (item: any) => string
Callback to get the aria-describedby IDs (space-separated strings) of elements that describe
the item.

getRowArial.abel (item: any) => string
Callback to get the aria-label string for a given item.

groupProps IDetailsGroupRenderProps
Override properties to render groups.

groups IGroup[]
Grouping instructions.

indentWidth number
Override for the indent width used for group nesting.

76

DetailsList

initialFocusedIndex number
Default index to set focus to once the items have rendered and the index exists.

isHeaderVisible boolean
Controls the visibility of the header.

isPlaceholderData boolean
Set this to true to indicate that the items being displayed are placeholder data.

items any[]
The items to render.

layoutMode DetailslListlLayoutMode
Controls how the columns are adjusted.

listProps IListProps
Properties to pass through to the List components being rendered.

minimumPixelsForDrag number
The minimum mouse move distance to interpret the action as drag event.

onActiveltemChanged (item?: any, index?: number, ev?: React.FocusEvent<HTMLElement>) => void
Callback for when an item in the list becomes active by clicking anywhere inside the row or
navigating to it with the keyboard.

onColumnHeaderClick (ev?: React.MouseEvent<HTMLElement>, column?: IColumn) => void
Callback for when the user clicks on the column header.

onColumnHeaderContextMenu (column?: IColumn, ev?: React.MouseEvent<HTMLElement>) => void
Callback for when the user asks for a contextual menu (usually via right click) from a column
header.

onColumnResize (column?: IColumn, newWidth?: number, columnIndex?: number) => void
Callback fired on column resize

onDidUpdate (detailsList?: DetailsListBase) => void
Callback for when the list has been updated. Useful for telemetry tracking externally.

onltemContextMenu (item?: any, index?: number, ev?: Event) => void | boolean
Callback for when the context menu of an item has been accessed. If undefined or false is
returned, ev.preventDefault () will be called.

onltemInvoked (item?: any, index?: number, ev?: Event) => void
Callback for when a given row has been invoked (by pressing enter while it is selected.)

onRenderCheckbox IRenderFunction<IDetailslListCheckboxProps>
If provided, can be used to render a custom checkbox.

onRenderDetailsFooter IRenderFunction<IDetailsFooterProps>
An override to render the details footer.

onRenderDetailsHeader IRenderFunction<IDetailsHeaderProps>
An override to render the details header.

onRenderltemColumn (item?: any, index?: number, column?: IColumn) => React.ReactNode
If provided, will be the "default" item column renderer method. This affects cells within the

rows, not the rows themselves. If a column definition provides its own onRender method, that

will be used instead of this.

onRenderMissingltem (index?: number, rowProps?: IDetailsRowProps) => React.ReactNode
Callback for what to render when the item is missing.

DetailsList 77

onRenderRow IRenderFunction<IDetailsRowProps>
Callback to override the default row rendering.

onRowDidMount (item?: any, index?: number) => void
Callback for when a given row has been mounted. Useful for identifying when a row has been
rendered on the page.

onRowWillUnmount (item?: any, index?: number) => void
Callback for when a given row has been unmounted. Useful for identifying when a row has
been removed from the page.

onShouldVirtualize (props: IListProps) => boolean
Callback to determine whether the list should be rendered in full, or virtualized.

Virtualization will add and remove pages of items as the user scrolls them into the visible range.
This benefits larger list scenarios by reducing the DOM on the screen, but can negatively affect
performance for smaller lists.

The default implementation will virtualize when this callback is not provided.

rowElementEventMap { eventName: string; callback: (context: IDragDropContext, event?:

Event names and corresponding callbacks that will be registered to rendered row elements.

selection ISelection
Selection model to track selection state.

selectionMode SelectionMode
Controls how/if the details list manages selection. Options include none, single, multiple

selectionPreservedOnEmptyClick boolean
By default, selection is cleared when clicking on an empty (non-focusable) section of the
screen. Setting this value to true overrides that behavior and maintains selection.

selectionZoneProps ISelectionZoneProps
Additional props to pass through to the SelectionZone created by default.

setKey string
A key that uniquely identifies the given items. If provided, the selection will be reset when the
key changes.

shouldApplyApplicationRole boolean
Whether the role application should be applied to the list.

styles IStyleFunctionOrObject<IDetailslListStyleProps, IDetailslListStyles>
Custom overrides to the themed or default styles.

theme ITheme
Theme provided by a higher-order component.

useFastlcons boolean
Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

usePageCache boolean
Whether to enable render page caching. This is an experimental performance optimization
that is off by default.

useReducedRowRenderer boolean
Whether to re-render a row only when props changed. Might cause regression when depending
on external updates.

any) => vo

78

DetailsList

viewport IViewport

Viewport info, provided by the withViewport decorator.

cellsByColumn { [columnKey: string]: React.ReactNode; }

Optional pre-rendered content per column. Preferred over onRender or onRenderltemColumn
if provided.

checkboxCellClassName string

Class name for the checkbox cell

checkButtonArialabel string
Check button’s aria label

className string

Overriding class name

collapseAllVisibility CollapseAllVisibility
Collapse all visibility

compact boolean

Whether to render in compact mode
componentRef IRefObject<IDetailsRow>
Ref of the component

dragDropEvents IDragDropEvents

Handling drag and drop events

dragDropHelper IDragDropHelper
Helper for the drag and drop

enableUpdateAnimations boolean
Whether to animate updates

eventsToRegister { eventName: string; callback: (item?: any, index?: number, event?: any) => void; }
A list of events to register

getRowAriaDescribedBy (item: any) => string

Callback for getting the row aria-describedby

getRowArialabel (item: any) => string
Callback for getting the row aria label

item any
Data source for this component

itemIndex number
Index of the collection of items of the DetailsList

onDidMount (row?: DetailsRowBase) => void
Callback for did mount for parent

onRenderCheck (props: IDetailsRowCheckProps) => JSX.Element
Callback for rendering a checkbox

onRenderDetailsCheckbox IRenderFunction<IDetailsCheckboxProps>
If provided, can be used to render a custom checkbox

onWillUnmount (row?: DetailsRowBase) => void
Callback for will mount for parent

rowFieldsAs React.ComponentType<IDetailsRowFieldsProps>
DOM element into which to render row field

DetailsList 79

o styles IStyleFunctionOrObject<IDetailsRowStyleProps, IDetailsRowStyles>
Overriding styles to this row

* theme ITheme
Theme provided by styled() function

¢ useFastlcons boolean
Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

* useReducedRowRenderer boolean
Rerender DetailsRow only when props changed. Might cause regression when depending on
external updates.

» anySelected boolean
Is any selected - also true for isSelectionModal

e canSelect boolean
Can this checkbox be selectable

¢ checkClassName string
The classname to be passed down to Check component

* className string
Optional className to attach to the slider root element.

* compact boolean
Is this in compact mode?

* isHeader boolean
Is the check part of the header in a DetailsList

¢ isVisible boolean
Whether or not this checkbox is visible

¢ onRenderDetailsCheckbox IRenderFunction<IDetailsCheckboxProps>
If provided, can be used to render a custom checkbox

¢ selected boolean
Whether or not this check is selected

» styles IStyleFunctionOrObject<IDetailsRowCheckStyleProps, IDetailsRowCheckStyles>
Style override

* theme ITheme
Theme provided by High-Order Component.

* useFastlcons boolean
Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

o cellStyleProps ICellStyleProps
Style properties to customize cell render output.

e columns IColumn[]
Columns metadata

¢ columnStartIndex number
Index to start for the column

* compact boolean
whether to render as a compact field

80

DetailsList
enableUpdateAnimations boolean

item any
Data source for this component

itemIndex number
The item index of the collection for the DetailsList

rowClassNames { [k in keyof Pick<IDetailsRowStyles, 'isMultiline' | 'isRowHeader' | 'cell' | 'cell
Subset of classnames currently generated in DetailsRow that are used within DetailsRow-
Fields.

columns IColumn[]
Column metadata

selection ISelection
Selection from utilities

selectionMode SelectionMode
Selection mode

ariaLabelForShimmer string
Aria label for shimmer. Set on grid while shimmer is enabled.

detailsListStyles IDetailslListProps['styles']
DetailsList styles to pass through.

enableShimmer boolean
Boolean flag to control when to render placeholders vs real items. It’s up to the consumer app
to know when fetching of the data is done to toggle this prop.

onRenderCustomPlaceholder (rowProps: IDetailsRowProps, index?: number, defaultRender?: (props: II
Custom placeholder renderer to be used when in need to override the default placeholder of a

DetailsRow. rowProps argument is passed to leverage the calculated column measurements

done by DetailsList or you can use the optional arguments of item index and defaultRender

to execute additional logic before rendering the default placeholder.

removeFadingOverlay boolean
Determines whether to remove a fading out to bottom overlay over the shimmering items used
to further emphasize the unknown number of items that will be fetched.

shimmerLines number
Number of shimmer placeholder lines to render.

shimmerQOverlayStyles IStyleFunctionOrObject<IShimmeredDetailsListStyleProps, IShimmeredDetailsL:
Custom styles to override the styles specific to the ShimmeredDetailsList root area.

styles IStyleFunctionOrObject<IShimmeredDetailsListStyleProps, IShimmeredDetailsListStyles>
Custom styles to override the styles specific to the ShimmeredDetailsList root area.

skipViewportMeasures boolean
Whether or not to use ResizeObserver (if available) to detect and measure viewport on ‘resize’
events.

Falls back to window ’resize’ event.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

DetailsList 81

Best practices

Layout:

* List items are composed of selection, icon, and name columns at minimum. You can include
other columns, such as date modified, or any other metadata field associated with the collec-
tion.

* Avoid using file type icon overlays to denote status of a file as it can make the entire icon
unclear.

* If there are multiple lines of text in a column, consider the variable row height variant.
* Give columns ample default width to display information.

Content:

» Use sentence-style capitalization for column headers—only capitalize the first word. For
more info, see [Capitalization] in the Microsoft Writing Style Guide.

[capitalization]: https://docs.microsoft.com/style-guide/capitalization

FAQ:

My scrollable content isn’t updating on scroll. What should I do?:

Add the data-is-scrollable="true" attribute to your scrollable element containing the De-
tailsList.

By default, the List used within DetailsList will use the body element as the scrollable element.
If you contain the List within a scrollable div using overflow: auto or scroll, the List needs
to listen for scroll events on that element instead. On initialization, the List will traverse up
the DOM looking for the first element with the data-is-scrollable attribute to know which
element to listen to for knowing when to re-evaulate the visible window.

My List is not re-rendering when I mutate its items. What should I do?:

To determine if the List within DetailsList should re-render its contents, the component per-
forms a referential equality check within its shouldComponentUpdate method. This is done to
minimize the performance overhead associated with re-rendering the virtualized List pages, as
recommended by the React documentation.

As a result of this implementation, the inner List will not determine it should re-render if the
array values are mutated. To avoid this problem, we recommend re-creating the items array
backing the DetailsList by using a method such as Array.prototype.concat or ES6 spread
syntax shown below:

public appendItems(): void {
const { items } = this.state;

this.setState({
items: [...items, ...['Foo', 'Bar']l]
»
}

public render(): JSX.Element {
const { items } = this.state;

return <DetailslList items={items} />;

}

https://reactjs.org/docs/optimizing-performance.html#the-power-of-not-mutating-data

DetailsList

By re-creating the items array without mutating the values, the inner List will correctly deter-
mine its contents have changed and it should then re-render with the new values.

Examples

Example 1
library(shiny)
library(shiny.fluent)

items <- list(

list(key = "1", name = "Mark"”, surname = "Swanson"),
list(key = "2", name = "Josh”, surname = "Johnson")
)
columns <- list(
list(key = "name"”, fieldName = "name”, name = "Name"),
list(key = "surname"”, fieldName = "surname", name = "Surname")

)

ui <- function(id) {
ns <- NS(id)
DetailsList(items = items, columns = columns)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Example 2
library(shiny)
library(shiny.fluent)

Custom columns text alignment and formatting
items <- list(

list(
key = "1",
name = "Mark",
number = "2"

),

list(
key = "2",
name = "Josh",
number = "1"

)

)

columns <- list(
list(

DetailsList

key = "name”,
fieldName = "name",
name = "Name”

),

list(
key = "number”,
fieldName = "number”,
name = "Number"

)

ui <- function(id) {
DetailsList(
items = items,
columns = columns,
onRenderItemColumn = JS("(item, index, column) => {
const fieldContent = item[column.fieldName]
switch (column.key) {
case 'name':
return React.createElement(

'span',
{
style: { textAlign: 'right', width: '100%', display:
}’
fieldContent

)5
case 'number':
return React.createElement(

"span’,
{
style: { textAlign: 'left', width: '100%', display:
b
‘%${fieldContent}*
);
default:
return React.createElement('span', null, fieldContent);
}
i)
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Example 3
library(shiny)
library(shiny.fluent)

'block' }

'block' }

83

84 DetailsList

Selecting rows in DetailslList
CustomComponents <- tags$script(HTML(" (function() {
const React = jsmodule['react'];
const Fluent = jsmodule['@fluentui/react'];
const Shiny = jsmodule['@/shiny'];
const CustomComponents = jsmodule['CustomComponents'] ??= {};

function useSelection(inputId) {
const selection = React.useRef(new Fluent.Selection({
onSelectionChanged() {
const value = this.getSelectedIndices().map(i => i + 1); // R uses 1-based indexing.
Shiny.setInputValue(inputIld, value);

3
)
return selection.current;
3
CustomComponents.DetailsList = function DetailsList({ inputld, ...rest }) {
const selection = useSelection(inputId);
return React.createElement(Fluent.DetailsList, { selection, ...rest });
}
»NO"N
DetailsList.shinyInput <- function(inputld, ...) {
shiny.react::reactElement(
module = "CustomComponents”,
name = "DetailslList”,
props = shiny.react::asProps(inputld = inputld, ...),
deps = shinyFluentDependency()
)
3

items <- list(
list(name = "Apple"),
list(name = "Banana"),
list(name = "Cherry")

)

ui <- function(id) {
ns <- NS(id)
taglist(
CustomComponents,
DetailsList.shinyInput(ns(”selection”), items = items),
textOutput(ns("text"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$text <- renderText(paste(input$selection, collapse = ", "))
b))
3

Dialog 85

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Dialog Dialog

Description

A dialog box (Dialog) is a temporary pop-up that takes focus from the page or app and requires
people to interact with it. It’s primarily used for confirming actions, such as deleting a file, or asking
people to make a choice.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
Dialog(...)

DialogFooter(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ className string
Optional override class name

¢ closeButtonArial.abel string
Label to be passed to to aria-label of close button

¢ componentRef IRefObject<IDialogContent>
Optional callback to access the IDialogContent interface. Use this instead of ref for accessing
the public methods and properties of the component.

* draggableHeaderClassName string
The classname for when the header is draggable

¢ isMultiline boolean
Is inside a multiline wrapper

¢ onDismiss (ev?: React.MouseEvent<HTMLButtonElement>) => any
Callback for when the Dialog is dismissed from the close button or light dismiss, before the
animation completes.

¢ responsiveMode ResponsiveMode
Responsive mode passed in from decorator.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Dialog

86

Dialog

showCloseButton boolean

Show an ’x’ close button in the upper-right corner

styles IStyleFunctionOrObject<IDialogContentStyleProps, IDialogContentStyles>
Call to provide customized styling that will layer on top of the variant rules

subText string

The subtext to display in the dialog

subTextld string
The 1d for subText container

theme ITheme

Theme provided by HOC.

title string | JSX.Element

The title text to display at the top of the dialog.

titleld string

The Id for title container

titleProps React.HTMLAttributes<HTMLDivElement>
The props for title container.

topButtonsProps IButtonProps[]

Other top buttons that will show up next to the close button
type DialogType

The type of Dialog to display.

className string

Optional override class name

componentRef IRefObject<IDialogFooter>

Gets the component ref.

styles IStyleFunctionOrObject<IDialogFooterStyleProps, IDialogFooterStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

ariaDescribedByld string
Optional id for aria-DescribedBy

ariaLabelledByld string
Optional id for aria-LabelledBy

className string
Optional class name to be added to the root class

componentRef IRefObject<IDialog>
Optional callback to access the IDialog interface. Use this instead of ref for accessing the
public methods and properties of the component.

containerClassName string
Optional override for container class

contentClassName string
Optional override content class

dialogContentProps IDialogContentProps
Props to be passed through to Dialog Content

Dialog

Value

87

hidden boolean
Whether the dialog is hidden.

isBlocking boolean
Whether the dialog can be light dismissed by clicking outside the dialog (on the overlay).

isDarkOverlay boolean
Whether the overlay is dark themed.

isOpen boolean
Whether the dialog is displayed. Deprecated, use hidden instead.

maxWidth ICSSRule | ICSSPixelUnitRule
Sets the maximum width for the dialog. It limits the width property to be larger than the value
specified in max-width.

minWidth ICSSRule | ICSSPixelUnitRule
Sets the minimum width of the dialog. It limits the width property to be not smaller than the
value specified in min-width.

modalProps IModalProps
Props to be passed through to Modal

onDismiss (ev?: React.MouseEvent<HTMLButtonElement>) => any
A callback function for when the Dialog is dismissed from the close button or light dismiss.
Can also be specified separately in content and modal.

onDismissed () => any
A callback function which is called after the Dialog is dismissed and the animation is com-
plete.

onLayerDidMount () => void
A callback function for when the Dialog content is mounted on the overlay layer

onLayerMounted () => void
Deprecated at 0.81.2, use onLayerDidMount instead.

styles IStyleFunctionOrObject<IDialogStyleProps, IDialogStyles>
Call to provide customized styling that will layer on top of the variant rules

subText string
The subtext to display in the dialog.

theme ITheme
Theme provided by HOC.

title string | JSX.Element
The title text to display at the top of the dialog.

topButtonsProps IButtonProps[]
Other top buttons that will show up next to the close button

type DialogType
The type of Dialog to display.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

88 Dialog

Best practices

Layout:

e Don’t use more than three buttons.
» Dialog boxes consist of a header, body, and footer.

 Validate that people’s entries are acceptable before closing the dialog box. Show an inline
validation error near the field they must correct.

* Blocking dialogs should be used very sparingly, only when it is critical that people make
a choice or provide information before they can proceed. Blocking dialogs are generally
used for irreversible or potentially destructive tasks. They’re typically paired with an overlay
without a light dismiss.

Header:
* Locks to the top of the dialog.
¢ May include an icon to the left of the title.
¢ Includes a Close button in the top-right corner.

Footer:
* Lock buttons to the bottom of the dialog.
* Includes one primary button. A secondary button is optional.

Width:
e Maximum is 340 pixels.
* Minimum is 288 pixels.

Height:
e Maximum is 340 pixels.
e Minimum is 172 pixels.

Content:
Title:

* Keep the title as concise as possible.
* Don’t use periods at the end of titles.

 This mandatory content should explain the main information in a clear, concise, and specific
statement or question. For example, “Delete this file?” instead of “Are you sure?”

¢ The title shouldn’t be a description of the body content. For example, don’t use “Error” as
a title. Instead, use an informative statement like “Your session ended.”

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capi-

talization in the Microsoft Writing Style Guide.
Body copy (Optional):

* Don’t restate the title in the body.

» Use ending punctuation on sentences.

* Use actionable language, with the most important information at the beginning.

» Use the optional body content area for additional info or instructions, if needed. Only in-
clude information needed to help people make a decision.

Button labels:

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

Dialog 89

* Write button labels that are specific responses to the main information in the title. The title
“Delete this file?” could have buttons labeled “Delete” and “Cancel”.

* Be concise. Limit labels to one or two words. Usually a single verb is best. Include a noun
if there is any room for interpretation about what the verb means. For example, “Delete” or
“Delete file”.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(ns(”showDialog"”), text = "Open dialog"),
reactOutput(ns(”"reactDialog"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns

isDialogOpen <- reactiveVal(FALSE)
output$reactDialog <- renderReact({
dialogContentProps <- list(
type = 0,
title = "Missing Subject”,
closeButtonAriaLabel = "Close”,
subText = "Do you want to send this message without a subject?”
)
Dialog(
hidden = !isDialogOpen(),
onDismiss = JS(paste@(
"function() {",
" Shiny.setInputValue('"”, ns("hideDialog"),"”', Math.random());",
"y
),
dialogContentProps = dialogContentProps,
modalProps = list(),
DialogFooter(
PrimaryButton.shinyInput(ns(”dialogSend”), text = "Send"),
DefaultButton.shinyInput(ns(”dialogDontSend”), text = "Don't send")
)
)
»

observeEvent (input$showDialog, isDialogOpen(TRUE))

observeEvent (input$hideDialog, isDialogOpen(FALSE))

observeEvent (input$dialogSend, isDialogOpen(FALSE))

observeEvent (input$dialogDontSend, isDialogOpen(FALSE))
D)

90 DocumentCard

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

DocumentCard DocumentCard

Description

A document card (DocumentCard) represents a file, and contains additional metadata or actions.
This offers people a richer view into a file than the typical grid view.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

DocumentCard(...)
DocumentCardActions(...)
DocumentCardActivity(...)
DocumentCardDetails(...)
DocumentCardImage(...)
DocumentCardLocation(...)
DocumentCardLogo(...)
DocumentCardPreview(...)
DocumentCardStatus(...)

DocumentCardTitle(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/DocumentCard

DocumentCard 91

Details
e actions IButtonProps[]
The actions available for this document.

e className string
Optional override class name

e componentRef IRefObject<IDocumentCardActions>
Gets the component ref.

* styles IStyleFunctionOrObject<IDocumentCardActionsStyleProps, IDocumentCardActionsStyles>
Call to provide customized styling that will layer on top of the variant rules

* theme ITheme
Theme provided by HOC.

e views Number
The number of views this document has received.
* activity string
Describes the activity that has taken place, such as "Created Feb 23, 2016".

* className string
Optional override class name

* componentRef IRefObject<IDocumentCardActivity>
Gets the component ref.

* people IDocumentCardActivityPerson[]
One or more people who are involved in this activity.

* styles IStyleFunctionOrObject<IDocumentCardActivityStyleProps, IDocumentCardActivityStyles>
Call to provide customized styling that will layer on top of the variant rules

* theme ITheme
Theme provided by HOC.

* className string
Optional override class name

* componentRef IRefObject<IDocumentCardDetails>
Gets the component ref.

» styles IStyleFunctionOrObject<IDocumentCardDetailsStyleProps, IDocumentCardDetailsStyles>
Call to provide customized styling that will layer on top of the variant rules

¢ theme ITheme
Theme provided by HOC.

e className string
Optional override class name

¢ componentRef IRefObject<IDocumentCardImage>
Gets the component ref.

* height number
If provided, forces the preview image to be this height.

e iconProps IIconProps
The props for the icon associated with this document type.

92

DocumentCard

imageFit ImageFit

Used to determine how to size the image to fit the dimensions of the component. If both
dimensions are provided, then the image is fit using ImageFit.scale, otherwise ImageFit.none
is used.

imageSrc string
Path to the preview image.

styles IStyleFunctionOrObject<IDocumentCardImageStyleProps, IDocumentCardImageStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

width number
If provided, forces the preview image to be this width.

ariaLabel string
Aria label for the link to the document location.

className string
Optional override class name

componentRef IRefObject<IDocumentCardLocation>
Gets the component ref.

location string
Text for the location of the document.

locationHref string
URL to navigate to for this location.

onClick (ev?: React.MouseEvent<HTMLElement>) => void
Function to call when the location is clicked.

styles IStyleFunctionOrObject<IDocumentCardLocationStyleProps, IDocumentCardLocationStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

className string
Optional override class name

componentRef IRefObject<IDocumentCardLogo>
Gets the component ref.

logoIcon string
Describes DocumentCard Logo badge.

logoName string
Describe Logo name, optional.

styles IStyleFunctionOrObject<IDocumentCardLogoStyleProps, IDocumentCardLogoStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

className string
Optional override class name

DocumentCard 93

componentRef IRefObject<IDocumentCardPreview>
Gets the component ref.

getOverflowDocumentCountText (overflowCount: number) => string
The function return string that will describe the number of overflow documents. such as
(overflowCount: number) =\> +${ overflowCount } more,

previewlmages IDocumentCardPreviewImagel]
One or more preview images to display.

styles IStyleFunctionOrObject<IDocumentCardPreviewStyleProps, IDocumentCardPreviewStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

accentColor string
Hex color value of the line below the card, which should correspond to the document type.
This should only be supplied when using the ’compact’ card layout.

Deprecated at v4.17.1, to be removed at \>= v5.0.0.

children React.ReactNode
Child components to render within the card.

className string
Optional override class name

componentRef IRefObject<IDocumentCard>
Optional callback to access the IDocumentCard interface. Use this instead of ref for accessing
the public methods and properties of the component.

onClick (ev?: React.SyntheticEvent<HTMLElement>) => void
Function to call when the card is clicked or keyboard Enter/Space is pushed.

onClickHref string
A URL to navigate to when the card is clicked. If a function has also been provided, it will be
used instead of the URL.

onClickTarget string
A target browser context for opening the link. If not specified, will open in the same tab/window.

role string
Aria role assigned to the documentCard (Eg. button, link). Use this to override the default
assignment.

styles IStyleFunctionOrObject<IDocumentCardStyleProps, IDocumentCardStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

type DocumentCardType
The type of DocumentCard to display.

className string
Optional override class name

componentRef IRefObject<IDocumentCardStatus>
Gets the component ref.

94

Value

DocumentCard

status string
Describe status information. Required field.

statuslcon string
Describes DocumentCard status icon.

styles IStyleFunctionOrObject<IDocumentCardStatusStyleProps, IDocumentCardStatusStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

className string
Optional override class name

componentRef IRefObject<IDocumentCardTitle>
Gets the component ref.

shouldTruncate boolean
Whether we truncate the title to fit within the box. May have a performance impact.

showAsSecondaryTitle boolean
Whether show as title as secondary title style such as smaller font and lighter color.

styles IStyleFunctionOrObject<IDocumentCardTitleStyleProps, IDocumentCardTitleStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

title string

Title text. If the card represents more than one document, this should be the title of one
document and a "+X" string. For example, a collection of four documents would have a string
of "Document.docx +3".

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

* Use this control to represent Office documents or other files in aggregate views, such as when
you’re showing someone’s most trending document.

* Incorporate metadata that is relevant and useful in this particular view. A card can be special-
ized to be about the document’s latest changes, or about the document’s popularity, as you
see fit.

* Use a document card when you’re illustrating an event that encompasses multiple files. For
example, a card can be configured to represent a single upload action when adding more than
one file.

* Don’t use a document card in views where someone is likely to be performing bulk operations
in files, or when the list may get very long. Specifically, if you're showing all the items inside
an actual folder, a card may be overkill because the majority of the items in the folder may
not have interesting metadata.

DocumentCard 95

e Don’t use a document card if space is at a premium or you can’t show relevant and timely
commands or metadata. Cards are useful because they can expose on-item interactions like
“Share” buttons or view counts. If your app does not need this, show a simple grid or list of
items instead, which are easier to scan.

Examples

Example 1
library(shiny)
library(shiny.fluent)

title <- "Long_file_name_with_underscores_used_to_separate_all_of_the_words”

previewImages <- list(
list(
previewImageSrc = "https://picsum.photos/318/196",
width = 318,
height = 196
)
)

ui <- function(id) {
ns <- NS(id)
DocumentCard(
DocumentCardPreview(previewImages = previewImages),
DocumentCardTitle(
title = title,
shouldTruncate = TRUE

),
DocumentCardActivity(
activity = "Created a few minutes ago”,
people = list(list(name = "Annie Lindqvist"))
)
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Example 2
library(shiny)
library(shiny.fluent)

Using icons in DocumentCardActions
ui <- function(id) {
previewImages <- list(
list(

96 Dropdown

previewImageSrc = "https://picsum.photos/318/196",
width = 318,
height = 200
)
)
fluidPage(
DocumentCard(
DocumentCardPreview(previewImages = previewImages),
DocumentCardTitle(
title = "Card”,
shouldTruncate = TRUE
),
DocumentCardActivity(
activity = "2022-03-23",
people = list(list(name = "Annie Lindqvist"))
),
DocumentCardActions(
actions = list(
list(
iconProps = list(iconName = "Share"),
onClick = JS("function() { alert('share icon clicked') }")
),
list(
iconProps = list(iconName = "Pin"),
onClick = JS("function() { alert('pin icon clicked') }")
),
list(
iconProps = list(iconName = "Ringer"),
onClick = JS("function() { alert('ringer icon clicked') }")

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
}

Dropdown Dropdown

Description

A dropdown menu is a list in which the selected item is always visible while other items are visible
on demand by clicking a dropdown button.

Dropdown 97

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
Dropdown(...)

Dropdown.shinyInput(inputlId, ..., value = defaultValue)

updateDropdown.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

defaultSelectedKeys string[] | number[]
Keys that will be initially used to set selected items. This prop is only used when multiSelect
is true (use defaultSelectedKey for single select). Mutually exclusive with selectedKeys.

¢ dropdownWidth number
Custom width for dropdown. If value is 0, width of the input field is used.

¢ isDisabled boolean

Deprecated at v0.52.0, use disabled instead.
* KkeytipProps IKeytipProps

Optional keytip for this dropdown

¢ multiSelectDelimiter string
When multiple items are selected, this will be used to separate values in the dropdown input.

* notifyOnReselect boolean
If true, onChange will still be called when an already-selected item is clicked again in single
select mode. (Normally it would not be called in this case.)

¢ onChange (event: React.FormEvent<HTMLDivElement>, option?: IDropdownOption, index?: number) => vi
Callback for when the selected option changes.

e onChanged (option: IDropdownOption, index?: number) => void

¢ onRenderCaretDown IRenderFunction<IDropdownProps>
Custom renderer for chevron icon

https://developer.microsoft.com/en-us/fluentui#/controls/web/Dropdown

98

Value

Dropdown

onRenderLabel IRenderFunction<IDropdownProps>
Custom renderer for the label.

onRenderPlaceholder IRenderFunction<IDropdownProps>
Custom renderer for placeholder text

onRenderPlaceHolder IRenderFunction<IDropdownProps>
Custom renderer for placeholder text

onRenderTitle IRenderFunction<IDropdownOption[]>
Custom renderer for selected option displayed in input

options IDropdownOption[]
Options for the dropdown. If using defaultSelectedKey or defaultSelectedKeys, options
must be pure for correct behavior.

placeHolder string
Input placeholder text. Displayed until an option is selected.

responsiveMode ResponsiveMode
By default, the dropdown will render the standard way for screen sizes large and above, or
in a panel on small and medium screens. Manually set this prop to override this behavior.

selectedKeys string[] | number[] | null

Keys of the selected items, only used when multiSelect is true (use selectedKey for single
select). If you provide this, you must maintain selection state by observing onChange events
and passing a new prop value in when changed. Passing null will clear the selection. Mutually
exclusive with defaultSelectedKeys.

styles IStyleFunctionOrObject<IDropdownStyleProps, IDropdownStyles>
Call to provide customized styling that will layer on top of the variant rules.

theme ITheme
Theme provided by higher order component.

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

» Use a dropdown list when there are multiple choices that can be collapsed under one title, if
the list of items is too long, or when space is constrained.

* Use a dropdown list when the selected option is more important than the alternatives (in
contrast to radio buttons where all the choices are visible, putting equal emphasis on all
options).

Content:

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

* The dropdown list label should describe what can be found in the menu.
 Use shortened statements or single words as list options.

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

Dropdown 99

* If there isn’t a default option, use "Select an option" as placeholder text.
* If "None" is an option, include it.

* Write the choices using parallel construction. For example, start with the same part of speech
or verb tense.

Examples

Example 1
library(shiny)
library(shiny.fluent)

options <- list(
list(key = "A", text = "Option A"),
list(key = "B", text = "Option B"),
list(key = "C", text = "Option C")
)

ui <- function(id) {
ns <- NS(id)
div(
Dropdown. shinyInput(ns("dropdown”), value = "A", options = options),
textOutput(ns("dropdownValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$dropdownValue <- renderText({
sprintf("Value: %s", input$dropdown)
»
D)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Example 2
library(shiny)
library(shiny.fluent)

Rendering headers and dividers inside dropdown
DropdownMenuItemType <- function(type) {

JS(paste@(”jsmodule['@fluentui/react'].DropdownMenultemType."), type)
3

ui <- function(id) {
fluentPage(
Dropdown (
"fruit”,
label = "Fruit”,
multiSelect = TRUE,

100 Facepile

options = list(
list(
key = "fruitsHeader”,
text = "Fruit”,
itemType = DropdownMenultemType("Header")

),
list(key = "apple"”, text = "Apple"),
list(key = "banana”, text = "Banana"),
list(key = "orange", text = "Orange"”, disabled = TRUE),
list(key = "grape", text = "Grape"),
list(

key = "divider_1",

text = "-",

itemType = DropdownMenultemType("Divider")
),
list(

key = "vegetablesHeader”,
text = "Vegetables”,
itemType = DropdownMenultemType("Header"”

)
),
list(key = "broccoli”, text = "Broccoli"),
list(key = "carrot”, text = "Carrot"),
list(key = "lettuce”, text = "Lettuce")
)
)
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"”))
3

Facepile Facepile

Description

A face pile (Facepile) displays a list of personas. Each circle represents a person and contains
their image or initials. Often this control is used when sharing who has access to a specific view or
file, or when assigning someone a task within a workflow.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Facepile

Facepile 101

Usage

Facepile(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ addButtonProps IButtonProps
Button properties for the add face button

 ariaDescription string
ARIA label for persona list

e ariaLabel string
Defines the aria label that the screen readers use when focus goes on a list of personas.

* chevronButtonProps IButtonProps
Deprecated at v0.70, use overflowButtonProps instead.

* className string
Additional css class to apply to the Facepile

¢ componentRef IRefObject<IFacepile>
Optional callback to access the IFacepile interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ getPersonaProps (persona: IFacepilePersona) => IPersonaSharedProps
Method to access properties on the underlying Persona control

» maxDisplayablePersonas number
Maximum number of personas to show

* onRenderPersona IRenderFunction<IFacepilePersona>
Optional custom renderer for the persona, gets called when there is one persona in personas
array

¢ onRenderPersonaCoin IRenderFunction<IFacepilePersona>
Optional custom renderer for the persona coins, gets called when there are multiple persona
in personas array

* overflowButtonProps IButtonProps
Properties for the overflow icon

* overflowButtonType OverflowButtonType
Type of overflow icon to use

» overflowPersonas IFacepilePersonal]
Personas to place in the overflow

* personas IFacepilePersonal]
Array of IPersonaProps that define each Persona.

* personaSize PersonaSize
Size to display the personas

102

Facepile

showAddButton boolean

Show add person button

styles IStyleFunctionOrObject<IFacepileStyleProps, IFacepileStyles>

Call to provide customized styling that will layer on top of the variant rules.

theme ITheme

Theme provided by High-Order Component.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

Examples

The face pile empty state should only include an "Add" button. Another variant is to use an in-
put field with placeholder text instructing people to add a person. See the people picker com-
ponent for the menu used to add people to the face pile list.

When there is only one person in the face pile, consider using their name next to the face or
initials.

When there is a need to show the face pile expanded into a vertical list, include a downward
chevron button. Selecting the chevron opens a standard list view of people.

When the face pile exceeds a max number of 5 people, show a button at the end of the list
indicating how many are not being shown. Clicking or tapping on the overflow would open
a standard list view of people.

The component can include an "Add" button which can be used for quickly adding a person
to the list.

When hovering over a person in the face pile, include a tooltip or people card that offers more
information about that person.

library(shiny)
library(shiny.fluent)

personas <- list(

list(personaName = "Adams Baker"),
list(personaName = "Clark Davis"),
list(personaName = "Evans Frank")
)
ui <- function(id) {
ns <- NS(id)

Facepile(personas = personas)

}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

fluentPage 103

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

fluentPage Basic Fluent Ul page

Description
Creates a Fluent UI page with sensible defaults (included Fabric CSS classes, proper class given to
the body tag, suppressed Bootstrap).

Usage

fluentPage(..., suppressBootstrap = TRUE)

Arguments

e The contents of the document body.
suppressBootstrap
Whether to suppress Bootstrap.

Details

The Bootstrap library is suppressed by default, as it doesn’t work well with Fluent Ul in general.

Value

Object which can be passed as the UI of a Shiny app.

fluentPeople A dataset of sample people based on Fluent UI examples

Description

A dataset of sample people based on Fluent UI examples

Usage
fluentPeople

Format

An object of class tbl_df (inherits from tbl, data.frame) with 7 rows and 11 columns.

Source

https://developer.microsoft.com/en-us/fluentui#/controls/web/peoplepicker

https://developer.microsoft.com/en-us/fluentui#/controls/web/peoplepicker

104 FocusTrapCallout

fluentSalesDeals A randomly generated dataset of imaginary sales deals

Description

Sales deals to Top 10 companies from the Fortune 500 dataset (located at https://hifld-geoplatform.
opendata.arcgis.com/datasets/fortune-500-corporate-headquarters) are randomly gen-
erated for each person in fluentPeople.

Usage

fluentSalesDeals

Format

An object of class tb1_df (inherits from tbl, data. frame) with 100 rows and 30 columns.

FocusTrapCallout FocusTrapZone

Description

FocusTrapZone is used to trap the focus in any html element. Pressing tab will circle focus within
the inner focusable elements of the FocusTrapZone.

Note: Trapping focus will restrict interaction with other elements in the website such as the side
nav. Turn off the "Use trap zone" toggle control to allow this interaction to happen again.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

FocusTrapCallout(...)

FocusTrapZone(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://hifld-geoplatform.opendata.arcgis.com/datasets/fortune-500-corporate-headquarters
https://hifld-geoplatform.opendata.arcgis.com/datasets/fortune-500-corporate-headquarters
https://developer.microsoft.com/en-us/fluentui#/controls/web/FocusTrapZone

FocusTrapCallout 105

Details

* ariaLabelledBy string
Sets the aria-labelledby attribute.

¢ componentRef IRefObject<IFocusTrapZone>
Optional callback to access the IFocusTrapZone interface. Use this instead of ref for accessing
the public methods and properties of the component.

* disabled boolean
Whether to disable the FocusTrapZone’s focus trapping behavior.

* disableFirstFocus boolean
Do not put focus onto the first element inside the focus trap zone.

* elementToFocusOnDismiss HTMLElement
Sets the element to focus on when exiting the FocusTrapZone.

* enableAriaHiddenSiblings boolean
Puts aria-hidden=true on all non-ancestors of the current element, for screen readers. This is
an experimental feature that will be graduated to default behavior after testing. This flag will
be removed with the next major release.

 firstFocusableSelector string | (() => string)
Class name (not actual selector) for first focusable item. Do not append a dot. Only applies if
focusPreviouslyFocusedInnerElement is false.

 focusPreviouslyFocusedInnerElement boolean
Specifies which descendant element to focus when focus() is called. If false, use the first
focusable descendant, filtered by the firstFocusableSelector property if present. If true,
use the element that was focused when the trap zone last had a focused descendant (or fall
back to the first focusable descendant if the trap zone has never been focused).

» forceFocusInsideTrap boolean
Whether the focus trap zone should force focus to stay inside of it.

* ignoreExternalFocusing boolean
If false (the default), the trap zone will restore focus to the element which activated it once the
trap zone is unmounted or disabled. Set to true to disable this behavior.

¢ isClickableOutsideFocusTrap boolean
Whether clicks are allowed outside this FocusTrapZone.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

reactOutput (ns(”focusTrapZone"))
3

106 FocusTrapCallout

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns
output$focusTrapZone <- renderReact ({
useTrapZone <- isTRUE(input$useTrapZone)
stackStyles <- list(root = list(
border = if (useTrapZone) '2px solid #ababab' else 'transparent',
padding = 10
D)
textFieldStyles <- list(root = list(width = 300));
stackTokens = list(childrenGap = 8);

div(
FocusTrapZone(
disabled = !useTrapZone,
Stack(
horizontalAlign = "start”,
tokens = stackTokens,
styles = stackStyles,
Toggle.shinyInput(ns("useTrapZone"),
value = FALSE,
label = "Use trap zone”,
onText = "On (toggle to exit)",
of fText = "Off (toggle to trap focus)”
),
TextField.shinyInput(
ns("textInput”),
label = "Input inside trap zone",
styles = textFieldStyles
),
Link(
href = "https://bing.com”,
target = "_blank”,
"Hyperlink inside trap zone”
)
)
),
Link(
href = "https://bing.com”,
target = "_blank”,
"Hyperlink outside trap zone”
)
)
»
b))
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

FocusZone 107

FocusZone FocusZone

Description

FocusZones abstract arrow key navigation behaviors. Tabbable elements (buttons, anchors, and
elements with data-is-focusable=true’ attributes) are considered when pressing directional arrow
keys and focus is moved appropriately. Tabbing to a zone sets focus only to the current "active"
element, making it simple to use the tab key to transition from one zone to the next, rather than
through every focusable element.

Using a FocusZone is simple. Just wrap a bunch of content inside of a FocusZone, and arrows and
tabbling will be handled for you! See examples below.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

FocusZone(...)

Arguments

Details

Props to pass to the component. The allowed props are listed below in the De-
tails section.

allowFocusRoot boolean
Allows focus to park on root when focus is in the FocusZone at render time.

allowTabKey boolean

Allows tab key to be handled to tab through a list of items in the focus zone, an unfortunate
side effect is that users will not be able to tab out of the focus zone and have to hit escape or
some other key.

ariaDescribedBy string
Sets the aria-describedby attribute.

ariaLabelledBy string
Sets the aria-labelledby attribute.

as React.ElementType
A component that should be used as the root element of the FocusZone component.

checkForNoWrap boolean
Determines whether to check for data-no-horizontal-wrap or data-no-vertical-wrap attributes
when determining how to move focus

className string
Additional class name to provide on the root element, in addition to the ms-FocusZone class.

https://developer.microsoft.com/en-us/fluentui#/controls/web/FocusZone

108 FocusZone

¢ componentRef IRefObject<IFocusZone>
Optional callback to access the IFocusZone interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ defaultActiveElement string
Optionally provide a selector for identifying the initial active element.

¢ defaultTabbableElement string | ((root: HTMLElement) => HTMLElement)
Optionally defines the initial tabbable element inside the FocusZone. If a string is passed then
it is treated as a selector for identifying the initial tabbable element. If a function is passed
then it uses the root element as a parameter to return the initial tabbable element.

e direction FocusZoneDirection
Defines which arrows to react to.

» disabled boolean
If set, the FocusZone will not be tabbable and keyboard navigation will be disabled. This does
not affect disabled attribute of any child.

¢ doNotAllowFocusEventToPropagate boolean
Whether the FocusZone should allow focus events to propagate past the FocusZone.

* elementType any
Element type the root element will use. Default is "div".

* handleTabKey FocusZoneTabbableElements
Allows tab key to be handled to tab through a list of items in the focus zone, an unfortunate
side effect is that users will not be able to tab out of the focus zone and have to hit escape or
some other key.

 isCircularNavigation boolean
If set, will cycle to the beginning of the targets once the user navigates to the next target while
at the end, and to the end when navigate to the previous at the beginning.

* isInnerZoneKeystroke (ev: React.KeyboardEvent<HTMLElement>) => boolean
If provided, this callback will be executed on keypresses to determine if the user intends to
navigate into the inner zone. Returning true will ask the first inner zone to set focus.

* onActiveElementChanged (element?: HTMLElement, ev?: React.FocusEvent<HTMLElement>) => void
Callback for when one of immediate children elements gets active by getting focused or by
having one of its respective children elements focused.

¢ onBeforeFocus (childElement?: HTMLElement) => boolean
Callback method for determining if focus should indeed be set on the given element.

e onFocus (event: React.FocusEvent<HTMLElement | FocusZone>) => void
Callback called when "focus" event triggered in FocusZone.

¢ onFocusNotification () => void
Callback to notify creators that focus has been set on the FocusZone

» pagingSupportDisabled boolean
Determines whether to disable the paging support for Page Up and Page Down keyboard
scenarios.

» preventDefaultWhenHandled boolean
If true, FocusZone prevents the default behavior of Keyboard events when changing focus
between elements.

FocusZone 109

Value

preventFocusRestoration boolean
If true, prevents the FocusZone from attempting to restore the focus to the inner element when
the focus is on the root element after componentDidUpdate.

rootProps React.HTMLAttributes<HTMLDivElement>
Deprecated at v1.12.1. DIV props provided to the FocusZone will be mixed into the root
element.

shouldEnterInnerZone (ev: React.KeyboardEvent<HTMLElement>) => boolean
Callback function that will be executed on keypresses to determine if the user intends to navi-
gate into the inner (nested) zone. Returning true will ask the first inner zone to set focus.

shouldFocusInnerElementWhenReceivedFocus boolean

If true and FocusZone’s root element (container) receives focus, the focus will land either on
the defaultTabbableElement (if set) or on the first tabbable element of this FocusZone. Usually
a case for nested focus zones, when the nested focus zone’s container is a focusable element.

shouldFocusOnMount boolean
Determines if a default tabbable element should be force focused on FocusZone mount. @de-
fault false

shouldInputLoseFocusOnArrowKey (inputElement: HTMLInputElement) => boolean
A callback method to determine if the input element should lose focus on arrow keys

shouldRaiseClicks boolean

Determines whether the FocusZone will walk up the DOM trying to invoke click callbacks on
focusable elements on Enter and Space keydowns to ensure accessibility for tags that don’t
guarantee this behavior.

shouldReceiveFocus (childElement?: HTMLElement) => boolean
Callback method for determining if focus should indeed be set on the given element.

shouldResetActiveElementWhenTabFromZone boolean

If true and TAB key is not handled by FocusZone, resets current active element to null value.
For example, when roving index is not desirable and focus should always reset to the default
tabbable element.

stopFocusPropagation boolean
Whether the FocusZone should allow focus events to propagate past the FocusZone.

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

tokens <- list(childrenGap = 20)

ui <- function(id) {

ns <- NS(id)
Stack(

tokens = tokens,
horizontalAlign = "start”,

110 Fontlcon

FocusZone(
Stack(

tokens = tokens,
horizontal = TRUE,
verticalAlign = "center”,
tags$span(”"Enabled FocusZone:"),
DefaultButton(text = "Button 1"),
DefaultButton(text = "Button 2"),
TextField(placeholder = "FocusZone TextField"),
DefaultButton(text = "Button 3")

)
),
DefaultButton(text = "Tabbable Element 1"),
FocusZone(
disabled = TRUE,
Stack(
tokens = tokens,
horizontal = TRUE,
verticalAlign = "center”,
tags$span(”"Disabled FocusZone:"),
DefaultButton(text = "Button 1"),
DefaultButton(text = "Button 2")
)
),
TextField(placeholder = "Tabbable Element 2")
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

FontIcon Icon

Description

In a user interface, an icon is an image that represents an application, a capability, or some other
concept or specific entity with meaning for the user. An icon is usually selectable but can also be a
nonselectable image, such as a company’s logo.

For a list of icons, visit our icon documentation.

Note that icons are not bundled by default and typically must be loaded by calling initializeIcons
from the @Quifabric/icons package at the root of your application. See the icon documentation
for more details.

Fontlcon 111

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

FontIcon(...)
Icon(...)

Imagelcon(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e className string
Custom class to style the icon.

e iconName string
The name of the icon to use from the icon font. If string is empty, a placeholder icon will be
rendered the same width as an icon.

e ariaLabel string
The aria label of the icon for the benefit of screen readers.

e iconName string
The name of the icon to use from the icon font. If string is empty, a placeholder icon will be
rendered the same width as an icon.

e iconType IconType
The type of icon to render (image or icon font).

* imageErrorAs React.ComponentType<IImageProps>
If rendering an image icon, this component will be rendered in the event that loading the image
fails.

¢ imageProps IImageProps
If rendering an image icon, these props will be passed to the Image component.

» styles IStyleFunctionOrObject<IIconStyleProps, IIconStyles>
Gets the styles for an Icon.

¢ theme ITheme

¢ className string
Custom class to style the icon.

¢ imageProps IImageProps
Props passed to the Image component.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Icon

112 GroupedList

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

style <- list(fontSize = 50, margin = 10)

ui <- function(id) {

ns <- NS(id)

tags$div(
FontIcon(iconName = "CompassNW", style = style),
FontIcon(iconName = "Dictionary”, style = style),
FontIcon(iconName = "TrainSolid”, style = style)

)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

GroupedList GroupedList

Description

A grouped list (GroupedList) allows you to render a set of items as multiple lists with various
grouping properties.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

GroupedList(...)

GroupHeader(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/GroupedList

GroupedList 113

Details

¢ className string
Custom className

* compact boolean
Boolean value to indicate if the component should render in compact mode. Set to false by
default

e componentRef IRefObject<{}>

* expandButtonProps React.HTMLAttributes<HTMLButtonElement>
Props for expand/collapse button
¢ footerText string
Text to display for the group footer.
* group IGroup
The group to be rendered by the header.
* groupIndex number
The index of the group.
* groupLevel number
The indent level of the group.
e groups IGroup[]
Stores parent group’s children.
* indentWidth number
Width corresponding to a single level. This is multiplied by the groupLevel to get the full
spacer width for the group.
* isCollapsedGroupSelectVisible boolean
Determines if the group selection check box is shown for collapsed groups.
e isGroupLoading (group: IGroup) => boolean
Callback to determine if a group has missing items and needs to load them from the server.
* isSelected boolean
Deprecated at v.65.1 and will be removed by v 1.0. Use selected instead.
* loadingText string
Text shown on group headers to indicate the group is being loaded.
¢ onGroupHeaderClick (group: IGroup) => void
Callback for when the group header is clicked.
¢ onRenderTitle IRenderFunction<IGroupHeaderProps>
Override which allows the caller to provider a custom renderer for the GroupHeader title.
* onToggleCollapse (group: IGroup) => void
Callback for when the group is expanded or collapsed.
» onToggleSelectGroup (group: IGroup) => void
Callback for when the group is selected.
* onToggleSummarize (group: IGroup) => void
Callback for when the group "Show All" link is clicked

* selected boolean
If all items in the group are selected.

114 GroupedList

selectionMode SelectionMode
The selection mode of the list the group lives within.

¢ showAllLinkText string
Text to display for the group "Show All" link.

* theme ITheme
Theme provided by the Higher Order Component

e viewport IViewport
A reference to the viewport in which the header is rendered.

¢ className string
Optional class name to add to the root element.

* compact boolean
Boolean value to indicate if the component should render in compact mode. Set to false by
default

e componentRef IRefObject<IGroupedList>
Optional callback to access the IGroupedList interface. Use this instead of ref for accessing
the public methods and properties of the component.

e dragDropEvents IDragDropEvents
Map of callback functions related to drag and drop functionality.

e dragDropHelper IDragDropHelper
helper to manage drag/drop across item and groups

* eventsToRegister { eventName: string; callback: (context: IDragDropContext, event?: any) => void; }|
Event names and corresponding callbacks that will be registered to groups and rendered ele-
ments

¢ focusZoneProps IFocusZoneProps
Optional properties to pass through to the FocusZone.

¢ getGroupHeight (group: IGroup, groupIndex: number) => number
Optional function to override default group height calculation used by list virtualization.

* groupProps IGroupRenderProps
Optional override properties to render groups.

e groups IGroup[]
Optional grouping instructions.

e items any[]
List of items to render.

listProps IListProps
Optional properties to pass through to the list components being rendered.

onGroupExpandStateChanged (isSomeGroupExpanded: boolean) => void
Optional callback when the group expand state changes between all collapsed and at least one
group is expanded.

¢ onRenderCell (nestingDepth?: number, item?: any, index?: number) => React.ReactNode
Rendering callback to render the group items.

onShouldVirtualize (props: IListProps) => boolean
Optional callback to determine whether the list should be rendered in full, or virtualized. Vir-
tualization will add and remove pages of items as the user scrolls them into the visible range.

GroupedList 115

This benefits larger list scenarios by reducing the DOM on the screen, but can negatively affect
performance for smaller lists. The default implementation will virtualize when this callback
is not provided.

» selection ISelection
Optional selection model to track selection state.

* selectionMode SelectionMode
Controls how/if the list manages selection.

» styles IStyleFunctionOrObject<IGroupedListStyleProps, IGroupedListStyles>
Style function to be passed in to override the themed or default styles

* theme ITheme
Theme that is passed in from Higher Order Component

* usePageCache boolean
boolean to control if pages containing unchanged items should be cached, this is a perf opti-
mization The same property in List.Props

e viewport IViewport
Optional Viewport, provided by the parent component.

» styles IStyleFunctionOrObject<IGroupFooterStyleProps, IGroupFooterStyles>
Style function to be passed in to override the themed or default styles

¢ checked boolean

e theme ITheme

 ariaPosInSet number
Defines an element’s number or position in the current set of listitems or treeitems

e ariaSetSize number
Defines the number of items in the current set of listitems or treeitems

* expandButtonlcon string
Defines the name of a custom icon to be used for group headers. If not set, the default icon
will be used

* expandButtonProps React.HTMLAttributes<HTMLButtonElement>
Native props for the GroupHeader expand and collapse button

¢ groupedListld string
GroupedList id for aria-controls

* onRenderGroupHeaderCheckbox IRenderFunction<IGroupHeaderCheckboxProps>
If provided, can be used to render a custom checkbox

¢ selectAllButtonProps React.HTMLAttributes<HTMLButtonElement>
Native props for the GroupHeader select all button

e styles IStyleFunctionOrObject<IGroupHeaderStyleProps, IGroupHeaderStyles>
Style function to be passed in to override the themed or default styles

* useFastlcons boolean
Whether to use fast icon and check components. The icons can’t be targeted by customization
but are still customizable via class names.

116 GroupedList

* collapseAllVisibility CollapseAllVisibility
Flag to indicate whether to ignore the collapsing icon on header.

¢ footerProps IGroupFooterProps
Information to pass in to the group footer.

* getGroupltemLimit (group: IGroup) => number
Grouping item limit.

* headerProps IGroupHeaderProps
Information to pass in to the group header.

* isAllGroupsCollapsed boolean
Boolean indicating if all groups are in collapsed state.

¢ onRenderFooter IRenderFunction<IGroupFooterProps>
Override which allows the caller to provide a custom footer.

* onRenderHeader IRenderFunction<IGroupHeaderProps>
Override which allows the caller to provide a custom header.

¢ onRenderShowAll IRenderFunction<IGroupShowAllProps>
Override which allows the caller to provide a custom Show All link.

« onToggleCollapseAll (isAllCollapsed: boolean) => void
Callback for when all groups are expanded or collapsed.

* role string
Override which allows the caller to provide a custom aria role

e showAllProps IGroupShowAllProps
Information to pass in to the group Show all footer.

e showEmptyGroups boolean
Boolean indicating if empty groups are shown

¢ showAllLinkText string
The Show All link text.

* styles IStyleFunctionOrObject<IGroupShowAllStyleProps, IGroupShowAllStyles>
Style function to be passed in to override the themed or default styles

e count number
Count of spacer(s)

¢ indentWidth number
How much to indent

» styles IStyleFunctionOrObject<IGroupSpacerStyleProps, IGroupSpacerStyles>
Style function to be passed in to override the themed or default styles

* theme ITheme
Theme from Higher Order Component

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

GroupedList

Best practices

FAQ:

My List is not re-rendering when I mutate its items. What should I do?:

117

To determine if the list within the grouped list should re-render its contents, the component
performs a referential equality check within its shouldComponentUpdate method. This is done
to minimize the performance overhead associating with re-rendering the virtualized List pages,

as recommended by the React documentation.

As a result of this implementation, the inner list will not determine it should re-render if the
array values are mutated. To avoid this problem, we recommend re-creating the items array
backing the grouped list by using a method such as Array.prototype.concat or ES6 spread

syntax shown below:

public appendItems(): void {
const { items } = this.state;

this.setState({
items: [...items, ...['Foo', 'Bar']]
1))
3

public render(): JSX.Element {
const { items } = this.state;

return <GroupedList items={items} />;

b

By re-creating the items array without mutating the values, the inner List will correctly deter-

mine its contents have changed and then it should re-render with the new values.

Examples

Example 1
library(shiny)
library(shiny.fluent)

ui <- function(id) {

}

ns <- NS(id)
GroupedList(
items = list("Item A", "Item B”, "Item C", "Item D", "Item E"),
groups = list(
list(key = "g1", name = "Some items”, startIndex = @, count = 2),
list(key = "g2", name = "More items"”, startIndex = 2, count = 3)
),
selectionMode = 0,
onRenderCell = JS("(depth, item) => (

jsmodule['react'].createElement('span', { style: { paddinglLeft: 49 } 3}, item)

)
)

server <- function(id) {

https://reactjs.org/docs/optimizing-performance.html#the-power-of-not-mutating-data

118

moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {

shinyApp(ui("app”), function(input, output) server("app"))

}

Example 2
library(shiny)
library(shiny.fluent)

ui <- function(id) {
fluentPage(
GroupedList(

items = list("Item A", "Item B", "Item C", "Item D", "Item E"),

groups = list(
list(key = "g1", name = "Some items"”, startIndex
list(key = "g2", name = "More items"”, startIndex
),
selectionMode = 0,
onRenderCell = JS(
"(depth, item) => (

0, count
2, count

2)?
3)

HoverCard

jsmodule['react'].createElement('span', { style: { paddinglLeft: 50 } }, item)

3
),
groupProps = list(
onRenderHeader = JS(
"(props) => (
jsmodule['react'].createElement(
jsmodule['@fluentui/react'].GroupHeader,

{ ...props, styles: { headerCount: { display:

props

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {

‘none' } } 3,

shinyApp(ui("app”), function(input, output) server("app"))

}

HoverCard HoverCard

HoverCard 119

Description

Hover cards (HoverCard) show commands and information, such as metadata and activity, when
someone hovers over an item.

» Tabbing with a keyboard to the element triggering the HoverCard to open on focus (see first
example). In this case no further navigation within the card is available and navigating to the
next element will close the card.

» Tabbing with a keyboard to the element triggering the HoverCard and opening when the
hotKey is pressed (see second example). When the card is opened it will automatically fo-
cus the first focusable element of the card content.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

HoverCard(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

» compactCardHeight number
Height of compact card

* expandedCardHeight number
Height of expanded card

* mode ExpandingCardMode
Use to open the card in expanded format and not wait for the delay

* onRenderCompactCard IRenderFunction<any>
Render function to populate compact content area

* onRenderExpandedCard IRenderFunction<any>
Render function to populate expanded content area

* cardDismissDelay number
Length of card dismiss delay. A min number is necessary for pointer to hop between target
and card

» cardOpenDelay number
Length of compact card delay

¢ className string
Additional CSS class(es) to apply to the HoverCard root element.

* componentRef IRefObject<IHoverCard>
Optional callback to access the [HoverCardHost interface. Use this instead of ref for accessing
the public methods and properties of the component.

https://developer.microsoft.com/en-us/fluentui#/controls/web/HoverCard

120

HoverCard

eventListenerTarget HTMLElement | string | null

This prop is to separate the target to anchor hover card from the target to attach event listener.
If set, this prop separates the target to anchor the hover card from the target to attach the event
listener. When no eventListenerTarget given, HoverCard will use target prop or its root
to set event listener.

expandedCardOpenDelay number
Time in ms when expanded card should open after compact card

expandingCardProps IExpandingCardProps

Additional ExpandingCard props to pass through HoverCard like renderers, target. gapSpace
etc. Used along with “type’ prop set to HoverCardType.expanding. Reference detail properties
in ICardProps and IExpandingCardProps.

instantOpenOnClick boolean
Enables instant open of the full card upon click

onCardExpand () => void
Callback when visible card is expanded.

onCardHide () => void
Callback when card hides

onCardVisible () => void
Callback when card becomes visible

openHotKey KeyCodes
HotKey used for opening the HoverCard when tabbed to target.

plainCardProps IPlainCardProps

Additional PlainCard props to pass through HoverCard like renderers, target, gapSpace etc.
Used along with ’type’ prop set to HoverCardType.plain. See for more details ICardProps and
IPlainCardProps interfaces.

setAriaDescribedBy boolean
Whether or not to mark the container as described by the hover card. If not specified, the caller
should mark as element as described by the hover card id.

setInitialFocus boolean

Set to true to set focus on the first focusable element in the card. Works in pair with the
"trapFocus’ prop.

shouldBlockHoverCard () => void

Should block hover card or not

sticky boolean
If true disables Card dismiss upon mouse leave, so that card sticks around.

styles IStyleFunctionOrObject<IHoverCardStyleProps, IHoverCardStyles>
Custom styles for this component

target HTMLElement | string | null

Optional target element to tag hover card on. If not provided and using HoverCard as a wrap-
per, don’t set the ’data-is-focusable=true’ attribute to the root of the wrapped child. If no target
is given, HoverCard will use its root as a target and become the focusable element with a focus
listener attached to it.

theme ITheme
Theme provided by higher order component.

HoverCard 121

e trapFocus boolean
Set to true if you want to render the content of the HoverCard in a FocusTrapZone for acces-
sibility reasons. Optionally ’setInitialFocus’ prop can be set to true to move focus inside the
FocusTrapZone.

* type HoverCardType
Type of the hover card to render.

¢ onRenderPlainCard IRenderFunction<any>
Render function to populate compact content area

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

* Hover cards contain both compact and expanded states, with the compact state appearing
after 500 milliseconds and the expanded state appearing as the user continues to hover af-
ter 1500 milliseconds.

* The hover card positions itself automatically, depending upon where the target is on the
viewport. Position the target so the card doesn’t obstruct inline commanding on the item.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
HoverCard(
type = "PlainCard”,
plainCardProps = JS("{
onRenderPlainCard: (a, b, c) => 'HoverCard contents',
style: { margin: 10 }
",
"Hover over me"
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
3

122 Image

Image Image

Description
An image is a graphic representation of something (e.g photo or illustration). The borders have
been added to these examples in order to help visualize empty space in the image frame.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Image(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e className string
Additional css class to apply to the Component

e coverStyle ImageCoverStyle
Specifies the cover style to be used for this image. If not specified, this will be dynamically
calculated based on the aspect ratio for the image.

e errorSrc string
Deprecated at v1.3.6, to replace the src in case of errors, use onLoadingStateChange instead
and rerender the Image with a difference src.
» imageFit ImageFit
Used to determine how the image is scaled and cropped to fit the frame.
* maximizeFrame boolean
If true, the image frame will expand to fill its parent container.
« onLoadingStateChange (loadState: ImagelLoadState) => void
Optional callback method for when the image load state has changed. The ’loadState’ param-
eter indicates the current state of the Image.
* shouldFadeIn boolean
If true, fades the image in when loaded.
* shouldStartVisible boolean
If true, the image starts as visible and is hidden on error. Otherwise, the image is hidden until
it is successfully loaded. This disables shouldFadeln.
o styles IStyleFunctionOrObject<IImageStyleProps, IImageStyles>
Call to provide customized styling that will layer on top of the variant rules

* theme ITheme
Theme provided by HOC.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Image

Keytip 123

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

Image(src = "https://via.placeholder.com/350x150")
}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Keytip Keytip

Description

A Keytip is a small popup near a component that indicates a key sequence that will trigger that
component. These are not to be confused with keyboard shortcuts; they are instead key sequences
to traverse through levels of UI components. Technically, a Keytip is a wrapper around a Callout
where the target element is discovered through a ’data-ktp-target’ attribute on that element.

To enable Keytips on your page, a developer will add the KeytipLayer component somewhere in
their document. It can be added anywhere in your document, but must only be added once. Use
the registerKeytip utility helper to add a Keytip. A user will enter and exit keytip mode with a
IKeytipTransitionSequence, which is a key with any amount of modifiers (Alt, Shift, etc).

By default, the entry and exit sequence is *Alt-Windows’ (Meta) on Windows and ’Option-Control’
on macOS. There is also a sequence to 'return’ up a level of keytips while traversing. This is by
default "Esc’.

Fluent UI React components that have keytips enabled have an optional ’keytipProps’ prop which
handles registering, unregistering, and rendering of the keytip. The keySequences of the Keytip
should be the full sequence to get to that keytip. There is a “buildKeytipConfigMap’ helper which
will build a map of ID -> [KeytipProps to assist in defining your keytips.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Keytip

124 KeytipLayer

KeytipLayer Keytips

Description

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

KeytipLayer(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ componentRef IRefObject<IKeytipLayer>
Optional callback to access the KeytipLayer component. Use this instead of ref for accessing
the public methods and properties of the component.

e content string
String to put inside the layer to be used for the aria-describedby for the component with the
keytip Should be one of the starting sequences

* KkeytipExitSequences IKeytipTransitionKey[]
List of key sequences that will exit keytips mode

* KkeytipReturnSequences IKeytipTransitionKey[]
List of key sequences that execute the return functionality in keytips (going back to the previ-
ous level of keytips)

» KkeytipStartSequences IKeytipTransitionKey[]
List of key sequences that will start keytips mode

¢ onEnterKeytipMode () => void
Callback function triggered when keytip mode is entered

« onExitKeytipMode (ev?: React.KeyboardEvent<HTMLElement> | React.MouseEvent<HTMLElement>) => void
Callback function triggered when keytip mode is exited. ev is the Mouse or Keyboard Event
that triggered the exit, if any.

o styles IStyleFunctionOrObject<IKeytiplLayerStyleProps, IKeytipLayerStyles>
(Optional) Call to provide customized styling.

* calloutProps ICalloutProps
ICalloutProps to pass to the callout element

e content string
Content to put inside the keytip

https://developer.microsoft.com/en-us/fluentui#/controls/web/Keytips

KeytipLayer 125

disabled boolean
T/F if the corresponding control for this keytip is disabled

¢ hasDynamicChildren boolean
Whether or not this keytip will have children keytips that are dynamically created (DOM is
generated on keytip activation). Common cases are a Pivot or Modal.

* hasMenu boolean
Whether or not this keytip belongs to a component that has a menu Keytip mode will stay on
when a menu is opened, even if the items in that menu have no keytips

* KkeySequences string[]
Array of KeySequences which is the full key sequence to trigger this keytip Should not include
initial ’start’ key sequence

» offset Point
Offset x and y for the keytip, added from the top-left corner By default the keytip will be
anchored to the bottom-center of the element

* onExecute (executeTarget: HTMLElement | null, target: HTMLElement | null) => void
Function to call when this keytip is activated. ’executeTarget’ is the DOM element marked
with *data-ktp-execute-target’. "target’ is the DOM element marked with *data-ktp-target’.

¢ onReturn (executeTarget: HTMLElement | null, target: HTMLElement | null) => void
Function to call when the keytip is the currentKeytip and a return sequence is pressed. ’exe-
cuteTarget’ is the DOM element marked with ’data-ktp-execute-target’. ’target’ is the DOM
element marked with ’data-ktp-target’.

* overflowSetSequence string[]
Full KeySequence of the overflow set button, will be set automatically if this keytip is inside
an overflow

* styles IStyleFunctionOrObject<IKeytipStyleProps, IKeytipStyles>
Optional styles for the component.

* theme ITheme
Theme for the component

 visible boolean
T/F if the keytip is visible

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

makeScript <- function(js) {
taglist(
shiny.react: :reactDependency(),
htmltools: :htmlDependency(
name = "KeytipsExample”,
version = "@", # Not used.
src = c(href = ""), # Not used.

126

head = paste@("<script>", js, "</script>")

)
)
}

ui <- function(id) {

ns <- NS
taglist(
makeSc

(id)

ript(paste@("setTimeout(() => {

const btnExecute = (el) => {

el
b

.click();

const keytipConfig = {

keytips: [
// Button example
{
id: 'Button’,

content: '1A',
optionalProps: {
onExecute: btnExecute,
1
1,
{
id: 'CompoundButton',
content: '1B',
optionalProps: {
onExecute: btnExecute,
h
1,

{
id: 'ButtonWithMenu',

content: '2A',
optionalProps: {
onExecute: btnExecute,

h
children: [
{
id: 'ButtonMenulteml',
content: 'E',
optionalProps: {
onExecute: btnExecute,
3,
1
{
id: 'ButtonMenultem2',
content: '8',
optionalProps: {
onExecute: btnExecute,
1,
3,
1,

3

KeytipLayer

KeytipLayer 127

1,
3

keytipMap = jsmodule['@fluentui/react'].buildKeytipConfigMap(keytipConfig);

window.buttonProps = {
items: [

{
key: 'buttonMenulteml',
text: 'Menu Item 1',
keytipProps: keytipMap.ButtonMenuIteml,
onClick: () => Shiny.setInputValue('", ns("button3”), "', Math.random())

b

{
key: 'buttonMenultem2',
text: 'Menu Item 2',
keytipProps: keytipMap.ButtonMenultem2,

onClick: () => Shiny.setInputValue('"”, ns("button3”), "', Math.random())
3,
1,
b
N,
textOutput(ns("keytipsResult”)),
div(
Label(
pasted(

"To open keytips, hit "Alt-Windows' on Windows/Linux and 'Option-Control' on macOS.",
"Keytips will appear. Type what you see, e.g. 1 and then A to 'click' the first button.”
)

)’
Label(

pasted(
"When multiple Keytips start with the same character,”,
"typing that character will filter the visible keytips."
)
),
KeytipLayer(),
Stack(horizontal = TRUE, tokens = list(childrenGap = 20),
DefaultButton.shinyInput(
ns("button1”),
keytipProps = JS("keytipMap.Button"),
text = "Button”
),
CompoundButton.shinyInput(
ns("button2"),
style = list(marginBottom = 28),
keytipProps = JS("keytipMap.CompoundButton”),
text = "Compound Button”,
secondaryText = 'With a Keytip'
),
DefaultButton.shinyInput(
ns("button3”),
keytipProps = JS("keytipMap.ButtonWithMenu"),

128 Label

text = "Button with Menu",
menuProps = JS("buttonProps”)

server <- function(id) {
moduleServer(id, function(input, output, session) {
clicks <- reactiveVal(0)
addClick <- function() clicks(clicks() + 1)
output$keytipsResult <- renderText(paste(”"Buttons clicked: ", clicks()))
observeEvent (input$buttonl, addClick())
observeEvent (input$button2, addClick())
observeEvent (input$button3, addClick())
D)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
}

Label Label

Description

Labels give a name or title to a control or group of controls, including text fields, check boxes,
combo boxes, radio buttons, and drop-down menus.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Label(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e as IComponentAs<React.AllHTMLAttributes<HTMLElement>>
Render the root element as another type.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Label

Label

Value

129

componentRef IRefObject<ILabel>
Optional callback to access the ILabel interface. Use this instead of ref for accessing the public
methods and properties of the component.

disabled boolean
Renders the label as disabled.

required boolean
Whether the associated form field is required or not

styles IStyleFunctionOrObject<ILabelStyleProps, ILabelStyles>
Styles for the label.

theme ITheme
Theme provided by HOC.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

Labels should be close to the control they’re paired with.

Content:

Labels should describe the purpose of the control.

Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

Be short and concise.
Use nouns or short noun phrases.
Don’t use labels as instructional text. For example, "Click to get started".

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
Label("Required label”, required = TRUE)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))

}

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

130 Layer

Layer Layer

Description

A Layer is a technical component that does not have specific Design guidance.

Layers are used to render content outside of a DOM tree, at the end of the document. This allows
content to escape traditional boundaries caused by "overflow: hidden" css rules and keeps it on
the top without using z-index rules. This is useful for example in ContextualMenu and Tooltip
scenarios, where the content should always overlay everything else.

There are some special considerations. Due to the nature of rendering content elsewhere asyn-

chronously, React refs within content will not be resolvable synchronously at the time the Layer is

mounted. Therefore, to use refs correctly, use functional refs ref={ (el) => { this._root = el; }
rather than string refs ref="root'. Additionally measuring the physical Layer element will not in-

clude any of the children, since it won’t render it. Events that propgate from within the content will

not go through the Layer element as well.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Layer(...)

LayerHost(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ className string
Additional css class to apply to the Layer

* componentRef IRefObject<ILayer>
Optional callback to access the ILayer interface. Use this instead of ref for accessing the
public methods and properties of the component.

* eventBubblingEnabled boolean
When enabled, Layer allows events to bubble up from Layer content. Traditionally Layer has
not had this behavior. This prop preserves backwards compatibility by default while allowing
users to opt in to the new event bubbling functionality.

e hostld string
The optional id property provided on a LayerHost that this Layer should render within. The

https://developer.microsoft.com/en-us/fluentui#/controls/web/Layer

Layer 131

LayerHost does not need to be immediately available but once has been rendered, and if miss-
ing, we’ll avoid trying to render the Layer content until the host is available. If an id is not
provided, we will render the Layer content in a fixed position element rendered at the end of
the document.

¢ insertFirst boolean
Whether the layer should be added as the first child of the host. If true, the layer will be
inserted as the first child of the host By default, the layer will be appended at the end to the
host

* onLayerDidMount () => void
Callback for when the layer is mounted.

¢ onLayerMounted () => void
Callback for when the layer is mounted.

¢ onLayerWillUnmount () => void
Callback for when the layer is unmounted.

o styles IStyleFunctionOrObject<ILayerStyleProps, ILayerStyles>
Call to provide customized styling that will layer on top of the variant rules

¢ theme ITheme
Theme provided by HOC.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
style = "margin-top: 6@px; border: 1px solid navy; padding: 10px; background: #eee;",
Checkbox.shinyInput(ns("useLayer”), value = FALSE, label = "Display a message in a layer"),
reactOutput(ns(”layer”))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$layer <- renderReact({
box <- div(
style = "background-color: #60C7FF; margin: 10px; padding: 10px",
"Hello!"
)
if (isTRUE(input$uselayer)) Layer(box)
»
b))
3

132 Link

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3
library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
LayerHost(id = "host"”, style = list(border = "1px dashed”, padding = 10)),
"Layer children are rendered in the LayerHost",
Layer(hostId = "host"”, "Content")
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
}

Link Link

Description

Links lead to another part of an app, other pages, or help articles. They can also be used to initiate
commands.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Link(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e as string | React.ComponentClass | React.FunctionComponent
A component that should be used as the root element of the link returned from the Link
component.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Link

Link 133

¢ componentRef IRefObject<ILink>
Optional callback to access the ILink interface. Use this instead of ref for accessing the public
methods and properties of the component.

disabled boolean

Whether the link is disabled
¢ keytipProps IKeytipProps
Optional keytip for this Link

* styles IStyleFunctionOrObject<ILinkStyleProps, ILinkStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization.)

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:
 Links visually indicate that they can be clicked, typically by being displayed using the visited

or unvisited link system colors. Traditionally, links are underlined as well, but that approach
is often reserved for body copy links within an article.

Content:

* People should be able to accurately predict the result of selecting a link based on its link text
and optional tooltip.

e Use descriptive, actionable link text when possible. Avoid using URLSs as link text.

* Don’t use if the action is destructive or irreversible. Links aren’t appropriate for commands
with significant consequences.

» Keep discrete links far enough apart that people can differentiate between them and easily
select each one.

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

Link(href = "https://appsilon.com”, "Appsilon")
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

134 List

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

List List

Description

A list provides a base component for rendering large sets of items. It’s agnostic of layout, the tile com-
ponent used, and selection management.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
List(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

* divProps React.HTMLAttributes<HTMLDivElement>
Props to apply to the list root element.
e pages IPage<T>[]
The active pages to be rendered into the list. These will have been rendered using onRenderPage.
* rootRef React.Ref<HTMLDivElement>
The ref to be applied to the list root. The List uses this element to track scroll position and
sizing.
e surfaceElement JSX.Element | null

The content to be rendered as the list surface element. This will have been rendered using
onRenderSurface.

* divProps React.HTMLAttributes<HTMLDivElement>
Props to apply to the list surface element.

* pageElements JSX.Element[]
The content to be rendered representing all active pages.

e pages IPage<T>[]
The active pages to be rendered into the list. These will have been rendered using onRenderPage.

» surfaceRef React.Ref<HTMLDivElement>
A ref to be applied to the surface element. The List uses this element to track content size
and focus.

https://developer.microsoft.com/en-us/fluentui#/controls/web/List

List 135

¢ className string
Optional classname to append to root list.

¢ componentRef IRefObject<IList>
Optional callback to access the IList interface. Use this instead of ref for accessing the public
methods and properties of the component.

getltemCountForPage (itemIndex?: number, visibleRect?: IRectangle) => number
Method called by the list to get how many items to render per page from specified index. In
general, use getPageSpecification instead.

o getKey (item: T, index?: number) => string
Optional callback to get the item key, to be used on render.

getPageHeight (itemIndex?: number, visibleRect?: IRectangle, itemCount?: number) => number
Method called by the list to get the pixel height for a given page. By default, we measure the

first page’s height and default all other pages to that height when calculating the surface space.

It is ideal to be able to adequately predict page heights in order to keep the surface space from

jumping in pixels, which has been seen to cause browser performance issues. In general, use
getPageSpecification instead.

getPageSpecification (itemIndex?: number, visibleRect?: IRectangle) => IPageSpecification
Called by the list to get the specification for a page. Use this method to provide an allocation

of items per page, as well as an estimated rendered height for the page. The list will use this

to optimize virtualization.

getPageStyle (page: IPage<T>) => any
Method called by the list to derive the page style object. For spacer pages, the list will derive
the height and passed in heights will be ignored.

* ignoreScrollingState boolean
Whether to disable scroll state updates. This causes the isScrolling arg in onRenderCell to
always be undefined. This is a performance optimization to let List skip a render cycle by not
updating its scrolling state.

items T[]
Items to render.

onPageAdded (page: IPage<T>) => void
Optional callback for monitoring when a page is added.

¢ onPageRemoved (page: IPage<T>) => void
Optional callback for monitoring when a page is removed.

onPagesUpdated (pages: IPage<T>[]) => void
Optional callback invoked when List rendering completed. This can be on initial mount or
on re-render due to scrolling. This method will be called as a result of changes in List pages
(added or removed), and after ALL the changes complete. To track individual page Add /
Remove use onPageAdded / onPageRemoved instead.

¢ onRenderCell (item?: T, index?: number, isScrolling?: boolean) => React.ReactNode
Method to call when trying to render an item.

* onRenderPage IRenderFunction<IPageProps<T>>
Called when the List will render a page. Override this to control how cells are rendered within

a page.

136 List

¢ onRenderRoot IRenderFunction<IListOnRenderRootProps<T>>
Render override for the element at the root of the List. Use this to apply some final attributes
or structure to the content each time the list is updated with new active pages or items.

¢ onRenderSurface IRenderFunction<IListOnRenderSurfaceProps<T>>
Render override for the element representing the surface of the List. Use this to alter the
structure of the rendered content if necessary on each update.

¢ onShouldVirtualize (props: IListProps<T>) => boolean
Optional callback to determine whether the list should be rendered in full, or virtualized. Vir-
tualization will add and remove pages of items as the user scrolls them into the visible range.
This benefits larger list scenarios by reducing the DOM on the screen, but can negatively affect
performance for smaller lists. The default implementation will virtualize when this callback
is not provided.

* renderCount number
Number of items to render. Defaults to items.length.

* renderedWindowsAhead number
In addition to the visible window, how many windowHeights should we render ahead.

* renderedWindowsBehind number
In addition to the visible window, how many windowHeights should we render behind.

* role string
The role to assign to the list root element. Use this to override the default assignment of ’list’
to the root and ’listitem’ to the cells.

» startIndex number
Index in items array to start rendering from. Defaults to 0.

» usePageCache boolean
Boolean value to enable render page caching. This is an experimental performance optimiza-
tion that is off by default.

e version {}
An object which can be passed in as a fresh instance to force update’ the list.

* page IPage<T>
The allocation data for the page.

e role string
The role being assigned to the rendered page element by the list.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Layout:

 List items are composed of selection, icon, and name columns at minimum. You can include
other columns, such as date modified, or any other metadata field associated with the collec-
tion.

* Avoid using file type icon overlays to denote status of a file as it can make the entire icon
unclear.

List 137

e If there are multiple lines of text in a column, consider the variable row height variant.
* Give columns ample default width to display information.

Content:

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

FAQ:

My scrollable content isn’t updating on scroll, what should I do?:

Add the data-is-scrollable="true" attribute to your scrollable element containing the List.

By default, the List will use the <body> element as the scrollable element. If you contain List
within a scrollable <div> using overflow: auto or scroll, List needs to listen for scroll events
on that element instead. On initialization, List will traverse up the DOM looking for the first
element with the data-is-scrollable attribute to know which element to listen to for knowing
when to re-evaulate the visible window.

My list isn’t re-rendering when I mutate its items, what should I do?:

To determine if List should re-render its contents, the component performs a referential equality
check on the items array in its shouldComponentUpdate method. This is done to minimize the
performance overhead associating with re-rendering the virtualized list pages, as recommended
by the React documentation. As a result of this implementation, List will not determine it
should re-render if values within the array are mutated. To avoid this problem, we recommend
re-creating the items array using a method such as Array.prototype.concat or ES6 spread syntax
shown below:

public appendItems(): void {
const { items } = this.state;

this.setState({
items: [...items, ...[{ name: 'Foo' }, { name: 'Bar' }]]
1))
}

public render(): JSX.Element {
const { items } = this.state;

return <List items={items} />;
3

Since the items array has been re-created, the list will conclude that its contents have changed
and it should re-render the new values.

How do I limit rendering to improve performance?:

Performance is important, and DOM content is expensive. Therefore, limit what you render. The
list component applies this principle by using Ul virtualization. Unlike a simple for loop that
renders all items in a set, a list only renders a subset of items, and as you scroll around, the subset
of rendered content is shifted. This gives a much better experience for large sets, especially when
the per-item components are complex/render-intensive/network-intensive.

A list breaks down the set of items passed in into pages. Only pages within a "materialized
window" are actually rendered. As that window changes due to scroll events, pages that fall
outside that window are removed, and their layout space is remembered and pushed into spacer

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

138 MarqueeSelection

elements. This gives the user the experience of browsing massive amounts of content but only
using a small number of actual elements. This gives the browser much less layout to resolve,
and gives React DOM diffing much less content to worry about.

Note: If onRenderCell is not provided in IListProps, the list will attempt to render the name prop-
erty for each object in the items array.

Examples

library(shiny)
library(shiny.fluent)

items <- do.call(paste®@, replicate(20, sample(LETTERS, 200, TRUE), FALSE))

ui <- function(id) {

ns <- NS(id)

div(
style = "overflow: auto; max-height: 400px",
List(

items = items,
onRenderCell = JS("(item, index) => ‘${index} ${item}‘")
)
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app”))
3

MarqueeSelection MarqueeSelection

Description

The MarqueeSelection component provides a service which allows the user to drag a rectangle to
be drawn around items to select them. This works in conjunction with a selection object, which can
be used to generically store selection state, separate from a component that consumes the state.

MarqueeSelection also works in conjunction with the AutoScroll utility to automatically scroll the
container when we drag a rectangle within the vicinity of the edges.

When a selection rectangle is dragged, we look for elements with the data-selection-index attribute
populated. We get these elements’ boundingClientRects and compare them with the root’s rect to
determine selection state. We update the selection state appropriately.

In virtualization cases where items that were once selected are dematerialized, we will keep the
item in its previous state until we know definitively if it’s on/off. (In other words, this works with
List.)

MarqueeSelection 139

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

MarqueeSelection(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ className string
Additional CSS class(es) to apply to the MarqueeSelection.

e componentRef IRefObject<IMarqueeSelection>
Optional callback to access the IMarqueeSelection interface. Use this instead of ref for ac-
cessing the public methods and properties of the component.

 isDraggingConstrainedToRoot boolean
Optional flag to restrict the drag rect to the root element, instead of allowing the drag rect to
start outside of the root element boundaries.

* isEnabled boolean
Optional flag to control the enabled state of marquee selection. This allows you to render it
and have events all ready to go, but conditionally disable it. That way transitioning between
enabled/disabled generate no difference in the DOM.

¢ onShouldStartSelection (ev: MouseEvent) => boolean
Optional callback that is called, when the mouse down event occurs, in order to determine if
we should start a marquee selection. If true is returned, we will cancel the mousedown event
to prevent upstream mousedown handlers from executing.

* rootProps React.HTMLAttributes<HTMLDivElement>
Optional props to mix into the root DIV element.

* selection ISelection
The selection object to interact with when updating selection changes.

* styles IStyleFunction<IMarqueeSelectionStyleProps, IMarqueeSelectionStyles>
Call to provide customized styling that will layer on top of the variant rules.

e theme ITheme
Theme (provided through customization.)

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

https://developer.microsoft.com/en-us/fluentui#/controls/web/MarqueeSelection

140 MarqueeSelection

Examples

library(shiny)
library(shiny.fluent)

This is an advanced demo showing how you can use virtually all features of Fluent UI
by creating custom components in JS and rendering them with shiny.react.

This example is a translation of the example in
https://developer.microsoft.com/en-us/fluentui#/controls/web/marqueeselection.

Script showing how to:

1. Use mergeStyles and themes from Fluent
2. Define custom components

3. Send results back to Shiny.

customComponent <- function(name, js) {
dependency <- htmltools::htmlDependency(
name = name,

version = "@", # Not used.
src = cChref = ""), # Not used.
head = pasteo(”
<script>
(jsmodule.CustomComponents ??= {}).", name, " = () => {", js, "DO;
</script>
)
)
function(...) shiny.react::reactElement(
module = "CustomComponents”,

name = name,
props = shiny.react::asProps(...),
deps = dependency

”

MarqueeSelectionExample <- customComponent("MarqueeSelectionExample”,
const React = jsmodule['react'];
const Fluent = jsmodule['@fluentui/react'];

const theme = Fluent.getTheme();
const styles = Fluent.mergeStyleSets({
photolList: {

display: 'inline-block',

border: '1px solid ' + theme.palette.neutralTertiary,
margin: 0,

padding: 10,

overflow: 'hidden',
userSelect: 'none',

1

photoCell: {
position: 'relative',
display: 'inline-block',
margin: 2,

MarqueeSelection 141

boxSizing: 'border-box',
background: theme.palette.neutrallLighter,
lineHeight: 100,
verticalAlign: 'middle’,
textAlign: 'center',
selectors: {
'&.is-selected': {
background: theme.palette.themelLighter,
border: '1px solid ' + theme.palette.themePrimary,
1
3
3
checkbox: {
margin: '10px @',
}
D

const useForceUpdate = () => {
const [, setIt] = React.useState(false);
return () => setIt(it => !it);

b

return function(params) {
const forceUpdate = useForceUpdate();
const inputld = params['inputId'];
const photos = params['photos'];

if (window.selection === undefined) {
window.selection = new Fluent.Selection({
items: photos,
onSelectionChanged: function() {
Shiny.setInputValue(inputId, window.selection.getSelectedIndices());
forceUpdate();
}
b
}

const items = photos.map((photo, index) => {
return React.createElement(
'div',
{
key: index,
'data-is-focusable': true,
className: Fluent.css(
styles.photoCell,
window.selection.isIndexSelected(index) && 'is-selected'
),
'data-selection-index': index,
style: { width: photo.width, height: photo.height }
i
index
);
DR

142 MaskedTextField

return React.createElement(
Fluent.MarqueeSelection,
{ selection: window.selection, isEnabled: true 3},
React.createElement('ul', { className: styles.photolList }, items)
)5
b
")

ui <- function(id) {
ns <- NS(id)
taglist(
textOutput (ns("marqueeResult”)),
Label("Drag a rectangle around the items below to select them”),
reactOutput(ns(”marqueeSelection™))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns

photos <- lapply(1:50, function(index) {
randomWidth <- 50 + sample.int(150, 1)
list(
key = index,
url = paste@('http://placehold.it/', randomWidth, 'x100"),
width = randomWidth,

height = 100
)
1)
output$marqueeResult <- renderText({
paste(”"You have selected: ", paste(input$selectedIndices, collapse = ", "))
»

output$marqueeSelection <- renderReact({
MarqueeSelectionExample(
inputld = ns("selectedIndices"”),
photos = photos
)
»
}
)
3
if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

MaskedTextField TextField

MaskedTextField 143

Description

Text fields (TextField) give people a way to enter and edit text. They’re used in forms, modal di-
alogs, tables, and other surfaces where text input is required.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
MaskedTextField(...)

TextField(...)
TextField.shinyInput(inputld, ..., value = defaultValue)

updateTextField.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

e arialLabel string
Aria label for the text field.

* autoAdjustHeight boolean
For multiline text fields, whether or not to auto adjust text field height.

e autoComplete string
Whether the input field should have autocomplete enabled. This tells the browser to display
options based on earlier typed values. Common values are "on’ and ’off” but for all possible
values see the following links: https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/autocomplete#Values
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html#autofill
* borderless boolean
Whether or not the text field is borderless.
e className string
Optional class name that is added to the container of the component.
e componentRef IRefObject<ITextField>

Optional callback to access the ITextField component. Use this instead of ref for accessing
the public methods and properties of the component.

https://developer.microsoft.com/en-us/fluentui#/controls/web/TextField

144 MaskedTextField

defaultValue string
Default value of the text field. Only provide this if the text field is an uncontrolled component;
otherwise, use the value property.

* deferredValidationTime number
Text field will start to validate after users stop typing for deferredvValidationTime millisec-
onds. Updates to this prop will not be respected.

e description string
Description displayed below the text field to provide additional details about what text to enter.

e disabled boolean
Disabled state of the text field.

* errorMessage string | JSX.Element
Static error message displayed below the text field. Use onGetErrorMessage to dynamically
change the error message displayed (if any) based on the current value. errorMessage and
onGetErrorMessage are mutually exclusive (errorMessage takes precedence).

* iconProps IIconProps
Props for an optional icon, displayed in the far right end of the text field.

* inputClassName string
Optional class name that is added specifically to the input/textarea element.

¢ label string
Label displayed above the text field (and read by screen readers).

e mask string
Only used by MaskedTextField: The masking string that defines the mask’s behavior. A
backslash will escape any character. Special format characters are: *9’: [0-9] ’a’: [a-zA-Z]
#: [a-zA-Z0-9]

* maskChar string
Only used by MaskedTextField: The character to show in place of unfilled characters of the
mask.

 maskFormat { [key: string]: RegExp; }
Only used by MaskedTextField: An object defining the format characters and corresponding
regexp values. Default format characters: { ’9’: /[@-9]/, ’a’: /[a-zA-Z]/,’**: /[La-zA-Z0-9]/
}

multiline boolean
Whether or not the text field is a multiline text field.

onChange (event: React.FormEvent<HTMLInputElement | HTMLTextAreaElement>, newValue?: string) =>
Callback for when the input value changes. This is called on both input and change events.
(In a later version, this will probably only be called for the change event.)

* onGetErrorMessage (value: string) => string | JSX.Element | PromiseLike<string | JSX.Element> | un
Function used to determine whether the input value is valid and get an error message if not.
Mutually exclusive with the static string errorMessage (it will take precedence over this).

When it returns string | JSX.Element: - If valid, it returns empty string. - If invalid, it returns the
error message and the text field will show a red border and show an error message below the text
field.

When it returns Promise<string | JSX.Element>: - The resolved value is displayed as the error
message. - If rejected, the value is thrown away.

MaskedTextField 145

* onNotifyValidationResult (errorMessage: string | JSX.Element, value: string | undefined) => void
Function called after validation completes.
* onRenderDescription IRenderFunction<ITextFieldProps>
Custom renderer for the description.
¢ onRenderLabel IRenderFunction<ITextFieldProps>
Custom renderer for the label. If you don’t call defaultRender, ensure that you give your
custom-rendered label an id and that you set the textfield’s aria-labelledby prop to that id.

¢ onRenderPrefix IRenderFunction<ITextFieldProps>
Custom render function for prefix.

¢ onRenderSuffix IRenderFunction<ITextFieldProps>
Custom render function for suffix.

* prefix string
Prefix displayed before the text field contents. This is not included in the value. Ensure a
descriptive label is present to assist screen readers, as the value does not include the prefix.

* readOnly boolean
If true, the text field is readonly.

* resizable boolean
For multiline text fields, whether or not the field is resizable.

e styles IStyleFunctionOrObject<ITextFieldStyleProps, ITextFieldStyles>
Call to provide customized styling that will layer on top of the variant rules.

e suffix string
Suffix displayed after the text field contents. This is not included in the value. Ensure a
descriptive label is present to assist screen readers, as the value does not include the suffix.

* theme ITheme
Theme (provided through customization).

¢ underlined boolean
Whether or not the text field is underlined.

» validateOnFocusIn boolean
Run validation when focus moves into the input, and do not validate on change.

(Unless this prop and/or validateOnFocusOut is set to true, validation will run on every change.)

+ validateOnFocusOut boolean
Run validation when focus moves out of the input, and do not validate on change.

(Unless this prop and/or validateOnFocuslIn is set to true, validation will run on every change.)

» validateOnLoad boolean
Whether validation should run when the input is initially rendered.

e value string
Current value of the text field. Only provide this if the text field is a controlled component
where you are maintaining its current state; otherwise, use the defaultValue property.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

146 MaskedTextField

Best practices

Layout:
* Use a multiline text field when long entries are expected.

e Don’t place a text field in the middle of a sentence, because the sentence structure might
not make sense in all languages. For example, "Remind me in [textfield] weeks" should
instead read, "Remind me in this many weeks: [textfield]".

* Format the text field for the expected entry. For example, when someone needs to enter a
phone number, use an input mask to indicate that three sets of digits should be entered.

Content:

* Include a short label above the text field to communicate what information should be entered.
Don’t use placeholder text instead of a label. Placeholder text poses a variety of accessibility
issues (including possible problems with color/contrast, and people thinking the form input
is already filled out).

e When part of a form, make it clear which fields are required vs. optional. If the input is
required, add "(required)" to the label. Don’t exclusively use "*" to indicate required inputs
as it is often not read by screen readers. For example, "First name (required)".

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

Examples

Example 1
library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

div(
TextField.shinyInput(ns("text")),
textOutput (ns("textValue”))

)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$textValue <- renderText({
sprintf(”Value: %s", input$text)
»
b))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Example 2
library(shiny)
library(shiny.fluent)

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

MessageBar 147

Using custom handler to convert input to uppercase
CustomComponents <- tags$script(HTML(" (function() {

const { InputAdapter } = jsmodule['@/shiny.react'];

const { TextField } = jsmodule['@fluentui/react'];

const CustomComponents = jsmodule['CustomComponents'] ??= {};

CustomComponents.UpperCaseTextField = InputAdapter(TextField, (value, setValue) => ({
value: value.toUpperCase(),
onChange: (e, v) => setValue(v.toUpperCase()),
s
HO;"N

UpperCaseTextField <- function(inputId, ..., value = "") {
shiny.react: :reactElement(
module = "CustomComponents”,
name = "UpperCaseTextField”,
props = shiny.react::asProps(inputld = inputld, ..., value = value),
deps = shinyFluentDependency()
)
3

ui <- function(id) {
ns <- NS(id)
taglist(
CustomComponents,
UpperCaseTextField(ns("uppercase_text")),
textOutput(ns("text"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$text <- renderText(input$uppercase_text)
b))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

MessageBar MessageBar

Description

A banner (MessageBar) displays errors, warnings, or important information about an open app or
file. For example, if a file failed to upload an error message bar should appear.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

https://developer.microsoft.com/en-us/fluentui#/controls/web/MessageBar

148

Usage

MessageBar

MessageBar(...)

MessageBarButton(...)

Arguments

Details

Props to pass to the component. The allowed props are listed below in the De-
tails section.

actions JSX.Element
The actions you want to show on the other side.

arialLabel string
A description of the message bar for the benefit of screen readers.

className string
Additional CSS class(es) to apply to the MessageBar.

componentRef IRefObject<IMessageBar>
Optional callback to access the IMessageBar interface. Use this instead of ref for accessing
the public methods and properties of the component.

dismissButtonAriaLabel string
Aria label on dismiss button if onDismiss is defined.

dismissIconProps IIconProps
Custom icon prop to replace the dismiss icon. If unset, default will be the Fabric Clear icon.

isMultiline boolean
Determines if the message bar is multi lined. If false, and the text overflows over buttons or to
another line, it is clipped.

messageBarIconProps IIconProps
Custom icon prop to replace the message bar icon. If unset, default will be the icon set by
messageBarType.

messageBarType MessageBarType
The type of MessageBar to render.

onDismiss (ev?: React.MouseEvent<HTMLElement | BaseButton | Button>) => any
Whether the message bar has a dismiss button and its callback. If null, we don’t show a
dismiss button.

overflowButtonAriaLabel string
Aria label on overflow button if truncated is defined.

styles IStyleFunctionOrObject<IMessageBarStyleProps, IMessageBarStyles>
Call to provide customized styling that will layer on top of the variant rules.

theme ITheme
Theme (provided through customization.)

truncated boolean

Determines if the message bar text is truncated. If true, a button will render to toggle between
a single line view and multiline view. This prop is for single line message bars with no buttons
only in a limited space scenario.

MessageBar 149

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:

* A message bar is most commonly found near the top of an app, underneath the app’s main com-
mand bar. For example, the Microsoft Office message bar is positioned beneath the Ribbon,
but above the document canvas.

* Multiple message bars can appear at a time, but a given scenario or related set of scenar-
ios should aim to only show one message bar at a time. Message bars are rarely shown in
direct response to an action; rather, they should be shown when there’s something a person
should know about the overall app or document.

» Use the icons options to indicate the message type: the Info icon for information messages;
ShieldAlert icon for security-related messages; the Warning icon for non-blocking errors; Er-
rorBadge icon for critical errors; the Blocked icon for blocking messages; and the Completed
icon for success messages.

Content:
Message bars should include:

Title:

Limit titles to 50 characters (including spaces) to leave room for text expansion when trans-
lated. People should be able to scan the title to determine the purpose of the message. Capital-
ize only the first word of the title and any proper nouns.

Body text:

Describe the information or error state concisely, ideally in a single sentence. Limit the message
to fewer than 512 characters (including spaces) to leave room for text expansion when translated.
Include end punctuation for complete sentences.

Action buttons (Optional):

Offer one to two action buttons to help people solve any errors they’re receiving. Limit button
text to fewer than 50 charactesr (including spaces) to leave room for translation. Action buttons
can have any callback attached to them and should provide people with options to address the
notification and dismiss the message bar.

Link (Optional):
Don’t use buttons when a subtler link will suffice. Reserve the use of a button for when the Mes-
sageBar has a single "hero” action that is useful at that particular moment. Avoid using more
than one button.

Close button:
Always offer a quick way for people to close a message bar, unless there is an issue that must
be resolved immediately, such as an expired subscription.

Examples

library(shiny)
library(shiny.fluent)

150 Modal

ui <- function(id) {
ns <- NS(id)
MessageBar ("Message")

}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Modal Modal

Description

Modals are temporary pop-ups that take focus from the page or app and require people to interact
with them. Unlike a dialog box (Dialog), a modal should be used for hosting lengthy content, such
as privacy statements or license agreements, or for asking people to perform complex or multi-
ple actions, such as changing settings.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Modal(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

» allowTouchBodyScroll boolean
Allow body scroll on content and overlay on touch devices. Changing after mounting has no
effect.

e className string
Optional class name to be added to the root class

e componentRef IRefObject<IModal>
Optional callback to access the IDialog interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ containerClassName string
Optional override for container class

https://developer.microsoft.com/en-us/fluentui#/controls/web/Modal

Modal

Value

151

dragOptions IDragOptions
The options to make the modal draggable

enableAriaHiddenSiblings boolean

Puts aria-hidden=true on all non-ancestors of the current modal, for screen readers. This is an
experimental feature that will be graduated to default behavior after testing. This flag will be
removed with the next major release.

isBlocking boolean
Whether the dialog can be light dismissed by clicking outside the dialog (on the overlay).

isDarkOverlay boolean
Whether the overlay is dark themed.

isModeless boolean

Whether the dialog should be modeless (e.g. not dismiss when focusing/clicking outside of
the dialog). if true: isBlocking is ignored, there will be no overlay (isDarkOverlay is ignored),
isClickableOutsideFocusTrap is true, and forceFocuslInsideTrap is false

isOpen boolean

Whether the dialog is displayed.

layerProps ILayerProps

Defines an optional set of props to be passed through to Layer

onDismiss (ev?: React.MouseEvent<HTMLButtonElement>) => any

A callback function for when the Modal is dismissed light dismiss, before the animation com-
pletes.

onDismissed () => any

A callback function which is called after the Modal is dismissed and the animation is complete.
onLayerDidMount () => void

A callback function for when the Modal content is mounted on the overlay layer

overlay IOverlayProps

Defines an optional set of props to be passed through to Overlay
scrollableContentClassName string

Optional override for scrollable content class

styles IStyleFunctionOrObject<IModalStyleProps, IModalStyles>

Call to provide customized styling that will layer on top of the variant rules.

subtitleAriald string

ARIA id for the subtitle of the Modal, if any

theme ITheme
Theme provided by High-Order Component.

titleAriald string
ARIA id for the title of the Modal, if any

topOffsetFixed boolean
Whether the modal should have top offset fixed once opened and expand from the bottom only
when the content changes dynamically.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

152 Modal

Best practices

Layout:

* Use a variable width with a minimum width of 288 pixels.
¢ Use a variable height with a minimum height of 172 pixels.
* Center vertically and horizontally in the available space.

* Always have at least one focusable element inside a modal.

* Blocking modals (Modeless Modal) should be used very sparingly, only when it’s critical
for people to make a choice or provide information before they can proceed.

* Provide a clear way for people to dismiss the control, such as a Close button, which should
always go in the upper right corner.

Content:

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
taglist(
reactOutput(ns(”"modal”)),
PrimaryButton.shinyInput(ns(”showModal”), text = "Show modal"),
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns
modalVisible <- reactiveVal (FALSE)
observeEvent (input$showModal, modalVisible(TRUE))
observeEvent (input$hideModal, modalVisible(FALSE))
output$modal <- renderReact({
Modal (isOpen = modalVisible(),
Stack(tokens = list(padding = "15px", childrenGap = "10px"),
div(style = list(display = "flex"),
Text("Title"”, variant = "large"),
div(style = list(flexGrow = 1)),
IconButton.shinyInput(
ns("hideModal”),
iconProps = list(iconName = "Cancel”)
),
),
div(
p("A paragraph of text."),
p("Another paragraph.”)
)
)

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

Nav 153

)
b
D
}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
3

Nav Nav

Description

Navs (also called "left nav" or "navigation pane") provide links to the main areas of an app or a site.
In larger configurations, the Nav is always on-screen, usually on the left of the view. In smaller
configurations, the Nav may collapse into a skinnier version or be completely hidden until the user
taps an icon.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Nav(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e link INavLink
(Optional) Link to be rendered.

e arialLabel string
(Optional) The nav container aria label.

¢ className string
Additional css class to apply to the Nav

e componentRef IRefObject<INav>
Optional callback to access the INav interface. Use this instead of ref for accessing the public
methods and properties of the component.

* expandButtonArial.abel string
(Optional) The nav container aria label. The link name is prepended to this label. If not
provided, the aria label will default to the link name.

e groups INavLinkGroup[] | null
A collection of link groups to display in the navigation bar

https://developer.microsoft.com/en-us/fluentui#/controls/web/Nav

154

Value

Nav

* initialSelectedKey string

(Optional) The key of the nav item initially selected.

isOnTop boolean
Indicates whether the navigation component renders on top of other content in the Ul

linkAs IComponentAs<INavButtonProps>
Render a custom link in place of the normal one. This replaces the entire button rather than
simply button content

onLinkClick (ev?: React.MouseEvent<HTMLElement>, item?: INavLink) => void
Function callback invoked when a link in the navigation is clicked

onLinkExpandClick (ev?: React.MouseEvent<HTMLElement>, item?: INavLink) => void
Function callback invoked when the chevron on a link is clicked

onRenderGroupHeader IRenderFunction<IRenderGroupHeaderProps>
Used to customize how content inside the group header is rendered

onRenderLink IRenderFunction<INavLink>
Used to customize how content inside the link tag is rendered

selectedArialabel string
(Deprecated) Use ariaCurrent on links instead

selectedKey string
(Optional) The key of the nav item selected by caller.

styles IStyleFunctionOrObject<INavStyleProps, INavStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

Example 1
library(shiny)
library(shiny.fluent)

navigation_styles <- list(

)

root = list(

height = "100%",

boxSizing = "border-box",
border = "1px solid #eee",
overflowY = "auto”

link_groups <- list(

list(

links = list(
list(

Nav

name = "Home",

expandArialabel = "Expand Home section”,
collapseArialabel = "Collapse Home section”,

links = list(
list(
name = "Activity"”,

url = "http://msn.com

key = "key1",
target = "_blank”
),
list(
name = "MSN",

url = "http://msn.com

disabled = TRUE,

key = "key2",
target = "_blank”
)
),
isExpanded = TRUE
),
list(
name = "Documents”,
url = "http://example.com”,
key = "key3",
isExpanded = TRUE
),
list(
name = "Pages”,
url = "http://msn.com”,
key = "key4"
),
list(
name = "Notebook”,
url = "http://msn.com”,
key = "key5",
disabled = TRUE
),
list(
name = "Communication and Media”,
url = "http://msn.com”,
key = "key6"
),
list(
name = "News",
url = "http://cnn.com”,
icon = "News",
key = "key7",
target = "_blank”,
iconProps = list(

iconName = "News",
styles = list(
root = list(

fontSize = 20,

n

’

155

156 Nav

color = "#106ebe”

ui <- function(id) {
ns <- NS(id)
Nav (
groups = link_groups,
selectedKey = "key1”,
styles = navigation_styles
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
}

Example 2
library(shiny)
library(shiny.fluent)

Custom rendering of group headers
navigation_styles <- list(
root = list(
height = "100%",
width = "30%",

boxSizing = "border-box",
border = "1px solid #eee",
overflowY = "auto”
)
)
link_groups <- list(
list(
name = "Pages”,

links = list(
list(name = "Activity"),

list(name = "News")
)
),
list(
name = "More Pages”,

links = list(
list(name = "Settings"),

OverflowSet
list(name = "Notes")
)
)
)
ui <- function(id) {
fluidPage(
Nav (

groups = link_groups,
selectedKey = "keyl”,
styles = navigation_styles,

157

onRenderGroupHeader = JS("group => React.createElement('h3', null, group.name)")

)
)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

OverflowSet OverflowSet

Description

The OverflowSet is a flexible container component that is useful for displaying a primary set of
content with additional content in an overflow callout. Note that the example below is only an

example of how to render the component, not a specific use case.

Accessibility:

By default, the OverflowSet is simply role=group. If you used as a menu, you will need to add
role="menubar" and add proper aria roles to each rendered item (menuitem, menuitemcheckbox,

menuitemradio)

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.

Usage

OverflowSet(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-

tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/OverflowSet

158

Details

Value

OverflowSet

* key string

Unique id to identify the item.
keytipProps IKeytipProps
Optional keytip for the overflowSetltem.

className string
Class name

componentRef IRefObject<IOverflowSet>
Gets the component ref.

doNotContainWithinFocusZone boolean

If true do not contain the OverflowSet inside of a FocusZone, otherwise the OverflowSet will
contain a FocusZone. If this is set to true focusZoneProps will be ignored. Use one or the
other.

focusZoneProps IFocusZoneProps
Custom properties for OverflowSet’s FocusZone. If doNotContainWithinFocusZone is set to
true focusZoneProps will be ignored. Use one or the other.

items IOverflowSetItemProps[]
An array of items to be rendered by your onRenderItem function in the primary content area

itemSubMenuProvider (item: IOverflowSetItemProps) => any[] | undefined
Function that will take in an IOverflowSetltemProps and return the subMenu for that item.
If not provided, will use ’item.subMenuProps.items’ by default. This is only used if your
overflow set has keytips.

keytipSequences string[]
Optional full keytip sequence for the overflow button, if it will have a keytip.

onRenderItem (item: IOverflowSetItemProps) => any
Method to call when trying to render an item.

onRenderOverflowButton IRenderFunction<any[]>
Rendering method for overflow button and contextual menu. The argument to the function is
the overflowItems passed in as props to this function.

overflowItems IOverflowSetItemProps[]
An array of items to be passed to overflow contextual menu

overflowSide 'start' | 'end'

Controls wether or not the overflow button is placed at the start or end of the items. This gives
a reveresed visual behavior but maintains correct keyboard navigation.

role string

The role for the OverflowSet.

styles IStyleFunctionOrObject<IOverflowSetProps, IOverflowSetStyles>
Call to provide customized styling that will layer on top of the variant rules.

vertical boolean
Change item layout direction to vertical/stacked. If role is set to menubar, vertical={true}
will also add proper aria-orientation.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

OverflowSet 159

Examples

library(shiny)
library(shiny.fluent)

items <- list(
list(key = "item1", icon = "Add"”, name = "Link 1"),
list(key = "item2", icon = "Upload”, name = "Link 2"),

list(key = "item3", icon = "Share”, name = "Link 3")
)
overflowItems <- list(
list(key = "item4", icon = "Mail”, name = "Overflow Link 1"),
list(key = "item5", icon = "Calendar”, name = "Overflow Link 2")
)

onRenderItem <- JS("item =>
jsmodule['react'].createElement(jsmodule['@fluentui/react'].CommandBarButton, {
role: 'menuitem',
iconProps: { iconName: item.icon },
styles: {
root: { padding: '10px' }
3
H
")
onRenderOverflowButton <- JS("overflowItems =>
jsmodule['react'].createElement(jsmodule['@fluentui/react'].CommandBarButton, {
role: 'menuitem',
title: 'More items',
styles: {
root: { padding: '10px' }
1
menulconProps: { iconName: 'More' },
menuProps: { items: overflowItems }
b))
")

ui <- function(id) {
ns <- NS(id)
OverflowSet(
vertical = TRUE,
items = items,
overflowItems = overflowItems,
onRenderItem = onRenderItem,
onRenderOverflowButton = onRenderOverflowButton
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))

160 Overlay

Overlay Overlay

Description

Overlays are used to render a semi-transparent layer on top of existing UI. Overlays help focus the
user on the content that sits above the added layer and are often used to help designate a modal or
blocking experience. Overlays can be seen used in conjunction with Panels and Dialogs.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Overlay(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

¢ allowTouchBodyScroll boolean
Allow body scroll on touch devices. Changing after mounting has no effect.

e className string
Additional css class to apply to the Overlay

¢ componentRef IRefObject<IOverlay>
Gets the component ref.

* isDarkThemed boolean
Whether to use the dark-themed overlay.

onClick () => void

e styles IStyleFunctionOrObject<IOverlayStyleProps, IOverlayStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Overlay

Panel 161

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(ns(”toggleOverlay”), text = "Open Overlay”),
reactOutput(ns(”overlay"”))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {

ns <- session$ns
show <- reactiveVal(FALSE)
observeEvent (input$toggleOverlay, show(!show()))
output$overlay <- renderReact({

if (show()) {

Overlay(
onClick = JS(pasted(
"function() {",

" Shiny.setInputValue('", ns("toggleOverlay”), "', Math.random());",
nyn
),
isDarkThemed = TRUE,
div(
style = "background: white; width: 50vw; height: 2@rem; margin: auto;"”,
div(
style = "padding: 2rem;",
h1("Inside Overlay"),
p("Click anywhere to hide.")
)
)
)
}
»
D)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Panel Panel

Description

Panels are overlays that contain supplementary content and are used for complex creation, edit, or
management experiences. For example, viewing details about an item in a list or editing settings.

162 Panel

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Panel(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

allowTouchBodyScroll boolean
Allow body scroll on content and overlay on touch devices. Changing after mounting has no
effect.

e className string
Additional css class to apply to the Panel

¢ closeButtonAriaLabel string
Aria label on close button

* componentld string
Deprecated property. Serves no function.

e componentRef IRefObject<IPanel>
Optional callback to access the IPanel interface. Use this instead of ref for accessing the public
methods and properties of the component.

¢ customWidth string
Custom panel width, used only when type is set to PanelType.custom.

* elementToFocusOnDismiss HTMLElement
Sets the HTMLElement to focus on when exiting the FocusTrapZone.

 firstFocusableSelector string
Indicates the selector for first focusable item. Deprecated, use focusTrapZoneProps.

* focusTrapZoneProps IFocusTrapZoneProps
Optional props to pass to the FocusTrapZone component to manage focus in the panel.

¢ forceFocusInsideTrap boolean
Indicates whether Panel should force focus inside the focus trap zone. If not explicitly speci-

fied, behavior aligns with FocusTrapZone’s default behavior. Deprecated, use focusTrapZoneProps.

¢ hasCloseButton boolean
Has the close button visible.

¢ headerClassName string

Optional parameter to provider the class name for header text
¢ headerText string

Header text for the Panel.

* headerTextProps React.HTMLAttributes<HTMLDivElement>
The props for header text container.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Panel

Panel

163

ignoreExternalFocusing boolean
Indicates if this Panel will ignore keeping track of HTMLElement that activated the Zone.
Deprecated, use focusTrapZoneProps.

isBlocking boolean
Whether the panel uses a modal overlay or not

isFooterAtBottom boolean

Determines if content should stretch to fill available space putting footer at the bottom of the
page

isHiddenOnDismiss boolean

Whether the panel is hidden on dismiss, instead of destroyed in the DOM. Protects the contents
from being destroyed when the panel is dismissed.

isLightDismiss boolean
Whether the panel can be light dismissed.

isOpen boolean

Whether the panel is displayed. If true, will cause panel to stay open even if dismissed. If
false, will cause panel to stay hidden. If undefined, will allow the panel to control its own
visility through open/dismiss methods.

layerProps ILayerProps
Optional props to pass to the Layer component hosting the panel.

onDismiss (ev?: React.SyntheticEvent<HTMLElement>) => void

A callback function for when the panel is closed, before the animation completes. If the panel
should NOT be dismissed based on some keyboard event, then simply call ev.preventDefault()
on it

onDismissed () => void

A callback function which is called after the Panel is dismissed and the animation is complete.
(If you need to update the Panel’s isOpen prop in response to a dismiss event, use onDismiss
instead.)

onLightDismissClick () => void

Optional custom function to handle clicks outside the panel in lightdismiss mode
onOpen () => void

A callback function for when the Panel is opened, before the animation completes.

onOpened () => void
A callback function for when the Panel is opened, after the animation completes.

onOuterClick () => void
Optional custom function to handle clicks outside this component

onRenderBody IRenderFunction<IPanelProps>
Optional custom renderer for body region. Replaces any children passed into the component.

onRenderFooter IRenderFunction<IPanelProps>
Optional custom renderer for footer region. Replaces sticky footer.

onRenderFooterContent IRenderFunction<IPanelProps>
Custom renderer for content in the sticky footer

onRenderHeader IPanelHeaderRenderer
Optional custom renderer for header region. Replaces current title

164 Panel

* onRenderNavigation IRenderFunction<IPanelProps>
Optional custom renderer navigation region. Replaces the region that contains the close but-
ton.

* onRenderNavigationContent IRenderFunction<IPanelProps>
Optional custom renderer for content in the navigation region. Replaces current close button.

* overlayProps IOverlayProps
Optional props to pass to the Overlay component that the panel uses.

styles IStyleFunctionOrObject<IPanelStyleProps, IPanelStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

* type PanelType
Type of the panel.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:
 Use for self-contained experiences where someone doesn’t need to interact with the app view
to complete the task.
* Consider how the panel and its contained contents will scale across responsive web break-
points.
Header:
¢ Include a close button in the top-right corner.
 Lock the title to the top of the panel.
* The header can contain a variety of components. Components are stacked under the main
title, locked to the top, and push content down.
Body:
* The body is a flexible container that can house a wide variety of components, content, and
formatting.
 Content can scroll.

Footer:

* Standard footers include primary and secondary buttons to confirm or cancel the changes
or task.

* Read-only panels may contain a single Close button.
* Lock the footer to the bottom of the panel.

Content:
Title:
« Titles should explain the panel content in clear, concise, and specific terms.
* Keep the length of the title to one line, if possible.

Panel 165

» Use sentence-style capitalization—only capitalize the first word. For more info, see [Capitalization]
in the Microsoft Writing Style Guide.

* Don’t put a period at the end of the title.

[capitalization]: https://docs.microsoft.com/style-guide/capitalization

Button labels:

* Be concise. Limit labels to one or two words. Usually a single verb is best. Include a noun

if there’s any room for interpretation about what the verb means. For example, “Save” or
“Save settings.”

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(ns(”showPanel”), text = "Open panel”),
reactOutput(ns(”reactPanel”))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
ns <- session$ns
isPanelOpen <- reactiveVal(FALSE)
output$reactPanel <- renderReact({
Panel (
headerText = "Sample panel”,
isOpen = isPanelOpen(),
"Content goes here.”,
onDismiss = JS(paste@(
"function() {",
" Shiny.setInputValue('"”, ns("hidePanel”), "', Math.random());",
nyn
D))
)
»
observeEvent (input$showPanel, isPanelOpen(TRUE))
observeEvent (input$hidePanel, isPanelOpen(FALSE))
1))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

166 Persona

parseTheme parseTheme

Description

Reads a theme JSON generated by Theme Designer: https://fabricweb.z5.web.core.windows.
net/pr-deploy-site/refs/heads/master/theming-designer/ and parses it to an object di-
gestable by ThemeProvider

Usage
parseTheme(path = NULL, json = NULL)

Arguments
path A path to JSON file containing the theme created in Theme Designer
json A JSON string containing the theme created in Theme Designer
Value

A list with Fluent theme that can be used in ThemeProvider

See Also

ThemeProvider () for usage of this function

Persona Persona

Description

A persona is a visual representation of a person across products, typically showcasing the image
that person has chosen to upload themselves. The control can also be used to show that person’s
online status.

The complete control inclues an individual’s avatar (an uploaded image or a composition of the
person’s initials on a background color), their name or identification, and online status.

The persona control is used in the PeoplePicker and Facepile controls.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Persona(...)

https://fabricweb.z5.web.core.windows.net/pr-deploy-site/refs/heads/master/theming-designer/
https://fabricweb.z5.web.core.windows.net/pr-deploy-site/refs/heads/master/theming-designer/
https://developer.microsoft.com/en-us/fluentui#/controls/web/Persona

Persona 167

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

¢ className string
Additional css class to apply to the PersonaCoin

¢ componentRef IRefObject<{}>
Gets the component ref.

e styles IStyleFunctionOrObject<IPersonaCoinStyleProps, IPersonaCoinStyles>
Call to provide customized styling that will layer on top of the variant rules

¢ componentRef IRefObject<{}>
Gets the component ref.

» styles IStyleFunctionOrObject<IPersonaPresenceStyleProps, IPersonaPresenceStyles>
Call to provide customized styling that will layer on top of the variant rules

e className string
Additional CSS class(es) to apply to the Persona

¢ componentRef IRefObject<IPersona>
Optional callback to access the IPersona interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ onRenderOptionalText IRenderFunction<IPersonaProps>
Optional custom renderer for the optional text.

¢ onRenderPrimaryText IRenderFunction<IPersonaProps>
Optional custom renderer for the primary text.

* onRenderSecondaryText IRenderFunction<IPersonaProps>
Optional custom renderer for the secondary text.

¢ onRenderTertiaryText IRenderFunction<IPersonaProps>
Optional custom renderer for the tertiary text.

* styles IStyleFunctionOrObject<IPersonaStyleProps, IPersonaStyles>
Call to provide customized styling that will layer on top of variant rules

* allowPhonelnitials boolean
Whether initials are calculated for phone numbers and number sequences. Example: Set
property to true to get initials for project names consisting of numbers only.

e coinProps IPersonaCoinProps
Optional HTML element props for Persona coin.

* coinSize number
Optional custom persona coin size in pixel.

* hidePersonaDetails boolean
Whether to not render persona details, and just render the persona image/initials.

¢ imageAlt string
Alt text for the image to use. Defaults to an empty string.

168 Persona

* imagelnitials string
The user’s initials to display in the image area when there is no image.

* imageShouldFadeln boolean
If true, adds the css class ’is-fadeln’ to the image.

* imageShouldStartVisible boolean
If true, the image starts as visible and is hidden on error. Otherwise, the image is hidden until
it is successfully loaded. This disables imageShouldFadeln.

* imageUrl string
Url to the image to use, should be a square aspect ratio and big enough to fit in the image area.

« initialsColor PersonalnitialsColor | string
The background color when the user’s initials are displayed.

* isOutOfOffice boolean
This flag can be used to signal the persona is out of office. This will change the way the
presence icon looks for statuses that support dual-presence.

* onPhotoLoadingStateChange (newImageloadState: ImagelLoadState) => void
Optional callback for when loading state of the photo changes

¢ onRenderCoin IRenderFunction<IPersonaSharedProps>
Optional custom renderer for the coin

¢ onRenderlnitials IRenderFunction<IPersonaSharedProps>
Optional custom renderer for the initials

¢ onRenderPersonaCoin IRenderFunction<IPersonaSharedProps>
Optional custom renderer for the coin

* optionalText string
Optional text to display, usually a custom message set. The optional text will only be shown
when using size100.

* presence PersonaPresence
Presence of the person to display - will not display presence if undefined.

o presenceColors { available: string; away: string; busy: string; dnd: string; offline:
string; oof: string; background: string; }
The colors to be used for the presence-icon and it’s background

» presenceTitle string
Presence title to be shown as a tooltip on hover over the presence icon.

* primaryText string
Primary text to display, usually the name of the person.

* secondaryText string
Secondary text to display, usually the role of the user.

» showlnitialsUntillmagel.oads boolean
If true renders the initials while the image is loading. This only applies when an imageUrl is
provided.

* showSecondaryText boolean

* showUnknownPersonaCoin boolean
If true, show the special coin for unknown persona. It has *?
font and background colors

>

in place of initials, with static

Persona 169

e size PersonaSize
Decides the size of the control.

e tertiaryText string
Tertiary text to display, usually the status of the user. The tertiary text will only be shown
when using size72 or size100.

e text string
Primary text to display, usually the name of the person.

* theme ITheme
Theme provided by High-Order Component.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:

» Use the 24-pixel persona in text fields in read-only mode or in experiences like multicol-
umn lists which need compact persona representations.

 Use the 32-pixel persona in text fields in edit mode.
* Use the 32-pixel, 40-pixel, and 48-pixel persona in menus and list views.
* Use the 72-pixel and 100-pixel persona in profile cards and views.

Content:

* Change the values of the color swatches in high contrast mode.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

Persona(
imageInitials = "AL",
text = "Annie Lindqvist”,
secondaryText = "Software Engineer”,
presence = 4

)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

170 Pivot

Pivot Pivot

Description

The Pivot control and related tabs pattern are used for navigating frequently accessed, distinct con-
tent categories. Pivots allow for navigation between two or more content views and relies on text
headers to articulate the different sections of content.

» Tapping on a pivot item header navigates to that header’s section content.
Tabs are a visual variant of Pivot that use a combination of icons and text or just icons to articulate

section content.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Pivot(...)

PivotItem(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

» alwaysRender boolean
Defines whether to always render the pivot item (regardless of whether it is selected or not).
Useful if you’re rendering content that is expensive to mount.

e ariaLabel string
The aria label of each pivot link which will read by screen reader instead of linkText.

Note that unless you have compelling requirements you should not override aria-label.
¢ componentRef IRefObject<{}>
Gets the component ref.

* headerButtonProps IButtonProps | { [key: string]l: string | number | boolean; }
Props for the header command button. This provides a way to pass in native props, such as
data-* and aria-*, for each pivot header/link element.

* headerText string
The text displayed of each pivot link.

¢ itemCount number | string
Defines an optional item count displayed in parentheses just after the 1inkText.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Pivot

Pivot

171

Examples: completed (4), Unread (99+)

itemIcon string
An optional icon to show next to the pivot link.

itemKey string
An required key to uniquely identify a pivot item.

Note: The ’key’ from react props cannot be used inside component.

keytipProps IKeytipProps
Optional keytip for this Pivotltem.

linkText string
The text displayed of each pivot link - renaming to headerText.

onRenderItemLink IRenderFunction<IPivotItemProps>
Optional custom renderer for the pivot item link.

className string
Additional css class to apply to the Pivot

componentRef IRefObject<IPivot>
Optional callback to access the IPivot interface. Use this instead of ref for accessing the public
methods and properties of the component.

defaultSelectedIndex number
Default selected index for the pivot. Only provide this if the pivot is an uncontrolled compo-
nent; otherwise, use the selectedKey property.

This property is also mutually exclusive with defaultSelectedKey.

defaultSelectedKey string
Default selected key for the pivot. Only provide this if the pivot is an uncontrolled component;
otherwise, use the selectedKey property.

This property is also mutually exclusive with defaultSelectedIndex.

getTabld (itemKey: string, index: number) => string
Callback to customize how IDs are generated for each tab header. Useful if you’re rendering
content outside and need to connect aria-labelledby.

headersOnly boolean

Whether to skip rendering the tabpanel with the content of the selected tab. Use this prop if
you plan to separately render the tab content and don’t want to leave an empty tabpanel in the
page that may confuse Screen Readers.

initialSelectedIndex number
Index of the pivot item initially selected. Mutually exclusive with initialSelectedKey.
Only provide this if the pivot is an uncontrolled component; otherwise, use selectedKey.

initialSelectedKey string
Key of the pivot item initially selected. Mutually exclusive with initialSelectedIndex.
Only provide this if the pivot is an uncontrolled component; otherwise, use selectedKey.

linkFormat PivotLinkFormat
PivotLinkFormat to use (links, tabs)

172 ProgressIndicator

¢ linkSize PivotLinkSize
PivotLinkSize to use (normal, large)

¢ onLinkClick (item?: PivotItem, ev?: React.MouseEvent<HTMLElement>) => void
Callback for when the selected pivot item is changed.

* selectedKey string | null
Key of the selected pivot item. Updating this will override the Pivot’s selected item state. Only
provide this if the pivot is a controlled component where you are maintaining the current state;
otherwise, use defaultSelectedKey.

o styles IStyleFunctionOrObject<IPivotStyleProps, IPivotStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
Pivot(
PivotItem(headerText = "Tab 1", Label("Hello 1")),
PivotItem(headerText = "Tab 2", Label("Hello 2"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

ProgressIndicator ProgressIndicator

Description

ProgressIndicators are used to show the completion status of an operation lasting more than 2 sec-
onds. If the state of progress cannot be determined, use a Spinner instead. ProgressIndicators can
appear in a new panel, a flyout, under the Ul initiating the operation, or even replacing the initiating
UI, as long as the UI can return if the operation is canceled or is stopped.

ProgressIndicator 173

ProgressIndicators feature a bar showing total units to completion, and total units finished. The
description of the operation appears above the bar, and the status in text appears below. The de-
scription should tell someone exactly what the operation is doing. Examples of formatting include:

* [Object] is being [operation namel], or
* [Object] is being [operation name] to [destination name] or
* [Object] is being [operation name] from [source name] to [destination name]

Status text is generally in units elapsed and total units. If the operation can be canceled, an “X” icon
is used and should be placed in the upper right, aligned with the baseline of the operation name.
When an error occurs, replace the status text with the error description using ms-fontColor-redDark.

Real-world examples include copying files to a storage location, saving edits to a file, and more.
Use units that are informative and relevant to give the best idea to users of how long the operation
will take to complete. Avoid time units as they are rarely accurate enough to be trustworthy. Also,
combine steps of a complex operation into one total bar to avoid “rewinding” the bar. Instead
change the operation description to reflect the change if necessary. Bars moving backwards reduce
confidence in the service.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ProgressIndicator(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e ariaValueText string
Text alternative of the progress status, used by screen readers for reading the value of the
progress.

e barHeight number
Height of the ProgressIndicator

* className string
Additional css class to apply to the ProgressIndicator

¢ description React.ReactNode

Text describing or supplementing the operation. May be a string or React virtual elements.
* label React.ReactNode

Label to display above the control. May be a string or React virtual elements.

* onRenderProgress IRenderFunction<IProgressIndicatorProps>
A render override for the progress track.

* percentComplete number
Percentage of the operation’s completeness, numerically between 0 and 1. If this is not set,
the indeterminate progress animation will be shown instead.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ProgressIndicator

174 Rating

* progressHidden boolean
Whether or not to hide the progress state.

e styles IStyleFunctionOrObject<IProgressIndicatorStyleProps, IProgressIndicatorStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

e title string
Deprecated at v0.43.0, to be removed at \>= v0.53.0. Use label instead.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
ProgressIndicator(
label = "Example title”,
description = "Example description”
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

Rating Rating

Description

Ratings show people’s opinions of a product, helping others make more informed purchasing deci-
sions. People can also rate products they’ve purchased.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Rating

Rating 175

Usage
Rating(...)
Rating.shinyInput(inputId, ..., value = defaultValue)

updateRating.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

» allowZeroStars boolean
Allow the rating value to be set to 0 instead of a minimum of 1.

¢ ariaLabelFormat string
Optional label format for a rating star that will be read by screen readers. Can be used like
"{0} of {1} stars selected", where {0} will be substituted by the current rating and {1} will be
substituted by the max rating.

e ariaLabelld string
Deprecated: Optional id of label describing this instance of Rating.

¢ componentRef IRefObject<IRating>
Optional callback to access the IRating interface. Use this instead of ref for accessing the
public methods and properties of the component.

e getArialLabel (rating: number, max: number) => string

e icon string
Custom icon

e max number
Maximum rating, defaults to 5, has to be \>= min

e min number
Minimum rating, defaults to 1, has to be \>= 0

¢ onChange (event: React.FocusEvent<HTMLElement>, rating?: number) => void
Callback issued when the rating changes.

¢ onChanged (rating: number) => void

176 Rating

* rating number
Selected rating, has to be an integer between min and max

readOnly boolean
Optional flag to mark rating control as readOnly

e size RatingSize
Size of rating, defaults to small

* styles IStyleFunctionOrObject<IRatingStyleProps, IRatingStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization.)

* unselectedIcon string
Custom icon for unselected rating elements.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

* Make it clear which item the rating pertains to by making sure the layout and grouping are
clear when several items are on the page.

* Don’t use the rating component for data that has a continuous range, such as the brightness
of a photo. Instead, use a slider.

Content:

¢ Use a five-star rating system.

» Use sentence-style capitalization—only capitalize the first word. For more info, see Capital-
ization in the Microsoft Writing Style Guide.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
Rating.shinyInput(ns(”rating”), value = 2),
textOutput(ns("ratingValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$ratingValue <- renderText({
sprintf(”Value: %s"”, input$rating)

https://docs.microsoft.com/style-guide/capitalization
https://docs.microsoft.com/style-guide/capitalization

ResizeGroup 177

byl
D
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
}

ResizeGroup ResizeGroup

Description

ResizeGroup is a React component that can be used to help fit the right amount of content within
a container. The consumer of the ResizeGroup provides some initial data, a reduce function, and a
render function. The render function is responsible for populating the contents of a the container
when given some data. The initial data should represent the data that should be rendered when the
ResizeGroup has infinite width. If the contents returned by the render function do not fit within the
ResizeGroup, the reduce function is called to get a version of the data whose rendered width should
be smaller than the data that was just rendered.

An example scenario is shown below, where controls that do not fit on screen are rendered in an
overflow menu. The data in this situation is a list of *primary’ controls that are rendered on the top
level and a set of overflow controls rendered in the overflow menu. The initial data in this case has
all the controls in the primary set. The implementation of onReduceData moves a control from the
overflow well into the primary control set.

This component queries the DOM for the dimensions of elements. Too many of these dimension
queries will negatively affect the performance of the component and could cause poor interactive
performance on websites. One way to reduce the number of measurements performed by the com-
ponent is to provide a cacheKey in the initial data and in the return value of onReduceData. Two
data objects with the same cacheKey are assumed to have the same width, resulting in measure-
ments being skipped for that data object. In the controls with an overflow example, the cacheKey is
simply the concatenation of the keys of the controls that appear in the top level.

There is a boolean context property (isMeasured) added to let child components know if they are
only being used for measurement purposes. When isMeasured is true, it will signify that the com-
ponent is not the instance visible to the user. This will not be needed for most scenarios. It is
intended to be used to to skip unwanted side effects of mounting a child component more than
once. This includes cases where the component makes API requests, requests focus to one of its
elements, expensive computations, and/or renders markup unrelated to its size. Be careful not to
use this property to change the components rendered output in a way that effects it size in any way.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

ResizeGroup(...)

https://developer.microsoft.com/en-us/fluentui#/controls/web/ResizeGroup

178 ResizeGroup
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

Value

e className string

Additional css class to apply to the Component

componentRef IRefObject<IResizeGroup>
Optional callback to access the IResizeGroup interface. Use this instead of ref for accessing
the public methods and properties of the component.

data any

Initial data to be passed to the onRenderData function. When there is no onGrowData pro-
vided, this data should represent what should be passed to the render function when the parent
container of the ResizeGroup is at its maximum supported width. A cacheKey property may
optionally be included as part of the data. Two data objects with the same cacheKey will be
assumed to take up the same width and will prevent measurements. The type of cacheKey is
a string.

dataDidRender (renderedData: any) => void

Function to be called every time data is rendered. It provides the data that was actually ren-
dered. A use case would be adding telemetry when a particular control is shown in an overflow
well or dropped as a result of onReduceData or to count the number of renders that an imple-
mentation of onReduceData triggers.

direction ResizeGroupDirection
Direction of this resize group, vertical or horizontal

onGrowData (prevData: any) => any
Function to be performed on the data in order to increase its width. It is called in scenar-
ios where the container has more room than the previous render and we may be able to fit
more content. If there are no more scaling operations to perform on teh data, it should return
undefined to prevent an infinite render loop.

onReduceData (prevData: any) => any

Function to be performed on the data in order to reduce its width and make it fit into the given
space. If there are no more scaling steps to apply, it should return undefined to prevent an
infinite render loop.

onRenderData (data: any) => JSX.Element
Function to render the data. Called when rendering the contents to the screen and when ren-
dering in a hidden div to measure the size of the contents.

styles IStyleFunctionOrObject<IResizeGroupStyleProps, IResizeGroupStyles>
Call to provide customized styling that will layer on top of the variant rules

theme ITheme
Theme provided by HOC.

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

runExample 179

Examples

library(shiny)
library(shiny.fluent)

data <- list(
items = list(
"many"”, "strings"”, "with"”, "varying”, "length”, "sometimes”, "very", "short”,
"other"”, "times", "extraordinarily”, "long"
)
)

onRenderData <- JS("data =>
data.items.map(item =>
jsmodule['react'].createElement('div"',

{
style: {
display: 'inline-block',
backgroundColor: 'orange',
padding: '10px',
margin: '10px',
fontSize: '20px',
}
h
item
)
)
)

onReduceData <- JS("data => ({ items: data.items.slice(@, -1) })")

ui <- function(id) {
ns <- NS(id)
div(
p("Resize the browser to see how the elements are hidden when they do not fit:"),
ResizeGroup(
data = data,
onRenderData = onRenderData,
onReduceData = onReduceData

)

)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

runExample Run example shiny.fluent apps.

180 ScrollablePane

Description

Based on shiny::runExample, and takes the same arguments.

Usage

runExample(
example = NA,
port = getOption("shiny.port”),
launch.browser = getOption("shiny.launch.browser”, interactive()),
host = getOption("shiny.host"”, "127.0.0.1"),

display.mode = c("auto”, "normal”, "showcase")
)
Arguments
example Example to run. NA to list the examples.
port The TCP port that the application should listen on

launch.browser Whether to open the app in a browser
host The IPv4 address to listen on.
display.mode Display mode for the app.

Value

This function normally does not return; interrupt R to stop the application (usually by pressing
Ctrl+C or Esc).

ScrollablePane ScrollablePane

Description

A scrollable pane (ScrollablePane) is a helper component that’s used with the Sticky component.
It will "stick" to the top or bottom of the scrollable region and remain visible.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
ScrollablePane(...)

Sticky(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

https://developer.microsoft.com/en-us/fluentui#/controls/web/ScrollablePane

ScrollablePane 181

Details
¢ className string
Additional css class to apply to the ScrollablePane

¢ componentRef IRefObject<IScrollablePane>
Optional callback to access the IScrollablePane interface. Use this instead of ref for accessing
the public methods and properties of the component.

* initialScrollPosition number
Sets the initial scroll position of the ScrollablePane

¢ scrollbarVisibility ScrollbarVisibility

* styles IStyleFunctionOrObject<IScrollablePaneStyleProps, IScrollablePaneStyles>
Call to provide customized styling that will layer on top of the variant rules

¢ theme ITheme
Theme provided by HOC.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:
* Use the sticky component on block-level elements.
* Sticky components should ideally be section headers and/or footers.

* Useposition: absolute. Ensure that the parent element has an explicit height and position:
relative, or has space already allocated for the scrollable pane.

* Ensure that the total height of Sticky components does not exceed the height of the ScrollablePane.

Examples

library(shiny)
library(shiny.fluent)

pane <- function(header, paragraphs) (

div(
Sticky(
div(
style = "background-color: #80CAF1; border-top: 1px solid; border-bottom: 1px solid”,
header
)
),
stringi::stri_rand_lipsum(paragraphs)
)

)

ui <- function(id) {
ns <- NS(id)
ScrollablePane(

182 SearchBox

styles = list(
root = list(position = "relative”, height = "500px", width = "400px")
),
pane("Some text"”, 3),
pane("A lot of text”, 5),
pane("Just a short ending”, 1)
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

SearchBox SearchBox

Description

A search box (SearchBox) provides an input field for searching content within a site or app to find spe-
cific items.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
SearchBox(...)

SearchBox.shinyInput(inputld, ..., value = defaultValue)

updateSearchBox.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.

session Object passed as the session argument to Shiny server.

https://developer.microsoft.com/en-us/fluentui#/controls/web/SearchBox

SearchBox 183

Details

e arialLabel string
The aria label of the SearchBox for the benefit of screen readers.

e className string
CSS class to apply to the SearchBox.

* clearButtonProps IButtonProps
The props for the clear button.

* componentRef IRefObject<ISearchBox>
Optional callback to access the ISearchBox interface. Use this instead of ref for accessing the
public methods and properties of the component.

¢ defaultValue string
The default value of the text in the SearchBox, in the case of an uncontrolled component. This
prop is being deprecated since so far, uncontrolled behavior has not been implemented.

¢ disableAnimation boolean
Whether or not to animate the SearchBox icon on focus.

* iconProps Pick<IIconProps, Exclude<keyof IIconProps, 'className'>>
The props for the icon.

¢ labelText string
Deprecated. Use placeholder instead.

e onChange (event?: React.ChangeEvent<HTMLInputElement>, newValue?: string) => void
Callback function for when the typed input for the SearchBox has changed.

e onChanged (newValue: any) => void
Deprecated at v0.52.2, use onChange instead.

e onClear (ev?: any) => void
Callback executed when the user clears the search box by either clicking *X’ or hitting escape.

* onEscape (ev?: any) => void
Callback executed when the user presses escape in the search box.

¢ onSearch (newValue: any) => void
Callback executed when the user presses enter in the search box.

¢ placeholder string
Placeholder for the search box.

o styles IStyleFunctionOrObject<ISearchBoxStyleProps, ISearchBoxStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization).

¢ underlined boolean
Whether or not the SearchBox is underlined.

¢ value string
The value of the text in the SearchBox.
Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

184 SearchBox

Best practices

Layout:

* Don’t build a custom search control based on the default text box or any other control.

» Use a search box without a parent container when it’s not restricted to a certain width to
accommodate other content. This search box will span the entire width of the space it’s in.

Content:

» Use placeholder text in the search box to describe what people can search for. For example,
"Search", "Search files", or "Search contacts list".

* Although search entry points tend to be similarly visualized, they can provide access to results
that range from broad to narrow. By effectively communicating the scope of a search, you can
ensure that people’s expectations are met by the capabilities of the search you’re performing,
which will reduce the possibility of frustration. The search entry point should be placed near
the content being searched.Some common search scopes include:

— Global: Search across multiple sources of cloud and local content. Varied results include
URLSs, documents, media, actions, apps, and more.

— Web: Search a web index. Results include pages, entities, and answers.

— My stuff: Search across devices, cloud, social graphs, and more. Results are varied but
are constrained by the connection to user accounts.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
SearchBox.shinyInput(ns("search"”), placeholder = "Search"),
textOutput(ns("searchValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$searchValue <- renderText({
sprintf("Value: %s", input$search)
»
D)
}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Separator 185

Separator Separator

Description

A separator visually separates content into groups.

You can render content in the separator by specifying the component’s children. The component’s
children can be plain text or a component like Icon. The content is center-aligned by default.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

Separator(...)

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details
e alignContent 'start' | 'center' | 'end'

Where the content should be aligned in the separator.

» styles IStyleFunctionOrObject<ISeparatorStyleProps, ISeparatorStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme (provided through customization.)

* vertical boolean
Whether the element is a vertical separator.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
Separator("Text")
}

server <- function(id) {

https://developer.microsoft.com/en-us/fluentui#/controls/web/Separator

186 Shimmer

moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

Shimmer Shimmer

Description
Shimmer is a temporary animation placeholder for when a service call takes time to return data and
we don’t want to block rendering the rest of the UL

If a smooth transition from Shimmer to content is desired, wrap the content node with a Shimmer
element and use the isDataloaded prop to trigger the transition. In cases where the content node is
not wrapped in a Shimmer, use the shimmerElements or customElementsGroup props, and once
data arrives, manually replace the Shimmer UI with the intended content. See the examples below
for reference.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
Shimmer(...)

ShimmerElementsGroup(...)

ShimmeredDetailsList(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

* borderStyle IRawStyle
Use to set custom styling of the shimmerCircle borders.

* componentRef IRefObject<IShimmerCircle>
Optional callback to access the IShimmerCircle interface. Use this instead of ref for accessing
the public methods and properties of the component.

¢ height number
Sets the height of the circle.

» styles IStyleFunctionOrObject<IShimmerCircleStyleProps, IShimmerCircleStyles>
Call to provide customized styling that will layer on top of the variant rules.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Shimmer

Shimmer 187

theme ITheme
Theme provided by High-Order Component.

* backgroundColor string
Defines the background color of the space in between and around shimmer elements.

* componentRef IRefObject<IShimmerElementsGroup>
Optional callback to access the IShimmerElementsGroup interface. Use this instead of ref for
accessing the public methods and properties of the component.

* flexWrap boolean
Optional boolean for enabling flexWrap of the container containing the shimmerElements.

* rowHeight number
Optional maximum row height of the shimmerElements container.

* shimmerElements IShimmerElement[]
Elements to render in one group of the Shimmer.

» styles IStyleFunctionOrObject<IShimmerElementsGroupStyleProps, IShimmerElementsGroupStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

e width string
Optional width for ShimmerElements container.

* borderStyle IRawStyle
Use to set custom styling of the shimmerGap borders.

¢ componentRef IRefObject<IShimmerGap>
Optional callback to access the IShimmerGap interface. Use this instead of ref for accessing
the public methods and properties of the component.

* height number
Sets the height of the gap.

o styles IStyleFunctionOrObject<IShimmerGapStyleProps, IShimmerGapStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

e width number | string
Sets width value of the gap.

* borderStyle IRawStyle
Use to set custom styling of the shimmerLine borders.

e componentRef IRefObject<IShimmerLine>
Optional callback to access the IShimmerLine interface. Use this instead of ref for accessing
the public methods and properties of the component.

* height number
Sets the height of the rectangle.

» styles IStyleFunctionOrObject<IShimmerLineStyleProps, IShimmerLineStyles>
Call to provide customized styling that will layer on top of the variant rules.

e theme ITheme
Theme provided by High-Order Component.

188 Shimmer

e width number | string
Sets width value of the line.

e arialabel string
Localized string of the status label for screen reader

e className string
Additional CSS class(es) to apply to the Shimmer container.

¢ componentRef IRefObject<IShimmer>
Optional callback to access the IShimmer interface. Use this instead of ref for accessing the
public methods and properties of the component.

* customElementsGroup React.ReactNode
Custom elements when necessary to build complex placeholder skeletons.

* isDatal.oaded boolean
Controls when the shimmer is swapped with actual data through an animated transition.

¢ shimmerColors IShimmerColors
Defines an object with possible colors to pass for Shimmer customization used on different
backgrounds.

¢ shimmerElements IShimmerElement[]
Elements to render in one line of the Shimmer.

o styles IStyleFunctionOrObject<IShimmerStyleProps, IShimmerStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

e width number | string
Sets the width value of the shimmer wave wrapper.
Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)
taglist(
div(
p("Basic Shimmer with no elements provided. It defaults to a line of 16px height."),
Shimmer(),
Shimmer(width = "75%"),
Shimmer(width = "50%")
),

tags$head(tags$style(
".ms-Shimmer-container { margin: 10px @ }"
))
)

shinyFluentDependency 189

}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

shinyFluentDependency Shiny Fluent JS dependency

Description

Shiny Fluent JS dependency

Usage

shinyFluentDependency ()

Value

HTML dependency object.

Slider Slider

Description

A slider provides a visual indication of adjustable content, as well as the current setting in the total
range of content. Use a slider when you want people to set defined values (such as volume or
brightness), or when people would benefit from instant feedback on the effect of setting changes.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Slider(...)
Slider.shinyInput(inputld, ..., value = defaultValue)

updateSlider.shinyInput(
session = shiny::getDefaultReactiveDomain(),
inputlId,

https://developer.microsoft.com/en-us/fluentui#/controls/web/Slider

190 Slider

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

e arialLabel string
A description of the Slider for the benefit of screen readers.

e ariaValueText (value: number) => string
A text description of the Slider number value for the benefit of screen readers. This should be
used when the Slider number value is not accurately represented by a number.

* buttonProps React.HTMLAttributes<HTMLButtonElement>
Optional mixin for additional props on the thumb button within the slider.

¢ className string
Optional className to attach to the slider root element.

¢ componentRef IRefObject<ISlider>
Optional callback to access the ISlider interface. Use this instead of ref for accessing the
public methods and properties of the component.

* defaultValue number
The initial value of the Slider. Use this if you intend for the Slider to be an uncontrolled
component. This value is mutually exclusive to value. Use one or the other.

* disabled boolean
Optional flag to render the Slider as disabled.

e label string
Description label of the Slider

e max number
The max value of the Slider

e min number
The min value of the Slider

e onChange (value: number) => void
Callback when the value has been changed

¢ onChanged (event: MouseEvent | TouchEvent | KeyboardEvent, value: number) => void
Callback on mouse up or touch end

¢ originFromZero boolean
Optional flag to attach the origin of slider to zero. Helpful when the range include negatives.

» showValue boolean
Whether to show the value on the right of the Slider.

* snapToStep boolean
Optional flag to decide that thumb will snap to closest value while moving the slider

Slider 191

e step number
The difference between the two adjacent values of the Slider

* styles IStyleFunctionOrObject<ISliderStyleProps, ISliderStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by High-Order Component.

* value number
The initial value of the Slider. Use this if you intend to pass in a new value as a result of
onChange events. This value is mutually exclusive to defaultValue. Use one or the other.

e valueFormat (value: number) => string
Optional function to format the slider value.

» vertical boolean
Optional flag to render the slider vertically. Defaults to rendering horizontal.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

* Don’t use a slider for binary settings.

* Don’t use a continuous slider if the range of values is large.

* Don’t use for a range with fewer than three values.

* Sliders are typically horizontal but can be vertical, when needed.

Content:

* Include a label indicating what value the slider changes.

 Use step points if you don’t want the slider to allow arbitrary values between minimum and
maximum.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
Slider.shinyInput(ns(”slider”), value = @, min = -100, max = 100),
textOutput(ns("”sliderValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$sliderValue <- renderText({

192 SpinButton

sprintf("Value: %s", input$slider)
»
1)
3

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

SpinButton SpinButton

Description

A spin button (SpinButton) allows someone to incrementally adjust a value in small steps. It’s
mainly used for numeric values, but other values are supported too.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
SpinButton(...)

SpinButton.shinyInput(inputId, ..., value = defaultValue)

updateSpinButton.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputlId,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

* ariaDescribedBy string
ID of a label which describes the control, if not using the default label.

e ariaLabel string
A description of the control for the benefit of screen reader users.

https://developer.microsoft.com/en-us/fluentui#/controls/web/SpinButton

SpinButton 193

¢ ariaPositionInSet number

The position in the parent set (if in a set).
e ariaSetSize number

The total size of the parent set (if in a set).
e ariaValueNow number

Sets the control’s aria-valuenow. This is the numeric form of value. Providing this only
makes sense when using as a controlled component.

e ariaValueText string

e className string
Custom className for the control.

¢ componentRef IRefObject<ISpinButton>
Gets the component ref.

¢ decrementButtonArial.abel string
Accessible label text for the decrement button (for screen reader users).

¢ decrementButtonlcon IIconProps
Custom props for the decrement button.

¢ defaultValue string
Initial value of the control. Updates to this prop will not be respected.

Use this if you intend for the SpinButton to be an uncontrolled component which maintains its own
value. Mutually exclusive with value.

e disabled boolean
Whether or not the control is disabled.

¢ downArrowButtonStyles Partial<IButtonStyles>
Custom styles for the down arrow button.

Note: The buttons are in a checked state when arrow keys are used to incremenent/decrement the
SpinButton. Use rootChecked instead of rootPressed for styling when that is the case.

* getClassNames (theme: ITheme, disabled: boolean, isFocused: boolean, keyboardSpinDirection: Keybo
Custom function for providing the classNames for the control. Can be used to provide all
styles for the component instead of applying them on top of the default styles.

* iconButtonProps IButtonProps
Additional props for the up and down arrow buttons.

* iconProps IIconProps
Props for an icon to display alongside the control’s label.

¢ incrementButtonAriaLabel string
Accessible label text for the increment button (for screen reader users).

¢ incrementButtonlcon IIconProps
Custom props for the increment button.

e inputProps React.InputHTMLAttributes<HTMLElement | HTMLInputElement>
Additional props for the input field.

¢ keytipProps IKeytipProps
Keytip for the control.

194

SpinButton

¢ label string
Descriptive label for the control.

* labelPosition Position
Where to position the control’s label.

e max number
Max value of the control.

e min number
Min value of the control.

¢ onBlur React.FocusEventHandler<HTMLInputElement>
Callback for when the control loses focus.

¢ onDecrement (value: string, event?: React.MouseEvent<HTMLElement> | React.KeyboardEvent<HTMLElen
Callback for when the decrement button or down arrow key is pressed.

* onFocus React.FocusEventHandler<HTMLInputElement>
Callback for when the user focuses the control.

¢ onlncrement (value: string, event?: React.MouseEvent<HTMLElement> | React.KeyboardEvent<HTMLElem
Callback for when the increment button or up arrow key is pressed.

¢ onValidate (value: string, event?: React.SyntheticEvent<HTMLElement>) => string | void
Callback for when the entered value should be validated.

* precision number
How many decimal places the value should be rounded to.

The default is calculated based on the precision of step: i.e. if step = 1, precision = 0. step =
0.0089, precision = 4. step = 300, precision = 2. step = 23.00, precision = 2.

e step number
Difference between two adjacent values of the control. This value is used to calculate the

precision of the input if no precision is given. The precision calculated this way will always
be \>= 0.

» styles Partial<ISpinButtonStyles>
Custom styling for individual elements within the control.

¢ theme ITheme
Theme provided by HOC.

e title string
A more descriptive title for the control, visible on its tooltip.

* upArrowButtonStyles Partial<IButtonStyles>
Custom styles for the up arrow button.

Note: The buttons are in a checked state when arrow keys are used to incremenent/decrement the
SpinButton. Use rootChecked instead of rootPressed for styling when that is the case.

e value string
Current value of the control.

Use this if you intend to pass in a new value as a result of change events. Mutually exclusive with
defaultValue.

SpinButton 195

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

 Use a spin button when you need to incrementally change a value.

 Use a spin button when values are tied to a unit of measure.

* Don’t use a spin button for binary settings.

* Don’t use a spin button for a range of three values or less.

* Place labels to the left of the spin button control. For example, "Length of ruler (cm)".

* Spin button width should adjust to fit the number values.

Content:

* Include a label indicating what value the spin button changes.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
SpinButton.shinyInput(ns(”spin”), value = 15, min = @, max = 50, step = 5),
textOutput(ns("”spinvValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$spinValue <- renderText({
sprintf(”"Value: %s", input$spin)
D
b))
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

196 Spinner

Spinner Spinner

Description

A Spinner is an outline of a circle which animates around itself indicating to the user that things
are processing. A Spinner is shown when it’s unsure how long a task will take making it the
indeterminate version of a ProgressIndicator. They can be various sizes, located inline with content
or centered. They generally appear after an action is being processed or committed. They are subtle
and generally do not take up much space, but are transitions from the completed task.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Spinner(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e ariaLabel string
Alternative status label for screen reader

e arialLive 'assertive' | 'polite' | 'off"
Politeness setting for label update announcement.

¢ className string
Additional CSS class(es) to apply to the Spinner.

¢ componentRef IRefObject<ISpinner>
Optional callback to access the ISpinner interface. Use this instead of ref for accessing the
public methods and properties of the component.

e label string
The label to show next to the Spinner. Label updates will be announced to the screen readers.
Use ariaLive to control politeness level.

« labelPosition SpinnerLabelPosition
The position of the label in regards of the spinner animation.
e size SpinnerSize
The size of Spinner to render. { extraSmall, small, medium, large }

* styles IStyleFunctionOrObject<ISpinnerStyleProps, ISpinnerStyles>
Call to provide customized styling that will layer on top of the variant rules.

e theme ITheme
Theme (provided through customization.)

https://developer.microsoft.com/en-us/fluentui#/controls/web/Spinner

Stack 197

e type SpinnerType
Deprecated and will be removed at \>= 2.0.0. Use SpinnerSize instead.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
Spinner(size = 3, label = "Loading, please wait...")

3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
3

Stack Stack

Description

A Stack is a container-type component that abstracts the implementation of a flexbox in order to
define the layout of its children components.

Stack Properties:

Although the Stack component has a number of different properties, there are three in particular
that define the overall layout that the component has:

1. Direction: Refers to whether the stacking of children components is horizontal or verti-
cal. By default the Stack component is vertical, but can be turned horizontal by adding
the horizontal property when using the component.

2. Alignment: Refers to how the children components are aligned inside the container. This
is controlled via the verticalAlign and horizontalAlign properties. One thing to no-
tice here is that while flexbox containers align always across the cross axis, Stack aims
to remove the mental strain involved in this process by making the verticalAlign and
horizontalAlign properties always follow the vertical and horizontal axes, respectively,
regardless of the direction of the Stack.

3. Spacing: Refers to the space that exists between children components inside the Stack. This
is controlled via the gap and verticalGap properties.

198

Usage

Stack

Stack Items:

The Stack component provides an abstraction of a flexbox container but there are some flexbox
related properties that are applied on specific children of the flexbox instead of being applied on
the container. This is where Stack Items comes into play.

A Stack Item abstracts those properties that are or can be specifically applied on flexbox’s
children, like grow and shrink.

To use a Stack Itemin an application, the Stack component should be imported and Stack.Item
should be used inside of a Stack. This is done so that the existence of the Stack Itemis inherently
linked to the Stack component.

Stack Wrapping:

Aside from the previously mentioned properties, there is another property called wrap that de-
termines if items overflow the Stack container or wrap around it. The wrap property only works
in the direction of the Stack, which means that the children components can still overflow in
the perpendicular direction (i.e. in a Vertical Stack, items might overflow horizontally and
vice versa).

Stack Nesting:

Stacks can be nested inside one another in order to be able to configure the layout of the
application as desired.

For more details and examples visit the official docs. The R package cannot handle each and
every case, so for advanced use cases you need to work using the original docs to achieve the
desired result.

Stack(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e align 'auto' | 'stretch' | 'baseline' | 'start' | 'center' | 'end’
Defines how to align the Stackltem along the x-axis (for vertical Stacks) or the y-axis (for
horizontal Stacks).

e className string
Defines a CSS class name used to style the StackItem.

¢ disableShrink boolean
Defines whether the StackItem should be prevented from shrinking. This can be used to
prevent a StacklItem from shrinking when it is inside of a Stack that has shrinking items.
e grow boolean | number | 'inherit' | 'initial' | "unset'
Defines how much to grow the StackItem in proportion to its siblings.
e order number | string
Defines order of the StackItem.
¢ shrink boolean | number | 'inherit' | 'initial' | 'unset'
Defines at what ratio should the StackItem shrink to fit the available space.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Stack

Stack 199

verticalFill boolean
Defines whether the StackItem should take up 100% of the height of its parent.

* as React.ElementType<React.HTMLAttributes<HTMLElement>>
Defines how to render the Stack.

* disableShrink boolean
Defines whether Stack children should not shrink to fit the available space.

e gap number | string
Defines the spacing between Stack children. The property is specified as a value for row
gap’, followed optionally by a value for ’column gap’. If ’column gap’ is omitted, it’s set to
the same value as ‘row gap’.

* grow boolean | number | 'inherit' | 'initial' | 'unset'
Defines how much to grow the Stack in proportion to its siblings.

* horizontal boolean
Defines whether to render Stack children horizontally.

* horizontalAlign Alignment
Defines how to align Stack children horizontally (along the x-axis).

* maxHeight number | string
Defines the maximum height that the Stack can take.

e maxWidth number | string
Defines the maximum width that the Stack can take.

e padding number | string
Defines the inner padding of the Stack.

* reversed boolean
Defines whether to render Stack children in the opposite direction (bottom-to-top if it’s a
vertical Stack and right-to-left if it’s a horizontal Stack).

» verticalAlign Alignment
Defines how to align Stack children vertically (along the y-axis).

« verticalFill boolean
Defines whether the Stack should take up 100% of the height of its parent. This property is
required to be set to true when using the grow flag on children in vertical oriented Stacks.
Stacks are rendered as block elements and grow horizontally to the container already.

e wrap boolean
Defines whether Stack children should wrap onto multiple rows or columns when they are
about to overflow the size of the Stack.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

200 SwatchColorPicker

ns <- NS(id)

Stack(
tokens = list(childrenGap = 10),
reversed = TRUE,
span("Item One"),
span("Item Two"),
span("Item Three")

)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app”))
3

SwatchColorPicker SwatchColorPicker

Description

A swatch color picker (SwatchColorPicker) displays color options as a grid. It can be shown by
itself, with a header and dividers, or as a button that expands to show the swatch color picker.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
SwatchColorPicker(...)

SwatchColorPicker.shinyInput(inputld, ..., value = defaultValue)

updateSwatchColorPicker.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.

session Object passed as the session argument to Shiny server.

https://developer.microsoft.com/en-us/fluentui#/controls/web/SwatchColorPicker

SwatchColorPicker 201

Details
e color string
The CSS-compatible string to describe the color

e id string
Arbitrary unique string associated with this option

¢ index number
Index for this option

¢ label string
Tooltip and aria label for this item

* borderWidth number
Width of the border that indicates a selected/hovered cell, in pixels.

e circle boolean
True if this cell should be rendered as a circle, false if it should be a square. @default true
(render as circle)

¢ color string
The CSS-compatible string to describe the color

e disabled boolean
Whether this cell should be disabled @default false

¢ height number
Height of the cell, in pixels

e id string
Used as a PREFIX for the cell’s ID (the cell will not have this literal string as its ID).

¢ idPrefix string
Prefix for this cell’s ID. Will be required in a future version once id is removed.

* index number
Index for this option

e item IColorCellProps
Item to render

¢ label string
Tooltip and aria label for this item

¢ onClick (item: IColorCellProps) => void
Handler for when a color cell is clicked.

e onFocus (item: IColorCellProps) => void

¢ onHover (item?: IColorCellProps) => void

* onKeyDown (ev: React.KeyboardEvent<HTMLButtonElement>) => void

e onMouseEnter (ev: React.MouseEvent<HTMLButtonElement>) => boolean

Mouse enter handler. Returns true if the event should be processed, false otherwise.

* onMouseLeave (ev: React.MouseEvent<HTMLButtonElement>) => void

202

SwatchColorPicker

onMouseMove (ev: React.MouseEvent<HTMLButtonElement>) => boolean
Mouse move handler. Returns true if the event should be processed, false otherwise.

onWheel (ev: React.MouseEvent<HTMLButtonElement>) => void

selected boolean
Whether this cell is currently selected

styles IStyleFunctionOrObject<IColorPickerGridCellStyleProps, IColorPickerGridCellStyles>
Custom styles for the component.

theme ITheme
The theme object to use for styling.

width number
Width of the cell, in pixels

ariaPosInSet number
Position this grid is in the parent set (index in a parent menu, for example)

ariaSetSize number
Size of the parent set (size of parent menu, for example)

cellBorderWidth number
Width of the border indicating a hovered/selected cell, in pixels

cellHeight number
Height of an individual cell, in pixels

cellMargin number
The distance between cells, in pixels

cellShape 'circle' | 'square'
The shape of the color cells. @default ’circle’

cellWidth number
Width of an individual cell, in pixels

className string
Additional class name to provide on the root element

colorCells IColorCellProps[]
The color cells that will be made available to the user.

Note: When the reference to this prop changes, regardless of how many color cells change, all of
the color cells will be re-rendered (potentially bad perf) because we memoize based on this prop’s
reference.

¢ columnCount number

Number of columns for the swatch color picker

e disabled boolean

Whether the control is disabled.

¢ doNotContainWithinFocusZone boolean

If false (the default), the grid is contained inside a FocusZone. If true, a FocusZone is not
used. @default false

¢ focusOnHover boolean

Whether to update focus when a cell is hovered.

SwatchColorPicker 203

* getColorGridCellStyles IStyleFunctionOrObject<IColorPickerGridCellStyleProps, IColorPickerGridCel
Styles for the grid cells.

e id string
ID for the swatch color picker’s root element. Also used as a prefix for the IDs of color cells.

* isControlled boolean
Indicates whether the SwatchColorPicker is fully controlled. When true, the component will

not set its internal state to track the selected color. Instead, the parent component will be
responsible for handling state in the callbacks like onColorChanged.

NOTE: This property is a temporary workaround to force the component to be fully controllable
without breaking existing behavior

¢ mouseLeaveParentSelector string | undefined
Selector to focus on mouse leave. Should only be used in conjunction with focusOnHover.

¢ onCellFocused (id?: string, color?: string) => void
Callback for when the user focuses a color cell. If id and color are unspecified, cells are no
longer being focused.

¢ onCellHovered (id?: string, color?: string) => void
Callback for when the user hovers over a color cell. If id and color are unspecified, cells are
no longer being hovered.

¢ onColorChanged (id?: string, color?: string) => void
Callback for when the user changes the color. If id and color are unspecified, there is no
selected cell. (e.g. the user executed the currently selected cell to unselect it)

* positionInSet number

e selectedld string
The ID of color cell that is currently selected

e setSize number

* shouldFocusCircularNavigate boolean
Whether focus should cycle back to the beginning once the user navigates past the end (and
vice versa). Only relevant if doNotContainWithinFocusZone is not true.

* styles IStyleFunctionOrObject<ISwatchColorPickerStyleProps, ISwatchColorPickerStyles>
Styles for the component.

* theme ITheme
Theme to apply to the component.
Value

Object with shiny. tag class suitable for use in the UI of a Shiny app. The update functions return
nothing (called for side effects).

Best practices

Layout:

204

TeachingBubble

* Use a swatch color picker when there are multiple color options that can be grouped or
collapsed under one title.

* Don’t use a swatch color picker when there’s a large number of color options. The best
component for that is a color picker.

Examples

library(shiny)
library(shiny.fluent)

colorCells <- list(
list(id = "orange"”, color = "#ca5010"),
list(id = "cyan"”, color = "#038387"),
list(id = "blueMagenta”, color = "#8764b8"),
list(id = "magenta”, color = "#881798"),
list(id = "white”, color = "#ffffff")

)
ui <- function(id) {
ns <- NS(id)
div(
SwatchColorPicker.shinyInput(ns("color"”), value = "orange",
colorCells = colorCells, columnCount = length(colorCells)
),
textOutput(ns("swatchValue"))
)

3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$swatchValue <- renderText({
sprintf("Value: %s", input$color)
»
»
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

TeachingBubble TeachingBubble

Description

A teaching bubble (TeachingBubble) brings attention to a new or important feature, with the goal
of increasing engagement with the feature. A teaching bubble typically follows a coach mark.

Use teaching bubbles sparingly. Consider how frequently people will see it, and how many they’ll
see across their entire experience.

TeachingBubble 205

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
TeachingBubble(...)

TeachingBubbleContent(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

e ariaDescribedBy string
Defines the element id referencing the element containing the description for the Teaching-
Bubble.

» ariaLabelledBy string
Defines the element id referencing the element containing label text for TeachingBubble.

e calloutProps ICalloutProps
Properties to pass through for Callout, reference detail properties in ICalloutProps

¢ componentRef IRefObject<ITeachingBubble>
Optional callback to access the ITeachingBubble interface. Use this instead of ref for access-
ing the public methods and properties of the component.

¢ focusTrapZoneProps IFocusTrapZoneProps
Properties to pass through for FocusTrapZone, reference detail properties in IFocusTrapZone-
Props

¢ footerContent string | JSX.Element
Text that will be rendered in the footer of the TeachingBubble. May be rendered alongside
primary and secondary buttons.

* hasCloseButton boolean
Whether the TeachingBubble renders close button in the top right corner.

¢ hasCloselcon boolean

* hasCondensedHeadline boolean
A variation with smaller bold headline and no margins.

* hasSmallHeadline boolean
A variation with smaller bold headline and margins to the body. (hasCondensedHeadline
takes precedence if it is also set to true.)

¢ headline string
A headline for the Teaching Bubble.

¢ illustrationlmage IImageProps
An Image for the TeachingBubble.

https://developer.microsoft.com/en-us/fluentui#/controls/web/TeachingBubble

206

TeachingBubble

¢ isWide boolean

Whether or not the TeachingBubble is wide, with image on the left side.
¢ onDismiss (ev?: any) => void

Callback when the TeachingBubble tries to close.

* primaryButtonProps IButtonProps
The Primary interaction button

* secondaryButtonProps IButtonProps
The Secondary interaction button

e styles IStyleFunctionOrObject<ITeachingBubbleStyleProps, ITeachingBubbleStyles>

Call to provide customized styling that will layer on top of the variant rules.

* target Target
Element, MouseEvent, Point, or querySelector string that the TeachingBubble should anchor
to.

e targetElement HTMLElement

* theme ITheme
Theme provided by High-Order Component.

Value

Object with shiny. tag class suitable for use in the UI of a Shiny app.

Best practices

Layout:

 Teaching bubbles can be used in sequence to walk people through complex, multistep inter-
actions only. And only show one teaching bubble at a time.

* A maximum of no more than 3 sequenced teaching bubbles should be used in a single expe-
rience.

» Sequenced teaching bubbles should have “x of y” text to indicate progress through the se-
quence. For example, the first teaching bubble in a sequence might be “1 of 3”.)

» Always place the primary button on the left, the secondary button just to the right of it.

* Show only one primary button that inherits theme color at rest state. In the event there are
more than two buttons with equal priority, all buttons should have neutral backgrounds.

Content:
A teaching bubble should include:

Title:

You have 25 characters (including spaces) to draw people in and get them interested. Limit to one
line of text, and use sentence casing (capitalize only the first word and any proper nouns) with no
punctuation.

Body copy:
Lead with why the feature is useful rather than describe what it is. What does it make possi-
ble? Keep it within 120 characters (including spaces).

TeachingBubble 207

Action buttons:

Limit button labels to 15 characters (including spaces). Provide people with an explicit ac-
tion to dismiss the teaching bubble, such as “Got it”. Include a secondary button to give peo-
ple the option to take action, such as “Show me” or “Edit settings”. When two buttons are
needed, make the call-to-action button the primary button and the dismissal button (such as “No
thanks”) the secondary button. Use sentence casing (capitalize only the first word and any proper
nouns) with no punctuation. On a sequenced teaching bubble, use "Next" for the action button
label and "Got it" for the final sequenced teaching bubble action button with text that closes the
experience.

Link (Optional):

If there are additional steps people need to know about, or helpful information they may want
to read, consider linking to a help article. Typically, these links are labeled “Learn more” with
no punctuation at the end.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
DefaultButton.shinyInput(
ns("toggleTeachingBubble"),

id = "target”,

text = "Toggle TeachingBubble"
)’
reactOutput(ns(”teachingBubble”))

)
}

server <- function(id) {
moduleServer(id, function(input, output, session) {
showBubble <- reactiveVal(FALSE)
observeEvent (input$toggleTeachingBubble, showBubble(!showBubble()))
output$teachingBubble <- renderReact({
if (showBubble()) {

TeachingBubble(
target = "#target”,
headline = "Very useful!"”
)
}
»
b))

}

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"))
3

208 Text

Text Text

Description

Text is a component for displaying text. You can use Text to standardize text across your web app.

You can specify the variant prop to apply font styles to Text. This variant pulls from the Fluent UI
React theme loaded on the page. If you do not specify the variant prop, by default, Text applies
the styling from specifying the variant value to medium.

The Text control is inline wrap by default. You can specify block to enable block and nowrap to
enable nowrap. For ellipsis on overflow to work properly, block and nowrap should be manually
set to true.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Text(...)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
Details

e as React.ElementType<React.HTMLAttributes<HTMLElement>>
Optionally render the component as another component type or primitive.

* block boolean
Whether the text is displayed as a block element.

Note that in order for ellipsis on overflow to work properly, block and nowrap should be set to true.

* nowrap boolean
Whether the text is not wrapped.

Note that in order for ellipsis on overflow to work properly, block and nowrap should be set to true.

e variant keyof IFontStyles
Optional font type for Text.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Text

ThemeProvider 209

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
Text(variant = "xLarge", "Some text with a nice Fluent UI font")

}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"”))
3

ThemeProvider Theme

Description

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

ThemeProvider is a utility that applies contextual theming to its child components. See the official
docs for details.
Usage

ThemeProvider(...)

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Examples

Example 1
library(shiny)
library(shiny.fluent)

options <- list(
list(key = "A", text = "Option A"),

https://developer.microsoft.com/en-us/fluentui#/controls/web/Theme
https://developer.microsoft.com/en-us/fluentui#/controls/web/themeprovider
https://developer.microsoft.com/en-us/fluentui#/controls/web/themeprovider

210

)

list(key = "B", text = "Option B")

theme <- list(
palette = list(

)

)

themePrimary = "#8dd400",
themeLighterAlt = "#060800",
themeLighter = "#172200",
themeLight = "#2a3f00",
themeTertiary = "#557f00",
themeSecondary = "#7cba0@”,
themeDarkAlt = "#97d816",
themeDark = "#a6de35",
themeDarker = "#bce766",
neutralLighterAlt = "#323130",
neutralLighter = "#31302f",
neutrallLight = "#2f2e2d",
neutralQuaternaryAlt = "#2c2b2a",
neutralQuaternary = "#2a2928",
neutralTertiaryAlt = "#282726",
neutralTertiary = "#c8c8c8",
neutralSecondary = "#d0dede",
neutralPrimaryAlt = "#dadada",
neutralPrimary = "#ffffff",
neutralDark = "#f4f4f4",

black = "#f8f8f8",

white = "#323130"

ui <- function(id) {
ns <- NS(id)
ThemeProvider(

theme = theme,
Stack(

tokens = list(childrenGap = "10px"),

style = list(width = 250),

PrimaryButton(text = "PrimaryButton"),

Checkbox(label = "Checkbox"),

ChoiceGroup(label = "ChoiceGroup"”, options = options)

server <- function(id) {

}

moduleServer(id, function(input, output, session) {})

if (interactive()) {

}

shinyApp(ui("app”), function(input, output) server("app"))

Example 2
library(shiny)

ThemeProvider

ThemeProvider 211

library(shiny.fluent)

options <- list(
list(key = "A", text = "Option A"),
list(key = "B", text = "Option B")
)

Use JSON created in Theme Designer

https://fabricweb.z5.web.core.windows.net/pr-deploy-site/refs/heads/master/theming-designer/

theme <- '{
"themePrimary": "#324f09",
"themeLighterAlt": "#dfeadl”,
"themeLighter”: "#c4d7ab",
"themeLight”: "#abc388",
"themeTertiary": "#92b069",
"themeSecondary"”: "#7c9c4e”,
"themeDarkAlt": "#678937",
"themeDark": "#547624",
"themeDarker"”: "#426214",
"neutrallLighterAlt”: "#f8ebce",
"neutrallLighter”: "#f4e8cb",
"neutrallLight"”: "#eadec2",
"neutralQuaternaryAlt”: "#dacfb5",
"neutralQuaternary”: "#doc5ad",
"neutralTertiaryAlt"”: "#c8bea6",
"neutralTertiary"”: "#595858",
"neutralSecondary”: "#373636",
"neutralPrimaryAlt”: "#2f2e2e”,
"neutralPrimary”: "#000000",
"neutralDark”: "#151515",
"black"”: "#@bobob",
"white": "#fff2d4"

3

ui <- function(id) {
ns <- NS(id)
ThemeProvider(
theme = parseTheme(json = theme),
Stack(
tokens = list(childrenGap = "10px"),
style = list(width = 250),
PrimaryButton(text = "PrimaryButton"”),
Checkbox(label = "Checkbox"),
ChoiceGroup(label = "ChoiceGroup”, options = options)
)
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

3

if (interactive()) {

212 Toggle

shinyApp(ui("app”), function(input, output) server("app”))
3

Toggle Toggle

Description

A toggle represents a physical switch that allows someone to choose between two mutually ex-
clusive options. For example, “On/Off”, “Show/Hide”. Choosing an option should produce an
immediate result.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired

result.
Usage
Toggle(...)
Toggle.shinyInput(inputIld, ..., value = defaultValue)

updateToggle.shinyInput(
session = shiny::getDefaultReactiveDomain(),

inputld,
)
Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.
inputId ID of the component.
value Starting value.
session Object passed as the session argument to Shiny server.
Details

e arialabel string
Text for screen-reader to announce as the name of the toggle.

e as IComponentAs<React.HTMLAttributes<HTMLElement>>
Render the root element as another type.

* checked boolean
Checked state of the toggle. If you are maintaining state yourself, use this property. Otherwise
use defaultChecked.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Toggle

Toggle

Value

213

componentRef IRefObject<IToggle>
Optional callback to access the IToggle interface. Use this instead of ref for accessing the
public methods and properties of the component.

defaultChecked boolean
Initial state of the toggle. If you want the toggle to maintain its own state, use this. Otherwise
use checked.

disabled boolean
Optional disabled flag.

inlineLabel boolean

Whether the label (not the onText/offText) should be positioned inline with the toggle control.
Left (right in RTL) side when on/off text provided VS right (left in RTL) side when no on/off
text. Caution: when not providing on/off text user may get confused in differentiating the
on/off states of the toggle.

keytipProps IKeytipProps
Optional keytip for this toggle

label string | JSX.Element
A label for the toggle.

offArialLabel string

offText string
Text to display when toggle is OFF. Caution: when not providing on/off text user may get
confused in differentiating the on/off states of the toggle.

onAriaLabel string

onChange (event: React.MouseEvent<HTMLElement>, checked?: boolean) => void
Callback issued when the value changes.

onChanged (checked: boolean) => void

onText string
Text to display when toggle is ON. Caution: when not providing on/off text user may get
confused in differentiating the on/off states of the toggle.

role 'checkbox' | 'switch' | 'menuitemcheckbox'
(Optional) Specify whether to use the "switch" role (ARIA 1.1) or the checkbox role (ARIA
1.0). If unspecified, defaults to "switch".

styles IStyleFunctionOrObject<IToggleStyleProps, IToggleStyles>
Optional styles for the component.

theme ITheme
Theme provided by HOC.

Object with shiny. tag class suitable for use in the Ul of a Shiny app. The update functions return
nothing (called for side effects).

214 TooltipHost

Best practices

Layout:

* When people need to perform extra steps for changes to take effect, use a check box instead.
For example, if they must click a "Submit", "Next", or "OK" button to apply changes, use a
check box.

Content:

¢ Only replace the On/Off labels if there are more specific labels for the setting. For example,
you might use Show/Hide if the setting is "Show images".

» Keep descriptive text short and concise—two to four words; preferably nouns. For example,
"Focused inbox" or "WiFi".

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {
ns <- NS(id)
div(
Toggle.shinyInput(ns(”toggle”), value = TRUE),
textOutput (ns("toggleValue"))
)
3

server <- function(id) {
moduleServer(id, function(input, output, session) {
output$toggleValue <- renderText({
sprintf("Value: %s”, input$toggle)
»
»
3

if (interactive()) {
shinyApp(ui(”app”), function(input, output) server("app"))
3

TooltipHost Tooltip

Description

A good tooltip briefly describes unlabeled controls or provides a bit of additional information about la-
beled controls, when this is useful. It can also help customers navigate the Ul by offering addi-
tional—not redundant—information about control labels, icons, and links. A tooltip should always
add valuable information; use sparingly.

There are two components you can use to display a tooltip:

TooltipHost 215

* Tooltip: A styled tooltip that you can display on a chosen target.

» TooltipHost: A wrapper that automatically shows a tooltip when the wrapped element is
hovered or focused.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage
TooltipHost(...)

Arguments

Props to pass to the component. The allowed props are listed below in the De-
tails section.

Details

* calloutProps ICalloutProps
Additional properties to pass through for Callout.

e className string
Class name to apply to the rooltip itself, not the host. To apply a class to the host, use
hostClassName or styles.root.

* closeDelay number
Number of milliseconds to delay closing the tooltip, so that the user has time to hover over the
tooltip and interact with it. Hovering over the tooltip will count as hovering over the host, so
that the tooltip will stay open if the user is actively interacting with it.

¢ componentRef IRefObject<ITooltipHost>
Optional callback to access the ITooltipHost interface. Use this instead of ref for accessing
the public methods and properties of the component.

e content string | JSX.Element | JSX.Element[]
Content to display in the Tooltip.

e delay TooltipDelay
Length of delay before showing the tooltip on hover.

* directionalHint DirectionalHint
How the tooltip should be anchored to its targetElement.

* directionalHintForRTL DirectionalHint
How the element should be positioned in RTL layouts. If not specified, a mirror of directionalHint
will be used.

¢ hostClassName string
Class name to apply to tooltip host.

e id string
Optional ID to pass through to the tooltip (not used on the host itself). Auto-generated if not
provided.

« onTooltipToggle onTooltipToggle?(isTooltipVisible: boolean): void;
Notifies when tooltip becomes visible or hidden, whatever the trigger was.

https://developer.microsoft.com/en-us/fluentui#/controls/web/Tooltip

216 TooltipHost

¢ overflowMode TooltipOverflowMode
If this is unset (the default), the tooltip is always shown even if there’s no overflow.

If set, only show the tooltip if the specified element (Self or Parent) has overflow. When set to
Parent, the parent element is also used as the tooltip’s target element.

Note that even with Self mode, the TooltipHost does not check whether any children have overflow.

* setAriaDescribedBy boolean
Whether or not to mark the TooltipHost root element as described by the tooltip. If not speci-
fied, the caller should pass an id to the TooltipHost (to be passed through to the Tooltip) and
mark the appropriate element as aria-describedby the id.

o styles IStyleFunctionOrObject<ITooltipHostStyleProps, ITooltipHostStyles>
Call to provide customized styling that will layer on top of the variant rules.

* theme ITheme
Theme provided by higher-order component.

* tooltipProps ITooltipProps
Additional properties to pass through for Tooltip.

¢ calloutProps ICalloutProps
Properties to pass through for Callout.

* componentRef IRefObject<ITooltip>
Optional callback to access the ITooltip interface. Use this instead of ref for accessing the
public methods and properties of the component.

e content string | JSX.Element | JSX.Element[]
Content to be passed to the tooltip

e delay TooltipDelay
Length of delay. Set to TooltipDelay.zero if you do not want a delay.

* directionalHint DirectionalHint
How the tooltip should be anchored to its targetElement.

¢ directionalHintForRTL DirectionalHint
How the element should be positioned in RTL layouts. If not specified, a mirror of directionalHint
will be used instead

e maxWidth string | null
Max width of tooltip

¢ onRenderContent IRenderFunction<ITooltipProps>
Render function to populate tooltip content.

o styles IStyleFunctionOrObject<ITooltipStyleProps, ITooltipStyles>
Call to provide customized styling that will layer on top of the variant rules.

¢ targetElement HTMLElement
Element to anchor the Tooltip to.

* theme ITheme
Theme provided by higher-order component.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

TooltipHost 217

Best practices

Content:

* Don’t use a tooltip to restate a button name that’s already shown in the UL

* When a control or Ul element is unlabeled, use a simple, descriptive noun phrase. For exam-
ple: “Highlighting pen”. Only capitalize the first word (unless a subsequent word is a proper
noun), and don’t use a period.

* For a disabled control that could use an explanation, provide a brief description of the state
in which the control will be enabled. For example: “This feature is available for line charts.”

* Only use periods for complete sentences.
For a Ul label that needs some explanation:

* Briefly describe what you can do with the UI element.

¢ Use the imperative verb form. For example, "Find text in this file" (not "Finds text in this
file").

* Don’t include end punctuation unless there is at least one complete sentence.
For a truncated label or a label that’s likely to truncate in some languages:

* Provide the untruncated label in the tooltip.
* Don’t provide a tooltip if the untruncated info is provided elsewhere on the page or flow.

» Optional: On another line, provide a clarifying description, but only if needed.

Examples

library(shiny)
library(shiny.fluent)

ui <- function(id) {

ns <- NS(id)

TooltipHost(
content = "This is the tooltip content”,
delay = 0,
Text("Hover over me")

)

}

server <- function(id) {
moduleServer(id, function(input, output, session) {3})

}

if (interactive()) {
shinyApp(ui("app”), function(input, output) server("app"))
3

218 VerticalDivider

VerticalDivider Divider

Description

A Divider is a line that is used to visually differentiate different parts of a UI. They are commonly
used in headers and command bars. This divider automatically center algins itself within the parent
container and can be customized to be shown in different heights and colors.

For more details and examples visit the official docs. The R package cannot handle each and every
case, so for advanced use cases you need to work using the original docs to achieve the desired
result.

Usage

VerticalDivider(...)

Arguments
Props to pass to the component. The allowed props are listed below in the De-
tails section.

Value

Object with shiny. tag class suitable for use in the Ul of a Shiny app.

Best practices

Use a divider component to show a sectional or continuity change in the content between two blocks
of information. The spacing around the divider is generally determined by the content surrounding
it.
There are two recommended divider color combinations:

1. #C8C8C8/neutralTertiary Alt divider when used within an #F4F4F4/neutralLighter layout

2. #EAEAEA/neutralLight divider when used within an #FFFFFF/white layout

https://developer.microsoft.com/en-us/fluentui#/controls/web/Divider

Index

x datasets
fluentPeople, 103
fluentSalesDeals, 104

ActionButton, 3
ActivityItem, 13
Announced, 15

BasePickerListBelow, 17
Breadcrumb, 24
Button (ActionButton), 3

Calendar, 26

Callout, 29

Checkbox, 34

ChoiceGroup, 37

Coachmark, 40

ColorPicker, 44

ComboBox, 48

CommandBar, 51

CommandBarButton (ActionButton), 3
CommandBarItem, 56
CommandButton (ActionButton), 3
CompactPeoplePicker, 57
CompoundButton (ActionButton), 3
ContextualMenu, 60

DatePicker, 66

DefaultButton (ActionButton), 3
DetailsList, 71

Dialog, 85

DialogFooter (Dialog), 85

Divider (VerticalDivider), 218
DocumentCard, 90

DocumentCardActions (DocumentCard), 90
DocumentCardActivity (DocumentCard), 90
DocumentCardDetails (DocumentCard), 90
DocumentCardImage (DocumentCard), 90
DocumentCardLocation (DocumentCard), 90
DocumentCardLogo (DocumentCard), 90

219

DocumentCardPreview (DocumentCard), 90
DocumentCardStatus (DocumentCard), 90
DocumentCardTitle (DocumentCard), 90
Dropdown, 96

Facepile, 100

fluentPage, 103

fluentPeople, 103
fluentSalesDeals, 104
FocusTrapCallout, 104

FocusTrapZone (FocusTrapCallout), 104
FocusZone, 107

FontIcon, 110

GroupedList, 112
GroupHeader (GroupedList), 112

HoverCard, 118

Icon (FontIcon), 110
IconButton (ActionButton), 3
Image, 122

ImageIcon (FontIcon), 110

Keytip, 123
KeytipLayer, 124
Keytips (KeytipLayer), 124

Label, 128
Layer, 130
LayerHost (Layer), 130
Link, 132
List, 134

MarqueeSelection, 138
MaskedTextField, 142
MessageBar, 147

MessageBarButton (MessageBar), 147
Modal, 150

Nav, 153

220

NormalPeoplePicker
(CompactPeoplePicker), 57

OverflowSet, 157
Overlay, 160

Panel, 161

parseTheme, 166

PeoplePicker (CompactPeoplePicker), 57
Persona, 166

Pickers (BasePickerListBelow), 17
Pivot, 170

PivotItem (Pivot), 170

PrimaryButton (ActionButton), 3
ProgressIndicator, 172

Rating, 174
ResizeGroup, 177
runExample, 179

ScrollablePane, 180

SearchBox, 182

Separator, 185

Shimmer, 186

ShimmeredDetailsList (Shimmer), 186
ShimmerElementsGroup (Shimmer), 186
shinyFluentDependency, 189

Slider, 189

SpinButton, 192

Spinner, 196

Stack, 197

Sticky (ScrollablePane), 180
SwatchColorPicker, 200

TagPicker (BasePickerListBelow), 17

TeachingBubble, 204

TeachingBubbleContent (TeachingBubble),
204

Text, 208

TextField (MaskedTextField), 142

Theme (ThemeProvider), 209

ThemeProvider, 166, 209

ThemeProvider(), 166

Toggle, 212

Tooltip (TooltipHost), 214

TooltipHost, 214

updateActionButton.shinyInput
(ActionButton), 3
updateCalendar.shinyInput (Calendar), 26

INDEX

updateCheckbox.shinyInput (Checkbox), 34
updateChoiceGroup.shinyInput
(ChoiceGroup), 37
updateColorPicker.shinyInput
(ColorPicker), 44
updateComboBox.shinyInput (ComboBox), 48
updateCommandBarButton.shinyInput
(ActionButton), 3
updateCommandButton.shinyInput
(ActionButton), 3
updateCompoundButton.shinyInput
(ActionButton), 3
updateDatePicker.shinyInput
(DatePicker), 66
updateDefaultButton.shinyInput
(ActionButton), 3
updateDropdown.shinyInput (Dropdown), 96
updateIconButton.shinyInput
(ActionButton), 3
updateNormalPeoplePicker.shinyInput
(CompactPeoplePicker), 57
updatePrimaryButton.shinyInput
(ActionButton), 3
updateRating.shinyInput (Rating), 174
updateSearchBox.shinyInput (SearchBox),
182
updateSlider.shinyInput (Slider), 189
updateSpinButton.shinyInput
(SpinButton), 192
updateSwatchColorPicker.shinyInput
(SwatchColorPicker), 200
updateTextField.shinyInput
(MaskedTextField), 142
updateToggle.shinyInput (Toggle), 212

VerticalDivider, 218
VirtualizedComboBox (ComboBox), 48

	ActionButton
	ActivityItem
	Announced
	BasePickerListBelow
	Breadcrumb
	Calendar
	Callout
	Checkbox
	ChoiceGroup
	Coachmark
	ColorPicker
	ComboBox
	CommandBar
	CommandBarItem
	CompactPeoplePicker
	ContextualMenu
	DatePicker
	DetailsList
	Dialog
	DocumentCard
	Dropdown
	Facepile
	fluentPage
	fluentPeople
	fluentSalesDeals
	FocusTrapCallout
	FocusZone
	FontIcon
	GroupedList
	HoverCard
	Image
	Keytip
	KeytipLayer
	Label
	Layer
	Link
	List
	MarqueeSelection
	MaskedTextField
	MessageBar
	Modal
	Nav
	OverflowSet
	Overlay
	Panel
	parseTheme
	Persona
	Pivot
	ProgressIndicator
	Rating
	ResizeGroup
	runExample
	ScrollablePane
	SearchBox
	Separator
	Shimmer
	shinyFluentDependency
	Slider
	SpinButton
	Spinner
	Stack
	SwatchColorPicker
	TeachingBubble
	Text
	ThemeProvider
	Toggle
	TooltipHost
	VerticalDivider
	Index

