Package ‘shapr’

April 28, 2025
Version 1.0.4
Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in
many situations it is crucial to understand and explain why a model made a specific
prediction. Shapley values is the only method for such prediction explanation framework
with a solid theoretical foundation. Previously known methods for estimating the Shapley
values do, however, assume feature independence. This package implements methods which ac-
counts for any feature
dependence, and thereby produces more accurate estimates of the true Shapley values.
An accompanying 'Python' wrapper ('shaprpy’) is available through the GitHub repository.
URL https://norskregnesentral.github.io/shapr/,

https://github.com/NorskRegnesentral/shapr/

BugReports https://github.com/NorskRegnesentral/shapr/issues
License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

Language en-US

RoxygenNote 7.3.2

Depends R (>=3.5.0)

Imports stats, data.table (>= 1.15.0), Rcpp (>= 0.12.15), Matrix,
future.apply, methods, cli, rlang

Suggests ranger, xgboost, mgcv, testthat (>= 3.0.0), knitr, rmarkdown,
roxygen2, ggplot2, gbm, party, partykit, waldo, progressr,
future, ggbeeswarm, vdiffr, forecast, torch, GGally, coro,
parsnip, recipes, workflows, tune, dials, yardstick, hardhat,
rsample

LinkingTo RcppArmadillo, Rcpp
VignetteBuilder knitr
Config/testthat/edition 3

NeedsCompilation yes

https://norskregnesentral.github.io/shapr/
https://github.com/NorskRegnesentral/shapr/
https://github.com/NorskRegnesentral/shapr/issues

explain

Author Martin Jullum [cre, aut] (<https://orcid.org/0000-0003-3908-5155>),

Lars Henry Berge Olsen [aut] (<https://orcid.org/0009-0006-9360-6993>),
Annabelle Redelmeier [aut],

Jon Lachmann [aut] (<https://orcid.org/0000-0001-8396-5673>),

Nikolai Sellereite [aut] (<https://orcid.org/0000-0002-4671-0337>),
Anders Lgland [ctb],

Jens Christian Wahl [ctb],

Camilla Lingjerde [ctb],

Norsk Regnesentral [cph, fnd]

Maintainer Martin Jullum <Martin.Jullum@nr.no>
Repository CRAN
Date/Publication 2025-04-28 13:00:02 UTC

Contents
explain.o e e 2
explain_forecast 13
get_extra_comp_args_default L 21
get_iterative_args_default 23
get_output_args_default.o o 24
get_supported_approaches 25
get_supported_models L 25
plotshapr e 26
plot_MSEv_eval_crit e 30
plot_SV_several_approaches 34
plot_vaeac_eval_crit 38
plot_vaeac_imputed_ggpairso 42
print.shapr 44
vaeac_get_extra_para_default.o oL 45
vaeac_train_model_continueo oL 49

Index 52

explain Explain the output of machine learning models with dependence-
aware (conditional/observational) Shapley values
Description

Computes dependence-aware Shapley values for observations in x_explain from the specified
model by using the method specified in approach to estimate the conditional expectation. See
Aas et al. (2021) for a thorough introduction to dependence-aware prediction explanation with
Shapley values.

https://orcid.org/0000-0003-3908-5155
https://orcid.org/0009-0006-9360-6993
https://orcid.org/0000-0001-8396-5673
https://orcid.org/0000-0002-4671-0337
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf

explain 3

Usage

explain(
model,
x_explain,
x_train,
approach,
phio,
iterative = NULL,
max_n_coalitions = NULL,

group = NULL,
n_MC_samples = 1000,
seed = NULL,

verbose = "basic”,

predict_model = NULL,
get_model_specs = NULL,
prev_shapr_object = NULL,
asymmetric = FALSE,
causal_ordering = NULL,
confounding = NULL,
extra_computation_args = list(),
iterative_args = list(),
output_args = list(),

)
Arguments

model Model object. Specifies the model whose predictions we want to explain. Run
get_supported_models() for a table of which models explain supports na-
tively. Unsupported models can still be explained by passing predict_model
and (optionally) get_model_specs, see details for more information.

x_explain Matrix or data.frame/data.table. Contains the the features, whose predictions
ought to be explained.

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
tional) distributions for the features needed to properly estimate the conditional
expectations in the Shapley formula.

approach Character vector of length 1 or one less than the number of features. All ele-
ments should, either be "gaussian”, "copula”, "empirical”, "ctree"”, "vaeac”,
"categorical”, "timeseries”, "independence”, "regression_separate”,
or "regression_surrogate”. The two regression approaches can not be com-
bined with any other approach. See details for more information.

phio Numeric. The prediction value for unseen data, i.e. an estimate of the expected

prediction without conditioning on any features. Typically we set this value
equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.

iterative Logical or NULL If NULL (default), the argument is set to TRUE if there are more
than 5 features/groups, and FALSE otherwise. If eventually TRUE, the Shapley

explain

values are estimated iteratively in an iterative manner. This provides sufficiently
accurate Shapley value estimates faster. First an initial number of coalitions
is sampled, then bootsrapping is used to estimate the variance of the Shapley
values. A convergence criterion is used to determine if the variances of the
Shapley values are sufficiently small. If the variances are too high, we estimate
the number of required samples to reach convergence, and thereby add more
coalitions. The process is repeated until the variances are below the thresh-
old. Specifics related to the iterative process and convergence criterion are set
through iterative_args.

max_n_coalitions
Integer. The upper limit on the number of unique feature/group coalitions to use
in the iterative procedure (if iterative = TRUE). If iterative = FALSE it repre-
sents the number of feature/group coalitions to use directly. The quantity refers
to the number of unique feature coalitions if group = NULL, and group coalitions
if group !=NULL. max_n_coalitions = NULL corresponds to max_n_coalitions=2"n_features.

group List. If NULL regular feature wise Shapley values are computed. If provided,
group wise Shapley values are computed. group then has length equal to the
number of groups. The list element contains character vectors with the features
included in each of the different groups. See Jullum et al. (2021) for more
information on group wise Shapley values.

n_MC_samples Positive integer. For most approaches, it indicates the maximum number of
samples to use in the Monte Carlo integration of every conditional expectation.
For approach="ctree", n_MC_samples corresponds to the number of samples
from the leaf node (see an exception related to the ctree.sample argument
setup_approach.ctree()). For approach="empirical”, n_MC_samples is
the K parameter in equations (14-15) of Aas et al. (2021), i.e. the maxi-
mum number of observations (with largest weights) that is used, see also the
empirical.eta argument setup_approach.empirical().

seed Positive integer. Specifies the seed before any randomness based code is being
run. If NULL (default) no seed is set in the calling environment.

verbose String vector or NULL. Specifies the verbosity (printout detail level) through
one or more of strings "basic”, "progress”, "convergence”, "shapley” and
"vS_details"”. "basic” (default) displays basic information about the compu-
tation which is being performed, in addition to some messages about parameters
being sets or checks being unavailable due to specific input. "progress displays
information about where in the calculation process the function currently is. #
"convergence" displays information on how close to convergence the Shapley
value estimates are (only when iterative = TRUE) . "shapley" displays inter-
mediate Shapley value estimates and standard deviations (only when iterative
= TRUE) and the final estimates. "vS_details"” displays information about the
v_S estimates. This is most relevant for approach %in% c("regression_separate”, "regression_sul
NULL means no printout. Note that any combination of four strings can be used.
E.g. verbose = c("basic”, "vS_details") will display basic information +
details about the v(S)-estimation process.

predict_model Function. The prediction function used when model is not natively supported.
(Run get_supported_models() for a list of natively supported models.) The

https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf

explain 5

function must have two arguments, model and newdata which specify, respec-
tively, the model and a data.frame/data.table to compute predictions for. The
function must give the prediction as a numeric vector. NULL (the default) uses
functions specified internally. Can also be used to override the default function
for natively supported model classes.
get_model_specs

Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as argument and provides a list
with 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the classes of each features.
factor_levels Character vector with the levels for any categorical features.

If NULL (the default) internal functions are used for natively supported model
classes, and the checking is disabled for unsupported model classes. Can also
be used to override the default function for natively supported model classes.
prev_shapr_object

shapr object or string. If an object of class shapr is provided, or string with
a path to where intermediate results are stored, then the function will use the
previous object to continue the computation. This is useful if the computation
is interrupted or you want higher accuracy than already obtained, and therefore
want to continue the iterative estimation. See the general usage vignette for
examples.

asymmetric Logical. Not applicable for (regular) non-causal or asymmetric explanations. If
FALSE (default), explain computes regular symmetric Shapley values, If TRUE,
then explain compute asymmetric Shapley values based on the (partial) causal
ordering given by causal_ordering. That is, explain only uses the feature
combinations/coalitions that respect the causal ordering when computing the
asymmetric Shapley values. If asymmetric is TRUE and confounding is NULL
(default), then explain computes asymmetric conditional Shapley values as
specified in Frye et al. (2020). If confounding is provided, i.e., not NULL, then
explain computes asymmetric causal Shapley values as specified in Heskes et
al. (2020).

causal_ordering
List. Not applicable for (regular) non-causal or asymmetric explanations. causal_ordering
is an unnamed list of vectors specifying the components of the partial causal or-
dering that the coalitions must respect. Each vector represents a component
and contains one or more features/groups identified by their names (strings)
or indices (integers). If causal_ordering is NULL (default), no causal order-
ing is assumed and all possible coalitions are allowed. No causal ordering is
equivalent to a causal ordering with a single component that includes all fea-
tures (List(1:n_features)) or groups (1ist(1:n_groups)) for feature-wise
and group-wise Shapley values, respectively. For feature-wise Shapley val-
ues and causal_ordering = list(c(1, 2), c(3, 4)), the interpretation is that
features 1 and 2 are the ancestors of features 3 and 4, while features 3 and
4 are on the same level. Note: All features/groups must be included in the
causal_ordering without any duplicates.

https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf

explain

confounding Logical vector. Not applicable for (regular) non-causal or asymmetric expla-
nations. confounding is a vector of logicals specifying whether confounding
is assumed or not for each component in the causal_ordering. If NULL (de-
fault), then no assumption about the confounding structure is made and explain
computes asymmetric/symmetric conditional Shapley values, depending on the
value of asymmetric. If confounding is a single logical, i.e., FALSE or TRUE,
then this assumption is set globally for all components in the causal order-
ing. Otherwise, confounding must be a vector of logicals of the same length
as causal_ordering, indicating the confounding assumption for each com-
ponent. When confounding is specified, then explain computes asymmet-
ric/symmetric causal Shapley values, depending on the value of asymmetric.
The approach cannot be regression_separate and regression_surrogate
as the regression-based approaches are not applicable to the causal Shapley
value methodology.

extra_computation_args
Named list. Specifies extra arguments related to the computation of the Shap-
ley values. See get_extra_comp_args_default() for description of the argu-
ments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default()
for description of the arguments and their default values.

output_args Named list. Specifies certain arguments related to the output of the function.
See get_output_args_default() for description of the arguments and their
default values.

Arguments passed on to setup_approach.categorical, setup_approach.copula,
setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian,
setup_approach.independence, setup_approach.regression_separate, setup_approach.regres
setup_approach.timeseries, setup_approach.vaeac

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical. joint_probability_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_explain and NOT in x_train, then epsilon
is used as the proportion of times that these observations occurs in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

internal List. Not used directly, but passed through from explain().

ctree.mincriterion Numeric scalar or vector. FEither a scalar or vector of
length equal to the number of features in the model. The value is equal to 1
- a where « is the nominal level of the conditional independence tests. If it
is a vector, this indicates which value to use when conditioning on various
numbers of features. The default value is 0.95.

ctree.minsplit Numeric scalar. Determines minimum value that the sum of
the left and right daughter nodes required for a split. The default value is
20.

ctree.minbucket Numeric scalar. Determines the minimum sum of weights
in a terminal node required for a split The default value is 7.

explain 7

ctree.sample Boolean. If TRUE (default), then the method always samples
n_MC_samples observations from the leaf nodes (with replacement). If
FALSE and the number of observations in the leaf node is less than n_MC_samples,
the method will take all observations in the leaf. If FALSE and the number
of observations in the leaf node is more than n_MC_samples, the method
will sample n_MC_samples observations (with replacement). This means
that there will always be sampling in the leaf unless sample = FALSE and
the number of obs in the node is less than n_MC_samples.

empirical.type Character. (default = "fixed_sigma”) Should be equal to ei-
ther "independence”,”"fixed_sigma", "AICc_each_k" "AICc_full”. "independence"”
is deprecated. Use approach = "independence” instead. "fixed_sigma”
uses a fixed bandwidth (set through empirical.fixed_sigma) in the ker-
nel density estimation. "AICc_each_k"” and "AICc_full” optimize the
bandwidth using the AICc criterion, with respectively one bandwidth per
coalition size and one bandwidth for all coalition sizes.

empirical.eta Numeric scalar. Needs to be @ < eta <= 1. The default value
is 0.95. Represents the minimum proportion of the total empirical weight
that data samples should use. If e.g. eta = .8 we will choose the K samples
with the largest weight so that the sum of the weights accounts for 80\ eta
is the 1) parameter in equation (15) of Aas et al. (2021).

empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when
conditioning on all different coalitions. Only used when empirical. type
="fixed_sigma"

empirical.n_samples_aicc Positive integer. Number of samples to consider
in AICc optimization. The default value is 1000. Only used for empirical. type
is either "AICc_each_k" or "AICc_full”.

empirical.eval_max_aicc Positive integer. Maximum number of iterations
when optimizing the AICc. The default value is 20. Only used for empirical. type
is either "AICc_each_k" or "AICc_full"”.

empirical.start_aicc Numeric. Start value of the sigma parameter when
optimizing the AICc. The default value is 0.1. Only used for empirical. type
is either "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the
data generating distribution used to define the Mahalanobis distance. NULL
means it is estimated from x_train.

gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-
erating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-
trix of the data generating distribution. NULL means it is estimated from the
x_train.
regression.model A tidymodels object of class model_specs. Default is a
linear regression model, i.e., parsnip: :linear_reg(). See tidymodels for
all possible models, and see the vignette for how to add new/own models.
Note, to make it easier to call explain() from Python, the regression.model
parameter can also be a string specifying the model which will be parsed
and evaluated. For example, "parsnip: :rand_forest(mtry = hardhat: :tune(), trees = 100,

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://www.tidymodels.org/find/parsnip/

explain

is also a valid input. It is essential to include the package prefix if the pack-
age is not loaded.

regression.tune_values Either NULL (default), a data.frame/data.table/tibble,
or a function. The data.frame must contain the possible hyperparameter
value combinations to try. The column names must match the names of the
tunable parameters specified in regression.model. If regression. tune_values
is a function, then it should take one argument x which is the training data
for the current coalition and returns a data.frame/data.table/tibble with the
properties described above. Using a function allows the hyperparameter
values to change based on the size of the coalition See the regression vi-
gnette for several examples. Note, to make it easier to call explain() from
Python, the regression. tune_values can also be a string containing an R
function. For example, "function(x) return(dials::grid_regular(dials: :mtry(c(1,
ncol(x)))), levels =3))" is also a valid input. It is essential to include
the package prefix if the package is not loaded.

regression.vfold_cv_para Either NULL (default) or a named list containing
the parameters to be sent to rsample::vfold_cv(). See the regression
vignette for several examples.

regression.recipe_func Either NULL (default) or a function that that takes in
arecipes::recipe() object and returns a modified recipes: :recipe()
with potentially additional recipe steps. See the regression vignette for sev-
eral examples. Note, to make it easier to call explain() from Python, the
regression.recipe_func can also be a string containing an R function.
For example, "function(recipe) return(recipes::step_ns(recipe,
recipes::all_numeric_predictors(), deg_free =2))" is also a valid
input. It is essential to include the package prefix if the package is not
loaded.

regression.surrogate_n_comb Positive integer. Specifies the number of unique
coalitions to apply to each training observation. The default is the number
of sampled coalitions in the present iteration. Any integer between 1 and
the default is allowed. Larger values requires more memory, but may im-
prove the surrogate model. If the user sets a value lower than the maximum,
we sample this amount of unique coalitions separately for each training ob-
servations. That is, on average, all coalitions should be equally trained.

timeseries.fixed_sigma Positive numeric scalar. Represents the kernel band-
width in the distance computation. The default value is 2.

timeseries.bounds Numeric vector of length two. Specifies the lower and
upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no
bounds. If one or both of these bounds are not NULL, we restrict the sampled
time series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

explain 9

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the
torch: :optim_adam() optimizer.
vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch: :nn_relu() (default), torch: :nn_leaky_relu(),
torch::nn_selu(), or torch: :nn_sigmoid().
vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.
vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.
vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

Details

The shapr package implements kernelSHAP estimation of dependence-aware Shapley values with
eight different Monte Carlo-based approaches for estimating the conditional distributions of the
data. These are all introduced in the general usage vignette. (From R: vignette("general_usage”,
package = "shapr")). Moreover, Aas et al. (2021) gives a general introduction to dependence-
aware Shapley values, and the three approaches "empirical”, "gaussian”, "copula”, and also
discusses "independence”. Redelmeier et al. (2020) introduces the approach "ctree”. Olsen et
al. (2022) introduces the "vaeac" approach. Approach "timeseries” is discussed in Jullum et al.
(2021). shapr has also implemented two regression-based approaches "regression_separate”
and "regression_surrogate”, as described in Olsen et al. (2024). It is also possible to combine
the different approaches, see the general usage for more information.

The package also supports the computation of causal and asymmetric Shapley values as introduced
by Heskes et al. (2020) and Frye et al. (2020). Asymmetric Shapley values were proposed by
Heskes et al. (2020) as a way to incorporate causal knowledge in the real world by restricting the
possible feature combinations/coalitions when computing the Shapley values to those consistent
with a (partial) causal ordering. Causal Shapley values were proposed by Frye et al. (2020) as a way
to explain the total effect of features on the prediction, taking into account their causal relationships,
by adapting the sampling procedure in shapr.

The package allows for parallelized computation with progress updates through the tightly con-
nected future::future and progressr::progressr packages. See the examples below. For iterative
estimation (iterative=TRUE), intermediate results may also be printed to the console (according
to the verbose argument). Moreover, the intermediate results are written to disk. This combined
batch computing of the v(S) values, enables fast and accurate estimation of the Shapley values in a
memory friendly manner.

Value

Object of class c("shapr”, "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in
the rows and features along the columns. The column none is the prediction not devoted to
any of the features (given by the argument phi@)

https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf

10

explain

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the

uncertainty. Note that this only reflects the coalition sampling part of the kernelISHAP pro-
cedure, and is therefore by definition O when all coalitions is used. Only present when
extra_computation_args$compute_sd=TRUE, which is the default when iterative = TRUE

internal List with the different parameters, data, functions and other output used internally.

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evalu-

ation section in the general usage for details.

timing List containing timing information for the different parts of the computation. init_time

and end_time gives the time stamps for the start and end of the computation. total_time_secs
gives the total time in seconds for the complete execution of explain(). main_timing_secs
gives the time in seconds for the main computations. iter_timing_secs gives for each it-
eration of the iterative estimation, the time spent on the different parts iterative estimation
routine.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & Lgland, A. (2021). Explaining individual predictions when features
are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502

Frye, C., Rowat, C., & Feige, 1. (2020). Asymmetric Shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in neural information processing
systems, 33, 1229-1239

Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models. Advances in neural
information processing systems, 33, 4778-4789

Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations
with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intel-
ligence 2021.

Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed fea-
tures using Shapley values and conditional inference trees. In Machine Learning and Knowl-
edge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning
models with dependence-aware Shapley values. Journal of Open Source Software, 5(46),
2027

Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of meth-
ods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge
Discovery, 1-48

https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf

explain 11

* Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in Kernel[SHAP.
arXiv e-prints, arXiv-2410

Examples

Load example data

data("airquality”)

airquality <- airquality[complete.cases(airquality), 1]
x_var <- c("Solar.R", "Wind", "Temp"”, "Month")

y_var <- "QOzone"

Split data into test- and training data
data_train <- head(airquality, -3)
data_explain <- tail(airquality, 3)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
Im_formula <- as.formula(paste@(y_var,
model <- Im(lm_formula, data = data_train)

nooon

, paste@(x_var, collapse = " + ")))

Explain predictions
p <- mean(data_train[, y_varl])

(Optionally) enable parallelization via the future package
if (requireNamespace("future”, quietly = TRUE)) {
future::plan("multisession”, workers = 2)

3

(Optionally) enable progress updates within every iteration via the progressr package
if (requireNamespace("progressr”, quietly = TRUE)) {

progressr: :handlers(global = TRUE)
3

Empirical approach

explainl <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = "empirical”,
phio = p,
n_MC_samples = 1e2

)

Gaussian approach

explain2 <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian”,

https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

12

phi@ = p,
n_MC_samples = 1e2

)

Gaussian copula approach
explain3 <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = "copula”,
phie = p,
n_MC_samples = 1e2

)

if (requireNamespace("party”, quietly = TRUE)) {
ctree approach
explain4 <- explain(
model = model,
x_explain = x_explain,
Xx_train = x_train,

approach = "ctree”,
phio = p,
n_MC_samples = 1le2
)
}

Combined approach
approach <- c("gaussian”, "gaussian”, "empirical")
explain5 <- explain(

model = model,

x_explain = x_explain,

x_train = x_train,

approach = approach,

phi@ = p,

n_MC_samples = 1e2

)

Print the Shapley values
print(explaini$shapley_values_est)

Plot the results

if (requireNamespace("ggplot2"”, quietly = TRUE)) {
plot(explaini)
plot(explainl, plot_type = "waterfall”)

3

Group-wise explanations

group_list <- list(A = c("Temp”, "Month"), B = c("Wind", "Solar.R"))

explain_groups <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

explain

explain_forecast 13

group = group_list,

approach = "empirical”,
phio = p,
n_MC_samples = 1e2

)

print(explain_groups$shapley_values_est)

Separate and surrogate regression approaches with linear regression models.
req_pkgs <- c("parsnip”, "recipes”, "workflows"”, "rsample”, "tune"”, "yardstick")
if (requireNamespace(req_pkgs, quietly = TRUE)) {
explain_separate_lm <- explain(
model = model,
x_explain = x_explain,
Xx_train = x_train,

phio = p,

approach = "regression_separate”,

regression.model = parsnip::linear_reg()
)

explain_surrogate_lm <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

phio = p,
approach = "regression_surrogate”,
regression.model = parsnip::linear_reg()

Iterative estimation
For illustration purposes only. By default not used for such small dimensions as here

Gaussian approach
explain_iterative <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian”,
phie = p,
n_MC_samples = 1e2,
iterative = TRUE,
iterative_args = list(initial_n_coalitions = 10)

explain_forecast Explain a forecast from time series models with dependence-aware
(conditional/observational) Shapley values

14

Description

explain_forecast

Computes dependence-aware Shapley values for observations in explain_idx from the specified
model by using the method specified in approach to estimate the conditional expectation. See Aas,
et. al (2021) for a thorough introduction to dependence-aware prediction explanation with Shapley

values.
Usage
explain_forecast(
model,
Y,
xreg = NULL,

train_idx = NULL,

explain_idx,

explain_y_lags,

explain_xreg_

horizon,
approach,
phi@,

lags = explain_y_lags,

max_n_coalitions = NULL,
iterative = NULL,

group_lags =
group = NULL,
n_MC_samples
seed = NULL,

TRUE,

= 1000,

predict_model = NULL,
get_model_specs = NULL,

verbose = "basic”,
extra_computation_args = list(),
iterative_args = list(),
output_args = list(),

Arguments

model

xreg

Model object. Specifies the model whose predictions we want to explain. Run
get_supported_models() for a table of which models explain supports na-
tively. Unsupported models can still be explained by passing predict_model
and (optionally) get_model_specs, see details for more information.

Matrix, data.frame/data.table or a numeric vector. Contains the endogenous
variables used to estimate the (conditional) distributions needed to properly es-
timate the conditional expectations in the Shapley formula including the obser-
vations to be explained.

Matrix, data.frame/data.table or a numeric vector. Contains the exogenous vari-
ables used to estimate the (conditional) distributions needed to properly estimate
the conditional expectations in the Shapley formula including the observations

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf

explain_forecast 15

to be explained. As exogenous variables are used contemporaneously when pro-
ducing a forecast, this item should contain nrow(y) + horizon rows.

train_idx Numeric vector. The row indices in data and reg denoting points in time to use
when estimating the conditional expectations in the Shapley value formula. If
train_idx = NULL (default) all indices not selected to be explained will be used.

explain_idx Numeric vector. The row indices in data and reg denoting points in time to
explain.

explain_y_lags Numeric vector. Denotes the number of lags that should be used for each vari-
able in y when making a forecast.

explain_xreg_lags
Numeric vector. If xreg !=NULL, denotes the number of lags that should be
used for each variable in xreg when making a forecast.

horizon Numeric. The forecast horizon to explain. Passed to the predict_model func-
tion.
approach Character vector of length 1 or one less than the number of features. All ele-

non n on n on

ments should, either be "gaussian”, "copula”, "empirical”, "ctree”, "vaeac”,
"categorical”, "timeseries”, "independence”, "regression_separate”,
or "regression_surrogate”. The two regression approaches can not be com-

bined with any other approach. See details for more information.

phio Numeric. The prediction value for unseen data, i.e. an estimate of the expected
prediction without conditioning on any features. Typically we set this value
equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.
max_n_coalitions
Integer. The upper limit on the number of unique feature/group coalitions to use
in the iterative procedure (if iterative = TRUE). If iterative = FALSE it repre-
sents the number of feature/group coalitions to use directly. The quantity refers
to the number of unique feature coalitions if group = NULL, and group coalitions
if group !=NULL. max_n_coalitions = NULL corresponds to max_n_coalitions=2"n_features.

iterative Logical or NULL If NULL (default), the argument is set to TRUE if there are more
than 5 features/groups, and FALSE otherwise. If eventually TRUE, the Shapley
values are estimated iteratively in an iterative manner. This provides sufficiently
accurate Shapley value estimates faster. First an initial number of coalitions
is sampled, then bootsrapping is used to estimate the variance of the Shapley
values. A convergence criterion is used to determine if the variances of the
Shapley values are sufficiently small. If the variances are too high, we estimate
the number of required samples to reach convergence, and thereby add more
coalitions. The process is repeated until the variances are below the thresh-
old. Specifics related to the iterative process and convergence criterion are set
through iterative_args.

group_lags Logical. If TRUE all lags of each variable are grouped together and explained as
a group. If FALSE all lags of each variable are explained individually.

group List. If NULL regular feature wise Shapley values are computed. If provided,
group wise Shapley values are computed. group then has length equal to the
number of groups. The list element contains character vectors with the features

explain_forecast

included in each of the different groups. See Jullum et al. (2021) for more
information on group wise Shapley values.

n_MC_samples Positive integer. For most approaches, it indicates the maximum number of
samples to use in the Monte Carlo integration of every conditional expectation.
For approach="ctree", n_MC_samples corresponds to the number of samples
from the leaf node (see an exception related to the ctree.sample argument
setup_approach.ctree()). For approach="empirical”, n_MC_samples is
the K parameter in equations (14-15) of Aas et al. (2021), i.e. the maxi-
mum number of observations (with largest weights) that is used, see also the
empirical.eta argument setup_approach.empirical().

seed Positive integer. Specifies the seed before any randomness based code is being
run. If NULL (default) no seed is set in the calling environment.

predict_model Function. The prediction function used when model is not natively supported.
(Run get_supported_models() for a list of natively supported models.) The
function must have two arguments, model and newdata which specify, respec-
tively, the model and a data.frame/data.table to compute predictions for. The
function must give the prediction as a numeric vector. NULL (the default) uses
functions specified internally. Can also be used to override the default function
for natively supported model classes.

get_model_specs
Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as argument and provides a list
with 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the classes of each features.
factor_levels Character vector with the levels for any categorical features.

If NULL (the default) internal functions are used for natively supported model
classes, and the checking is disabled for unsupported model classes. Can also
be used to override the default function for natively supported model classes.

verbose String vector or NULL. Specifies the verbosity (printout detail level) through
one or more of strings "basic”, "progress”, "convergence”, "shapley” and
"vS_details”. "basic” (default) displays basic information about the compu-
tation which is being performed, in addition to some messages about parameters
being sets or checks being unavailable due to specific input. "progress displays
information about where in the calculation process the function currently is. #
"convergence" displays information on how close to convergence the Shapley
value estimates are (only when iterative = TRUE) . "shapley"” displays inter-
mediate Shapley value estimates and standard deviations (only when iterative
= TRUE) and the final estimates. "vS_details"” displays information about the
v_S estimates. This is most relevant for approach %in% c("regression_separate”, "regression_sul
NULL means no printout. Note that any combination of four strings can be used.
E.g. verbose = c("basic”, "vS_details") will display basic information +
details about the v(S)-estimation process.

extra_computation_args
Named list. Specifies extra arguments related to the computation of the Shap-

https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf

explain_forecast 17

ley values. See get_extra_comp_args_default() for description of the argu-
ments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default()
for description of the arguments and their default values.

output_args Named list. Specifies certain arguments related to the output of the function.
See get_output_args_default() for description of the arguments and their
default values.

Arguments passed on to setup_approach.categorical, setup_approach.copula,
setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian,
setup_approach.independence, setup_approach.timeseries, setup_approach.vaeac

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical. joint_probability_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_explain and NOT in x_train, then epsilon
is used as the proportion of times that these observations occurs in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

internal List. Not used directly, but passed through from explain().

ctree.mincriterion Numeric scalar or vector. Either a scalar or vector of
length equal to the number of features in the model. The value is equal to 1
- o where « is the nominal level of the conditional independence tests. If it
is a vector, this indicates which value to use when conditioning on various
numbers of features. The default value is 0.95.

ctree.minsplit Numeric scalar. Determines minimum value that the sum of
the left and right daughter nodes required for a split. The default value is
20.

ctree.minbucket Numeric scalar. Determines the minimum sum of weights
in a terminal node required for a split The default value is 7.

ctree.sample Boolean. If TRUE (default), then the method always samples
n_MC_samples observations from the leaf nodes (with replacement). If
FALSE and the number of observations in the leaf node is less than n_MC_samples,
the method will take all observations in the leaf. If FALSE and the number
of observations in the leaf node is more than n_MC_samples, the method
will sample n_MC_samples observations (with replacement). This means
that there will always be sampling in the leaf unless sample = FALSE and
the number of obs in the node is less than n_MC_samples.

empirical.type Character. (default = "fixed_sigma") Should be equal to ei-
ther "independence”,”fixed_sigma"”, "AICc_each_k" "AICc_full”. "independence”
is deprecated. Use approach = "independence” instead. "fixed_sigma”
uses a fixed bandwidth (set through empirical.fixed_sigma) in the ker-
nel density estimation. "AICc_each_k" and "AICc_full” optimize the
bandwidth using the AICc criterion, with respectively one bandwidth per
coalition size and one bandwidth for all coalition sizes.

empirical.eta Numeric scalar. Needs to be @ < eta <= 1. The default value
is 0.95. Represents the minimum proportion of the total empirical weight

explain_forecast

that data samples should use. If e.g. eta = . 8 we will choose the K samples
with the largest weight so that the sum of the weights accounts for 80\ eta
is the 7 parameter in equation (15) of Aas et al. (2021).

empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when
conditioning on all different coalitions. Only used when empirical. type
="fixed_sigma”

empirical.n_samples_aicc Positive integer. Number of samples to consider
in AICc optimization. The default value is 1000. Only used for empirical. type
is either "AICc_each_k" or "AICc_full"”.

empirical.eval_max_aicc Positive integer. Maximum number of iterations
when optimizing the AICc. The default value is 20. Only used for empirical. type
is either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. Start value of the sigma parameter when
optimizing the AICc. The default value is 0.1. Only used for empirical. type
is either "AICc_each_k" or "AICc_full”.

empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the
data generating distribution used to define the Mahalanobis distance. NULL
means it is estimated from x_train.

gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-
erating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-
trix of the data generating distribution. NULL means it is estimated from the
x_train.

timeseries.fixed_sigma Positive numeric scalar. Represents the kernel band-
width in the distance computation. The default value is 2.

timeseries.bounds Numeric vector of length two. Specifies the lower and
upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no
bounds. If one or both of these bounds are not NULL, we restrict the sampled
time series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

vaeac.1lr Positive numeric (default is @.001). The learning rate used in the
torch: :optim_adam() optimizer.

vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch: :nn_relu() (default), torch: :nn_leaky_relu(),
torch: :nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf

explain_forecast 19

vaeac.epochs Positive integer (default is 100). The number of epochs to train

the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,

where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

Details

This function explains a forecast of length horizon. The argument train_idx is analogous to
X_train in explain(), however, it just contains the time indices of where in the data the forecast
should start for each training sample. In the same way explain_idx defines the time index (indices)
which will precede a forecast to be explained.

As any autoregressive forecast model will require a set of lags to make a forecast at an arbitrary
point in time, explain_y_lags and explain_xreg_lags define how many lags are required to
"refit" the model at any given time index. This allows the different approaches to work in the same
way they do for time-invariant models.

See the forecasting section of the general usages for further details.

Value

Object of class c("shapr”, "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in
the rows and features along the columns. The column none is the prediction not devoted to
any of the features (given by the argument phi@)

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the
uncertainty. Note that this only reflects the coalition sampling part of the kernelSHAP pro-
cedure, and is therefore by definition O when all coalitions is used. Only present when
extra_computation_args$compute_sd=TRUE, which is the default when iterative = TRUE

internal List with the different parameters, data, functions and other output used internally.
pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evalu-
ation section in the general usage for details.

timing List containing timing information for the different parts of the computation. init_time
and end_time gives the time stamps for the start and end of the computation. total_time_secs
gives the total time in seconds for the complete execution of explain(). main_timing_secs
gives the time in seconds for the main computations. iter_timing_secs gives for each it-
eration of the iterative estimation, the time spent on the different parts iterative estimation
routine.

Author(s)

Jon Lachmann, Martin Jullum

https://norskregnesentral.github.io/shapr/articles/general_usage.html#forecasting
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion

20

explain_forecast

References

Aas, K., Jullum, M., & Lgland, A. (2021). Explaining individual predictions when features

are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502

Frye, C., Rowat, C., & Feige, 1. (2020). Asymmetric Shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in neural information processing
systems, 33, 1229-1239

Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models. Advances in neural
information processing systems, 33, 4778-4789

Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations
with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intel-
ligence 2021.

Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed fea-
tures using Shapley values and conditional inference trees. In Machine Learning and Knowl-
edge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning
models with dependence-aware Shapley values. Journal of Open Source Software, 5(46),
2027

Olsen, L. H., Glad, L. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of meth-
ods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge
Discovery, 1-48

Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP.
arXiv e-prints, arXiv-2410

Examples

Load example data
data("airquality"”)
data <- data.table::as.data.table(airquality)

Fit an AR(2) model.
model_ar_temp <- ar(data$Temp, order = 2)

Calculate the zero prediction values for a three step forecast.
pd_ar <- rep(mean(data$Temp), 3)

Empirical approach, explaining forecasts starting at T = 152 and T = 153.
explain_forecast(

model = model_ar_temp,

y = data[, "Temp"],

train_idx = 2:151,

explain_idx = 152:153,

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

get_extra_comp_args_default 21

explain_y_lags = 2,
horizon = 3,

approach = "empirical”,
phi@ = p@_ar,
group_lags = FALSE

get_extra_comp_args_default
Gets the default values for the extra computation arguments

Description

Gets the default values for the extra computation arguments

Usage

get_extra_comp_args_default(
internal,
paired_shap_sampling = isFALSE(internal$parameters$asymmetric),
semi_deterministic_sampling = FALSE,
kernelSHAP_reweighting = "on_all_cond”,
compute_sd = isFALSE(internal$parameters$exact),
n_boot_samps = 100,
vS_batching_method = "future”,
max_batch_size = 10,
min_n_batches = 10

Arguments

internal List. Not used directly, but passed through from explain().

paired_shap_sampling
Logical. If TRUE paired versions of all sampled coalitions are also included in
the computation. That is, if there are 5 features and e.g. coalitions (1,3,5) are
sampled, then also coalition (2,4) is used for computing the Shapley values. This
is done to reduce the variance of the Shapley value estimates. TRUE is the default
and is recommended for highest accuracy. For asymmetric, FALSE is the default
and the only legal value.

semi_deterministic_sampling
Logical. If FALSE (default), then we sample from all coalitions. If TRUE, the
sampling of coalitions is semi-deterministic, i.e. the sampling is done in a way
that ensures that coalitions that are expected to be sampled based on the number
of coalitions are deterministically included such that we sample among fewer
coalitions. This is done to reduce the variance of the Shapley value estimates,
and corresponds to the PySHAP#* strategy in the paper Olsen & Jullum (2024).

https://arxiv.org/pdf/2410.04883

22

get_extra_comp_args_default

kernelSHAP_reweighting

compute_sd

n_boot_samps

String. How to reweight the sampling frequency weights in the kernelSSHAP
solution after sampling. The aim of this is to reduce the randomness and thereby
the variance of the Shapley value estimates. The options are one of 'none’,
'on_N', 'on_all', 'on_all_cond' (default). 'none' means no reweighting,
i.e. the sampling frequency weights are used as is. 'on_N' means the sampling
frequencies are averaged over all coalitions with the same original sampling
probabilities. 'on_all' means the original sampling probabilities are used for
all coalitions. 'on_all_cond' means the original sampling probabilities are
used for all coalitions, while adjusting for the probability that they are sampled
at least once. 'on_all_cond' is preferred as it performs the best in simulation
studies, see Olsen & Jullum (2024).

Logical. Whether to estimate the standard deviations of the Shapley value esti-
mates. This is TRUE whenever sampling based kernelSHAP is applied (either
iteratively or with a fixed number of coalitions).

Integer. The number of bootstrapped samples (i.e. samples with replacement)
from the set of all coalitions used to estimate the standard deviations of the
Shapley value estimates.

vS_batching_method

max_batch_size

min_n_batches

Value

String. The method used to perform batch computing of vS. "future” (de-
fault), utilizes future.apply::future_apply (via the future::future package), en-
abling parallelized computation and progress updates via progressr::progressr.
Alternatively, "forloop” can be used for straight forward sequential computa-
tion, which is mainly useful for package development and debugging purposes.

Integer. The maximum number of coalitions to estimate simultaneously within
each iteration. A larger numbers requires more memory, but may have a slight
computational advantage.

Integer. The minimum number of batches to split the computation into within
each iteration. Larger numbers gives more frequent progress updates. If paral-
lelization is applied, this should be set no smaller than the number of parallel
workers.

A list with the default values for the extra computation arguments.

Author(s)

Martin Jullum

References

* Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP.
arXiv preprint arXiv:2410.04883.

https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

get_iterative_args_default 23

get_iterative_args_default
Function to specify arguments of the iterative estimation procedure

Description

Function to specify arguments of the iterative estimation procedure

Usage

get_iterative_args_default(
internal,
initial_n_coalitions = ceiling(min(200, max(5, internal$parameters$n_features,
(2*internal$parameters$n_features)/10), internal$parameters$max_n_coalitions)),
fixed_n_coalitions_per_iter = NULL,
max_iter = 20,
convergence_tol = 0.02,
n_coal_next_iter_factor_vec = c(seq(@.1, 1, by = 0.1), rep(1, max_iter - 10))

Arguments

internal List. Not used directly, but passed through from explain().
initial_n_coalitions
Integer. Number of coalitions to use in the first estimation iteration.
fixed_n_coalitions_per_iter
Integer. Number of n_coalitions to use in each iteration. NULL (default) means
setting it based on estimates based on a set convergence threshold.
max_iter Integer. Maximum number of estimation iterations
convergence_tol
Numeric. The t variable in the convergence threshold formula on page 6 in
the paper Covert and Lee (2021), 'Improving KernelSHAP: Practical Shap-
ley Value Estimation via Linear Regression’ https://arxiv.org/pdf/2012.01536.
Smaller values requires more coalitions before convergence is reached.
n_coal_next_iter_factor_vec
Numeric vector. The number of n_coalitions that must be used to reach con-
vergence in the next iteration is estimated. The number of n_coalitions actu-
ally used in the next iteration is set to this estimate multiplied by n_coal_next_iter_factor_vec[i]
for iteration i. It is wise to start with smaller numbers to avoid using too many
n_coalitions due to uncertain estimates in the first iterations.

Details

The functions sets default values for the iterative estimation procedure, according to the function
defaults. If the argument iterative of explain() is FALSE, it sets parameters corresponding to
the use of a non-iterative estimation procedure

24 get_output_args_default

Value

A list with the default values for the iterative estimation procedure

Author(s)

Martin Jullum

get_output_args_default
Gets the default values for the output arguments

Description

Gets the default values for the output arguments

Usage

get_output_args_default(

keep_samp_for_vS = FALSE,

MSEv_uniform_comb_weights = TRUE,

saving_path = tempfile("shapr_obj_", fileext = ".rds")
)

Arguments

keep_samp_for_vS
Logical. Indicates whether the samples used in the Monte Carlo estimation of
v_S should be returned (in internal$output). Not used for approach="regression_separate”
or approach="regression_surrogate"”.
MSEv_uniform_comb_weights
Logical. If TRUE (default), then the function weights the coalitions uniformly
when computing the MSEv criterion. If FALSE, then the function use the Shapley
kernel weights to weight the coalitions when computing the MSEv criterion.
Note that the Shapley kernel weights are replaced by the sampling frequency
when not all coalitions are considered.

saving_path String. The path to the directory where the results of the iterative estimation
procedure should be saved. Defaults to a temporary directory.

Value

A list of default output arguments.

Author(s)

Martin Jullum

get_supported_approaches 25

get_supported_approaches
Gets the implemented approaches

Description

Gets the implemented approaches

Usage

get_supported_approaches()

Value

Character vector. The names of the implemented approaches that can be passed to argument
approach in explain().

get_supported_models Provides a data.table with the supported models

Description

Provides a data.table with the supported models

Usage

get_supported_models()

Value

A data.table with the supported models.

26

plot.shapr

plot.shapr

Plot of the Shapley value explanations

Description

Plots the individual prediction explanations.

Usage

S3 method for class 'shapr'

plot(
X,

plot_type = "bar",

digits

index_x_explain = NULL,
top_k_features = NULL,

col = NULL,

bar_plot_phi@ = TRUE,

bar_plot_order = "largest_first”,
scatter_features = NULL,
scatter_hist = TRUE,
include_group_feature_means = FALSE,

beeswarm_cex

Arguments

X

plot_type

digits

index_x_explain

= 1/length(index_x_explain)*(1/4),

An shapr object. The output from explain().

Character. Specifies the type of plot to produce. "bar" (the default) gives a reg-
ular horizontal bar plot of the Shapley value magnitudes. "waterfall” gives a
waterfall plot indicating the changes in the prediction score due to each features
contribution (their Shapley values). "scatter” plots the feature values on the
x-axis and Shapley values on the y-axis, as well as (optionally) a background
scatter_hist showing the distribution of the feature data. "beeswarm” summa-
rizes the distribution of the Shapley values along the x-axis for all the features.
Each point gives the shapley value of a given instance, where the points are
colored by the feature value of that instance.

Integer. Number of significant digits to use in the feature description. Applicable
for plot_type "bar” and "waterfall”

Integer vector. Which of the test observations to plot. E.g. if you have ex-
plained 10 observations using explain(), you can generate a plot for the first 5
observations by setting index_x_explain=1:5.

plot.shapr 27

top_k_features Integer. How many features to include in the plot. E.g. if you have 15 features
in your model you can plot the 5 most important features, for each explana-
tion, by setting top_k_features = 1:5. Applicable for plot_type "bar” and
"waterfall”

col Character vector (where length depends on plot type). The color codes (hex
codes or other names understood by ggplot2: :ggplot()) for positive and neg-
ative Shapley values, respectively. The default is col=NULL, plotting with the de-
fault colors respective to the plot type. For plot_type = "bar"” and plot_type
= "waterfall”, the default is c("#00BA38","#F8766D"). For plot_type =
"beeswarm”, the defaultis c("#F8766D","yellow", "#00BA38"). For plot_type
= "scatter”, the default is "#619CFF".
If you want to alter the colors i the plot, the length of the col vector depends
on plot type. For plot_type = "bar” or plot_type = "waterfall”, two colors
should be provided, first for positive and then for negative Shapley values. For
plot_type = "beeswarm”, either two or three colors can be given. If two colors
are given, then the first color determines the color that points with high feature
values will have, and the second determines the color of points with low feature
values. If three colors are given, then the first colors high feature values, the
second colors mid-range feature values, and the third colors low feature values.
For instance, col = c("red”, "yellow”, "blue”) will make high values red,
mid-range values yellow, and low values blue. For plot_type = "scatter”, a
single color is to be given, which determines the color of the points on the scatter
plot.

bar_plot_phi@ Logical. Whether to include phi@ in the plot for plot_type = "bar".

bar_plot_order Character. Specifies what order to plot the features with respect to the magni-
tude of the shapley values with plot_type = "bar": "largest_first” (the de-
fault) plots the features ordered from largest to smallest absolute Shapley value.
"smallest_first” plots the features ordered from smallest to largest absolute
Shapley value. "original” plots the features in the original order of the data
table.

scatter_features
Integer or character vector. Only used for plot_type = "scatter”. Specifies
what features to include in (scatter) plot. Can be a numerical vector indicating
feature index, or a character vector, indicating the name(s) of the feature(s) to
plot.

scatter_hist Logical. Only used for plot_type = "scatter”. Whether to include a scat-
ter_hist indicating the distribution of the data when making the scatter plot. Note
that the bins are scaled so that when all the bins are stacked they fit the span of
the y-axis of the plot.

include_group_feature_means
Logical. Whether to include the average feature value in a group on the y-axis
or not. If FALSE (default), then no value is shown for the groups. If TRUE, then
shapr includes the mean of the features in each group.

beeswarm_cex Numeric. The cex argument of ggbeeswarm: : geom_beeswarm(), controlling
the spacing in the beeswarm plots.

Other arguments passed to underlying functions, like ggbeeswarm: : geom_beeswarm()
for plot_type = "beeswarm”.

28 plot.shapr

Details

See the examples below, or vignette("”general_usage"”, package = "shapr") for an examples
of how you should use the function.

Value

ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum, Vilde Ung, Lars Henry Berge Olsen

Examples

if (requireNamespace("party”, quietly = TRUE)) {
data("airquality"”)
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp"”, "Month")
y_var <- "Ozone"

Split data into test- and training data
data_train <- head(airquality, -50)
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
Im_formula <- as.formula(paste@(y_var,
model <- lm(lm_formula, data = data_train)

n oo on

, paste@(x_var, collapse = " + ")))

Explain predictions
p <- mean(data_train[, y_varl)

Empirical approach

x <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical”,
phie = p,
n_MC_samples = 1e2

)

if (requireNamespace(c("ggplot2”, "ggbeeswarm”), quietly = TRUE)) {
The default plotting option is a bar plot of the Shapley values
We draw bar plots for the first 4 observations
plot(x, index_x_explain = 1:4)

We can also make waterfall plots
plot(x, plot_type = "waterfall”, index_x_explain = 1:4)
And only showing the 2 features with largest contribution

plot.shapr 29

plot(x, plot_type = "waterfall”, index_x_explain = 1:4, top_k_features = 2)

Or scatter plots showing the distribution of the shapley values and feature values
plot(x, plot_type = "scatter”)

And only for a specific feature

plot(x, plot_type = "scatter”, scatter_features = "Temp")

Or a beeswarm plot summarising the Shapley values and feature values for all features
plot(x, plot_type = "beeswarm”)
plot(x, plot_type = "beeswarm”, col = c("red”, "black”)) # we can change colors

Additional arguments can be passed to ggbeeswarm: :geom_beeswarm() using the '...' argument.
For instance, sometimes the beeswarm plots overlap too much.
This can be fixed with the 'corral="wrap"” argument.
See ?ggbeeswarm::geom_beeswarm for more information.
plot(x, plot_type = "beeswarm”, corral = "wrap")

Example of scatter and beeswarm plot with factor variables
airquality$Month_factor <- as.factor(month.abb[airquality$Month])
airquality <- airquality[complete.cases(airquality),]

x_var <- c("Solar.R", "Wind", "Temp"”, "Month_factor")

y_var <- "Ozone"

Split data into test- and training data
data_train <- airquality
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
Im_formula <- as.formula(paste@(y_var,
model <- Im(Ilm_formula, data = data_train)

n oo on

, paste@(x_var, collapse = " + ")))

Explain predictions
p <- mean(data_train[, y_varl)

Empirical approach

x <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = "ctree”,
phi@ = p,
n_MC_samples = 1e2

)

if (requireNamespace(c("ggplot2”, "ggbeeswarm”), quietly = TRUE)) {
plot(x, plot_type = "scatter")
plot(x, plot_type = "beeswarm”)
}
3

30 plot_MSEv_eval_crit

plot_MSEv_eval_crit Plots of the MSEv Evaluation Criterion

Description

Make plots to visualize and compare the MSEv evaluation criterion for a list of explain() objects
applied to the same data and model. The function creates bar plots and line plots with points to il-
lustrate the overall MSEv evaluation criterion, but also for each observation/explicand and coalition
by only averaging over the coalitions and observations/explicands, respectively.

Usage

plot_MSEv_eval_crit(
explanation_list,
index_x_explain = NULL,
id_coalition = NULL,
CI_level = if (length(explanation_list[[1]]$pred_explain) < 20) NULL else 0.95,
geom_col_width = 0.9,
plot_type = "overall”
)

Arguments

explanation_list
A list of explain() objects applied to the same data and model. If the entries
in the list are named, then the function use these names. Otherwise, they default
to the approach names (with integer suffix for duplicates) for the explanation
objects in explanation_list.

index_x_explain
Integer vector. Which of the test observations to plot. E.g. if you have ex-
plained 10 observations using explain(), you can generate a plot for the first 5
observations by setting index_x_explain=1:5.

id_coalition Integer vector. Which of the coalitions to plot. E.g. if you used n_coalitions
=16 in explain(), you can generate a plot for the first 5 coalitions and the 10th
by setting id_coalition=c(1:5, 10).

CI_level Positive numeric between zero and one. Default is @. 95 if the number of obser-
vations to explain is larger than 20, otherwise CI_level = NULL, which removes
the confidence intervals. The level of the approximate confidence intervals for
the overall MSEv and the MSEv_coalition. The confidence intervals are based
on that the MSEv scores are means over the observations/explicands, and that
means are approximation normal. Since the standard deviations are estimated,
we use the quantile t from the T distribution with N_explicands - 1 degrees of
freedom corresponding to the provided level. Here, N_explicands is the num-
ber of observations/explicands. MSEv +/- tSD(MSEv)/sqrt(N_explicands). Note

plot_MSEv_eval_crit 31

that the explain() function already scales the standard deviation by sqrt(N_explicands),
thus, the CI are MSEv V- tMSEv_sd, where the values MSEv and MSEv_sd are
extracted from the MSEv data.tables in the objects in the explanation_list.

geom_col_width Numeric. Bar width. By default, set to 90% of the ggplot2: :resolution() of
the data.

plot_type Character vector. The possible options are "overall" (default), "comb", and "ex-
plicand". If plot_type = "overall”, then the plot (one bar plot) associated
with the overall MSEv evaluation criterion for each method is created, i.e., when
averaging over both the coalitions and observations/explicands. If plot_type =
"comb”, then the plots (one line plot and one bar plot) associated with the MSEv
evaluation criterion for each coalition are created, i.e., when we only average
over the observations/explicands. If plot_type = "explicand”, then the plots
(one line plot and one bar plot) associated with the MSEv evaluation criterion
for each observations/explicands are created, i.e., when we only average over
the coalitions. If plot_type is a vector of one or several of "overall", "comb",
and "explicand", then the associated plots are created.

Value

Either a single ggplot2::ggplot() object of the MSEv criterion when plot_type = "overall”,
or a list of ggplot2: :ggplot () objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

if (requireNamespace(”xgboost”, quietly = TRUE) && requireNamespace("ggplot2”, quietly = TRUE)) {
Get the data
data("airquality”)
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data), 1]

#' Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp"”, "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:25

x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- datal[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost: :xgboost(

data = as.matrix(x_train),

label = y_train,

nround = 20,

verbose = FALSE

32

)

plot_MSEv_eval_crit

Specifying the phi_0, i.e. the expected prediction without any features

phi@ <- mean(y_train)

Independence approach
explanation_independence <- explain(
model = model,
x_explain = x_explain,
Xx_train = x_train,
approach = "independence”,
phi@ = phi@,
n_MC_samples = 1e2
)

Gaussian 1el approach
explanation_gaussian_lel <- explain(

model = model,

x_explain = x_explain,

Xx_train = x_train,

approach = "gaussian”,

phi@ = phio,

n_MC_samples = 1lel

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(

model = model,

x_explain = x_explain,

x_train = x_train,

approach = "gaussian”,

phi@ = phi@,

n_MC_samples = 1e2

)

ctree approach
explanation_ctree <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
phi@ = phi@,
n_MC_samples = 1le2

)

Combined approach
explanation_combined <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = c("gaussian”, "independence"”, "ctree"),

phi@ = phio,
n_MC_samples = 1e2

plot_MSEv_eval_crit 33

)

Create a list of explanations with names
explanation_list_named <- list(
"Ind." = explanation_independence,
"Gaus. lel” = explanation_gaussian_lel,
"Gaus. 1e2" = explanation_gaussian_le2,
"Ctree"” = explanation_ctree,
"Combined” = explanation_combined

)

Create the default MSEv plot where we average over both the coalitions and observations
with approximate 95% confidence intervals
plot_MSEv_eval_crit(explanation_list_named, CI_level = 0.95, plot_type = "overall”)

Can also create plots of the MSEv criterion averaged only over the coalitions or observations.
MSEv_figures <- plot_MSEv_eval_crit(explanation_list_named,
CI_level = 0.95,
plot_type = c("overall”, "comb"”, "explicand")
)
MSEv_figures$MSEv_bar
MSEv_figures$MSEv_coalition_bar
MSEv_figures$MSEv_explicand_bar

When there are many coalitions or observations, then it can be easier to look at line plots
MSEv_figures$MSEv_coalition_line_point
MSEv_figures$MSEv_explicand_line_point

We can specify which observations or coalitions to plot
plot_MSEv_eval_crit(explanation_list_named,
plot_type = "explicand”,
index_x_explain = c(1, 3:4, 6),
CI_level = 0.95
)$MSEv_explicand_bar
plot_MSEv_eval_crit(explanation_list_named,
plot_type = "comb”,
id_coalition = c(3, 4, 9, 13:15),
CI_level = 0.95
)$MSEv_coalition_bar

We can alter the figures if other palette schemes or design is wanted
bar_text_n_decimals <- 1
MSEv_figures$MSEv_bar +
ggplot2::scale_x_discrete(limits = rev(levels(MSEv_figures$MSEv_bar$datas$Method))) +
ggplot2::coord_flip() +
ggplot2::scale_fill_discrete() + #' Default ggplot2 palette
ggplot2::theme_minimal() + #' This must be set before the other theme call
ggplot2: :theme(
plot.title = ggplot2::element_text(size = 10),
legend.position = "bottom”
)+
ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, ncol = 6)) +
ggplot2: :geom_text(

34 plot_SV_several_approaches

ggplot2::aes(label = sprintf(

paste("%.", sprintf("%d", bar_text_n_decimals), "f", sep = ""),
round(MSEv, bar_text_n_decimals)

),

vjust = -1.1, # This value must be altered based on the plot dimension

hjust = 1.1, # This value must be altered based on the plot dimension
color = "black”,

position = ggplot2::position_dodge(0.9),

size = 5

plot_SV_several_approaches
Shapley value bar plots for several explanation objects

Description

Make plots to visualize and compare the estimated Shapley values for a list of explain() objects
applied to the same data and model. For group-wise Shapley values, the features values plotted are
the mean feature values for all features in each group.

Usage

plot_SV_several_approaches(
explanation_list,
index_explicands = NULL,
index_explicands_sort = FALSE,
only_these_features = NULL,
plot_phi@ = FALSE,
digits = 4,
add_zero_line = FALSE,
axis_labels_n_dodge = NULL,
axis_labels_rotate_angle = NULL,
horizontal_bars = TRUE,
facet_scales = "free",
facet_ncol = 2,
geom_col_width = 0.85,
brewer_palette = NULL,
include_group_feature_means = FALSE

Arguments

explanation_list
A list of explain() objects applied to the same data and model. If the entries
in the list are named, then the function use these names. Otherwise, they default

plot_SV_several_approaches 35

to the approach names (with integer suffix for duplicates) for the explanation
objects in explanation_list.
index_explicands
Integer vector. Which of the explicands (test observations) to plot. E.g. if you
have explained 10 observations using explain(), you can generate a plot for
the first 5 observations/explicands and the 10th by setting index_x_explain =
c(1:5, 10). The argument index_explicands_sort must be FALSE to plot the
explicand in the order specified in index_x_explain.
index_explicands_sort
Boolean. If FALSE (default), then shapr plots the explicands in the order spec-
ified in index_explicands. If TRUE, then shapr sort the indices in increasing
order based on their id.
only_these_features
String vector. Containing the names of the features which are to be included in

the bar plots.
plot_phi@ Boolean. If we are to include the ¢ in the bar plots or not.
digits Integer. Number of significant digits to use in the feature description. Applicable

for plot_type "bar” and "waterfall”

add_zero_line Boolean. If we are to add a black line for a feature contribution of 0.
axis_labels_n_dodge
Integer. The number of rows that should be used to render the labels. This is
useful for displaying labels that would otherwise overlap.
axis_labels_rotate_angle
Numeric. The angle of the axis label, where 0 means horizontal, 45 means tilted,
and 90 means vertical. Compared to setting the angle in ggplot2: :theme()
/ ggplot2::element_text(), this also uses some heuristics to automatically
pick the hjust and vjust that you probably want.
horizontal_bars
Boolean. Flip Cartesian coordinates so that horizontal becomes vertical, and
vertical, horizontal. This is primarily useful for converting geoms and statistics
which display y conditional on x, to x conditional on y. See ggplot2: :coord_flip().

facet_scales Should scales be free ("free", the default), fixed ("fixed"), or free in one di-
mension ("free_x", "free_y")? The user has to change the latter manually
depending on the value of horizontal_bars.

facet_ncol Integer. The number of columns in the facet grid. Default is facet_ncol = 2.

geom_col_width Numeric. Bar width. By default, set to 85% of the ggplot2: :resolution() of
the data.

brewer_palette String. Name of one of the color palettes from RColorBrewer: :RColorBrewer ().
If NULL, then the function uses the default ggplot2::ggplot() color scheme.
The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYIBu, RdY1Gn, Spec-
tral
Qualitative Accent, Dark2, Paired, Pastell, Pastel2, Setl, Set2, Set3

Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu,
PuBuGn, PuRd, Purples, RdPu, Reds, Y1Gn, YIGnBu, Y1OrBr, YIOrRd

36 plot_SV_several_approaches

include_group_feature_means
Logical. Whether to include the average feature value in a group on the y-axis
or not. If FALSE (default), then no value is shown for the groups. If TRUE, then
shapr includes the mean of the features in each group.

Value

A ggplot2::ggplot() object.

Author(s)

Lars Henry Berge Olsen

Examples

Not run:
if (requireNamespace("xgboost”, quietly = TRUE) && requireNamespace("ggplot2"”, quietly = TRUE)) {
Get the data
data("airquality"”)
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp"”, "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:12

x_train <- data[-ind_x_explain, ..x_var]
y_train <- datal[-ind_x_explain, get(y_var)]
x_explain <- datal[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost: :xgboost(

data = as.matrix(x_train),

label = y_train,

nround = 20,

verbose = FALSE
)

Specifying the phi_@, i.e. the expected prediction without any features
phi@ <- mean(y_train)

Independence approach
explanation_independence <- explain(

model = model,

x_explain = x_explain,

x_train = x_train,

approach = "independence”,

phi@ = phio,

n_MC_samples = 1e2

plot_SV_several_approaches

Empirical approach
explanation_empirical <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = "empirical”,
phi@ = phio,
n_MC_samples = 1e2

)

Gaussian Tlel approach
explanation_gaussian_lel <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = "gaussian”,
phi@ = phi@,
n_MC_samples = 1el

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(
model = model,
x_explain = x_explain,
Xx_train = x_train,

approach = "gaussian”,
phi@ = phio,
n_MC_samples = 1e2

)

Combined approach
explanation_combined <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,

approach = c("gaussian”, "ctree”, "empirical”),
phi@ = phi@,
n_MC_samples = 1e2

)

Create a list of explanations with names
explanation_list <- list(

"Ind." = explanation_independence,
"Emp." = explanation_empirical,

"Gaus. lel" = explanation_gaussian_lel,
"Gaus. le2" = explanation_gaussian_le2,
"Combined” = explanation_combined

The function uses the provided names.
plot_SV_several_approaches(explanation_list)

37

38 plot_vaeac_eval_crit

We can change the number of columns in the grid of plots and add other visual alterations
plot_SV_several_approaches(explanation_list,
facet_ncol = 3,

facet_scales = "free_y",
add_zero_line = TRUE,
digits = 2,
brewer_palette = "Paired”,
geom_col_width = 0.6

) +

ggplot2::theme_minimal() +
ggplot2: :theme(legend.position = "bottom”, plot.title = ggplot2::element_text(size = 0))

We can specify which explicands to plot to get less chaotic plots and make the bars vertical
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),

horizontal_bars = FALSE,

axis_labels_rotate_angle = 45

)

We can change the order of the features by specifying the
order using the “only_these_features™ parameter.
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),

only_these_features = c("Temp”, "Solar.R", "Month"”, "Wind")

)

We can also remove certain features if we are not interested in them
or want to focus on, e.g., two features. The function will give a
message to if the user specifies non-valid feature names.
plot_SV_several_approaches(explanation_list,
index_explicands = c(1:2, 5, 10),
only_these_features = c("Temp”, "Solar.R"),
plot_phi@ = TRUE
)
3

End(Not run)

plot_vaeac_eval_crit Plot the training VLB and validation IWAE for vaeac models

Description

This function makes (ggplot2::ggplot()) figures of the training VLB and the validation IWAE
for a list of explain() objects with approach = "vaeac”. See setup_approach() for more in-
formation about the vaeac approach. Two figures are returned by the function. In the figure, each
object in explanation_list gets its own facet, while in the second figure, we plot the criteria in
each facet for all objects.

plot_vaeac_eval_crit 39

Usage

plot_vaeac_eval_crit(
explanation_list,
plot_from_nth_epoch = 1,
plot_every_nth_epoch = 1,
criteria = c("VLB", "IWAE"),
plot_type = c("method”, "criterion"),

facet_wrap_scales = "fixed",
facet_wrap_ncol = NULL
)
Arguments

explanation_list
A list of explain() objects applied to the same data, model, and vaeac must
be the used approach. If the entries in the list is named, then the function use
these names. Otherwise, it defaults to the approach names (with integer suffix
for duplicates) for the explanation objects in explanation_list.

plot_from_nth_epoch
Integer. If we are only plot the results form the nth epoch and so forth. The first
epochs can be large in absolute value and make the rest of the plot difficult to
interpret.

plot_every_nth_epoch
Integer. If we are only to plot every nth epoch. Usefully to illustrate the overall
trend, as there can be a lot of fluctuation and oscillation in the values between

each epoch.

criteria Character vector. The possible options are "VLB", "IWAE", "IWAE_running".
Default is the first two.

plot_type Character vector. The possible options are "method" and "criterion". Default is
to plot both.

facet_wrap_scales
String. Should the scales be fixed ("fixed", the default), free ("free"), or free
in one dimension ("free_x", "free_y").

facet_wrap_ncol
Integer. Number of columns in the facet wrap.

Details
See Olsen et al. (2022) or the blog post for a summary of the VLB and IWAE.

Value

Either a single ggplot2::ggplot() object or a list of ggplot2::ggplot() objects based on the
plot_type parameter.

Author(s)

Lars Henry Berge Olsen

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://borea17.github.io/paper_summaries/iwae/

40 plot_vaeac_eval_crit

References

e Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Examples

if (requireNamespace("xgboost”, quietly = TRUE) &&
requireNamespace("torch”, quietly = TRUE) &&
torch::torch_is_installed()) {
data("airquality”)
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data), 1]

x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6

x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- datal[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost: :xgboost(

data = as.matrix(x_train),

label = y_train,

nround = 100,

verbose = FALSE
)

Specifying the phi_@, i.e. the expected prediction without any features
pd <- mean(y_train)

Train vaeac with and without paired sampling
explanation_paired <- explain(

model = model,

x_explain = x_explain,

x_train = x_train,

approach = "vaeac”,

phi@ = po,

n_MC_samples = 1, # As we are only interested in the training of the vaeac

vaeac.epochs = 10, # Should be higher in applications.

vaeac.n_vaeacs_initialize = 1,

vaeac.width = 16,

vaeac.depth = 2,

vaeac.extra_parameters = list(vaeac.paired_sampling = TRUE)

)

explanation_regular <- explain(
model = model,
x_explain = x_explain,

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

plot_vaeac_eval_crit 41

x_train = x_train,

approach = "vaeac”,

phio = po,

n_MC_samples = 1, # As we are only interested in the training of the vaeac
vaeac.epochs = 10, # Should be higher in applications.

vaeac.width = 16,

vaeac.depth = 2,

vaeac.n_vaeacs_initialize = 1,

vaeac.extra_parameters = list(vaeac.paired_sampling = FALSE)

Collect the explanation objects in an named list
explanation_list <- list(
"Regular sampling” = explanation_regular,
"Paired sampling” = explanation_paired

)

Call the function with the named list, will use the provided names
plot_vaeac_eval_crit(explanation_list = explanation_list)

The function also works if we have only one method,
but then one should only look at the method plot.
plot_vaeac_eval_crit(

explanation_list = explanation_list[2],

plot_type = "method”
)

Can alter the plot

plot_vaeac_eval_crit(
explanation_list = explanation_list,
plot_from_nth_epoch = 2,
plot_every_nth_epoch = 2,
facet_wrap_scales = "free”

If we only want the VLB
plot_vaeac_eval_crit(
explanation_list = explanation_list,
criteria = "VLB",
plot_type = "criterion”

)

If we want only want the criterion version
tmp_fig_criterion <-
plot_vaeac_eval_crit(explanation_list = explanation_list, plot_type = "criterion")

Since tmp_fig_criterion is a ggplot2 object, we can alter it
by, e.g,. adding points or smooths with se bands
tmp_fig_criterion + ggplot2::geom_point(shape = "circle”, size =1, ggplot2::aes(col = Method))
tmp_fig_criterion$layers[[1]] <- NULL
tmp_fig_criterion + ggplot2::geom_smooth(method = "loess"”, formula =y ~ x, se = TRUE) +
ggplot2::scale_color_brewer(palette = "Set1"”) +
ggplot2::theme_minimal()

42 plot_vaeac_imputed_ggpairs

plot_vaeac_imputed_ggpairs
Plot Pairwise Plots for Imputed and True Data

Description

A function that creates a matrix of plots (GGally: : ggpairs()) from generated imputations from the
unconditioned distribution p(x) estimated by a vaeac model, and then compares the imputed values
with data from the true distribution (if provided). See ggpairs for an introduction to GGally: : ggpairs(),
and the corresponding vignette.

Usage
plot_vaeac_imputed_ggpairs(
explanation,
which_vaeac_model = "best”,

x_true = NULL,
add_title = TRUE,

alpha = 0.5,

upper_cont = c("cor”, "points"”, "smooth”, "smooth_loess”, "density", "blank"),

upper_cat = c("count”, "cross"”, "ratio"”, "facetbar”, "blank"),

upper_mix = c("box", "box_no_facet”, "dot", "dot_no_facet"”, "facethist",
"facetdensity”, "denstrip”, "blank”),

lower_cont = c("points”, "smooth”, "smooth_loess"”, "density"”, "cor”, "blank"),

lower_cat = c("facetbar”, "ratio”, "count”, "cross"”, "blank"),

lower_mix = c("facetdensity”, "box", "box_no_facet”, "dot"”, "dot_no_facet",

"facethist”, "denstrip”, "blank"),
diag_cont = c("densityDiag"”, "barDiag”, "blankDiag"),

diag_cat = c("barDiag"”, "blankDiag"),
cor_method = c("pearson”, "kendall”, "spearman")
)
Arguments
explanation Shapr list. The output list from the explain() function.

which_vaeac_model
String. Indicating which vaeac model to use when generating the samples. Pos-
sible options are always 'best', 'best_running', and 'last'. All possible
options can be obtained by calling names (explanation$internal$parameters$vaeac$models).

x_true Data.table containing the data from the distribution that the vaeac model is fitted
to.
add_title Logical. If TRUE, then a title is added to the plot based on the internal description

of the vaeac model specified in which_vaeac_model.

https://www.blopig.com/blog/2019/06/a-brief-introduction-to-ggpairs/
https://ggobi.github.io/ggally/articles/ggally_plots.html

plot_vaeac_imputed_ggpairs 43

alpha

upper_cont

upper_cat

upper_mix

lower_cont

lower_cat

lower_mix

diag_cont

diag_cat

cor_method

Value

Numeric between @ and 1 (default is @.5). The degree of color transparency.

String. Type of plot to use in upper triangle for continuous features, see GGally: : ggpairs().
Possible options are: 'cor' (default), 'points’', 'smooth', 'smooth_loess',
'density', and 'blank’.

String. Type of plot to use in upper triangle for categorical features, see GGally: : ggpairs().
Possible options are: 'count' (default), 'cross’', 'ratio', 'facetbar', and
'blank’.

String. Type of plot to use in upper triangle for mixed features, see GGally: : ggpairs().
Possible options are: 'box' (default), 'box_no_facet', 'dot', 'dot_no_facet',
'facethist', 'facetdensity', 'denstrip’', and 'blank'

String. Type of plot to use in lower triangle for continuous features, see GGally: : ggpairs().
Possible options are: 'points' (default), 'smooth', 'smooth_loess', 'density’,
'cor', and 'blank'.

String. Type of plot to use in lower triangle for categorical features, see GGally: : ggpairs().
Possible options are: 'facetbar' (default), 'ratio’, 'count', 'cross', and
'blank’.

String. Type of plot to use in lower triangle for mixed features, see GGally: : ggpairs().
Possible options are: 'facetdensity' (default), 'box', 'box_no_facet', 'dot"',
'dot_no_facet', 'facethist', 'denstrip', and 'blank"'.

String. Type of plot to use on the diagonal for continuous features, see GGally: :ggpairs().
Possible options are: 'densityDiag' (default), 'barDiag', and 'blankDiag'.

String. Type of plot to use on the diagonal for categorical features, see GGally: :ggpairs().
Possible options are: 'barDiag' (default) and 'blankDiag"'.

String. Type of correlation measure, see GGally: :ggpairs(). Possible options
are: 'pearson' (default), 'kendall', and 'spearman'.

A GGally: :ggpairs() figure.

Author(s)

Lars Henry Berge Olsen

References

e Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Examples

if (requireNamespace(”xgboost”, quietly = TRUE) &&
requireNamespace("ggplot2”, quietly = TRUE) &&
requireNamespace("torch”, quietly = TRUE) &%
torch::torch_is_installed()) {

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

44

print.shapr

data("airquality”)
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

x_var <- c("Solar.R", "Wind", "Temp"”, "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6

x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- datal[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost: :xgboost(

data = as.matrix(x_train),

label = y_train,

nround = 100,

verbose = FALSE

explanation <- shapr::explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "vaeac",
phi@ = mean(y_train),
n_MC_samples = 1,
vaeac.epochs = 10,
vaeac.n_vaeacs_initialize = 1

)

Plot the results

figure <- shapr::plot_vaeac_imputed_ggpairs(
explanation = explanation,
which_vaeac_model = "best”,
x_true = x_train,
add_title = TRUE

)

figure

Note that this is an ggplot2 object which we can alter, e.g., we can change the colors.
figure +
ggplot2::scale_color_manual(values = c("#E69FQ0@", "#999999")) +
ggplot2::scale_fill_manual(values = c("#E69FQ0@", "#999999"))

print.shapr Print method for shapr objects

vaeac_get_extra_para_default 45

Description

Print method for shapr objects

Usage
S3 method for class 'shapr'
print(x, digits = 4, ...)
Arguments
X A shapr object
digits Scalar Integer. Number of digits to display to the console
Unused
Value

No return value (but prints the shapley values to the console)

vaeac_get_extra_para_default
Function to specify the extra parameters in the vaeac model

Description

In this function, we specify the default values for the extra parameters used in explain() for
approach = "vaeac”.

Usage

vaeac_get_extra_para_default(
vaeac.model_description = make.names(Sys.time()),
vaeac.folder_to_save_model = tempdir(),
vaeac.pretrained_vaeac_model = NULL,
vaeac.cuda = FALSE,
vaeac.epochs_initiation_phase = 2,
vaeac.epochs_early_stopping = NULL,
vaeac.save_every_nth_epoch = NULL,
vaeac.val_ratio = 0.25,
vaeac.val_iwae_n_samples = 25,
vaeac.batch_size = 64,
vaeac.batch_size_sampling = NULL,
vaeac.running_avg_n_values = 5,
vaeac.skip_conn_layer = TRUE,
vaeac. skip_conn_masked_enc_dec = TRUE,
vaeac.batch_normalization = FALSE,
vaeac.paired_sampling = TRUE,

46 vaeac_get_extra_para_default

vaeac.masking_ratio = 0.5,
vaeac.mask_gen_coalitions = NULL,
vaeac.mask_gen_coalitions_prob = NULL,
vaeac.sigma_mu = 10000,
vaeac.sigma_sigma = 1e-04,
vaeac.sample_random = TRUE,
vaeac.save_data = FALSE,
vaeac.log_exp_cont_feat = FALSE,

vaeac.which_vaeac_model = "best”,
vaeac.save_model = TRUE
)
Arguments

vaeac.model_description
String (default is make.names(Sys.time())). String containing, e.g., the name
of the data distribution or additional parameter information. Used in the save
name of the fitted model. If not provided, then a name will be generated based
on base: :Sys.time() to ensure a unique name. We use base: :make.names()
to ensure a valid file name for all operating systems.

vaeac.folder_to_save_model
String (default is base: : tempdir()). String specifying a path to a folder where
the function is to save the fitted vaeac model. Note that the path will be removed
from the returned explain() object if vaeac.save_model = FALSE. Further-
more, the model cannot be moved from its original folder if we are to use the
vaeac_train_model_continue() function to continue training the model.

vaeac.pretrained_vaeac_model
List or String (default is NULL). 1) Either a list of class vaeac, i.e., the list
stored in explanation$internal$parameters$vaeac where explanation is
the returned list from an earlier call to the explain() function. 2) A string
containing the path to where the vaeac model is stored on disk, for example,
explanation$internal$parameters$vaeac$modelss$best.

vaeac.cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using
cuda/GPU. If torch: :cuda_is_available() is FALSE, the we fall back to use
CPU. If FALSE, we use the CPU. Using a GPU for smaller tabular dataset of-
ten do not improve the efficiency. See vignette("installation”, package =
"torch") fo help to enable running on the GPU (only Linux and Windows).

vaeac.epochs_initiation_phase
Positive integer (default is 2). The number of epochs to run each of the vaeac.n_vaeacs_initialize
vaeac models before continuing to train only the best performing model.

vaeac.epochs_early_stopping
Positive integer (default is NULL). The training stops if there has been no im-
provement in the validation IWAE for vaeac. epochs_early_stopping epochs.
If the user wants the training process to be solely based on this training criterion,
then vaeac.epochs in explain() should be set to a large number. If NULL, then
shapr will internally set vaeac.epochs_early_stopping = vaeac.epochs such
that early stopping does not occur.

vaeac_get_extra_para_default 47

vaeac.save_every_nth_epoch
Positive integer (default is NULL). If provided, then the vaeac model after every
vaeac.save_every_nth_epochth epoch will be saved.

vaeac.val_ratio
Numeric (default is @.25). Scalar between @ and 1 indicating the ratio of in-
stances from the input data which will be used as validation data. That is,
vaeac.val_ratio = 0.25 means that 75% of the provided data is used as train-
ing data, while the remaining 25% is used as validation data.

vaeac.val_iwae_n_samples
Positive integer (default is 25). The number of generated samples used to com-
pute the IWAE criterion when validating the vaeac model on the validation data.

vaeac.batch_size
Positive integer (default is 64). The number of samples to include in each batch
during the training of the vaeac model. Used in torch: :dataloader().

vaeac.batch_size_sampling
Positive integer (default is NULL) The number of samples to include in each
batch when generating the Monte Carlo samples. If NULL, then the function gen-
erates the Monte Carlo samples for the provided coalitions and all explicands
sent to explain() at the time. The number of coalitions are determined by the
n_batches used by explain(). We recommend to tweak extra_computation_args$max_batch_size
and extra_computation_args$min_n_batches rather than vaeac.batch_size_sampling.
Larger batch sizes are often much faster provided sufficient memory.

vaeac.running_avg_n_values
Positive integer (default is 5). The number of previous IWAE values to include
when we compute the running means of the IWAE criterion.

vaeac.skip_conn_layer
Logical (default is TRUE). If TRUE, we apply identity skip connections in each
layer, see skip_connection(). That is, we add the input X to the outcome of
each hidden layer, so the output becomes X + activation(W X + b).

vaeac. skip_conn_masked_enc_dec
Logical (default is TRUE). If TRUE, we apply concatenate skip connections be-
tween the layers in the masked encoder and decoder. The first layer of the
masked encoder will be linked to the last layer of the decoder. The second layer
of the masked encoder will be linked to the second to last layer of the decoder,
and so on.

vaeac.batch_normalization
Logical (default is FALSE). If TRUE, we apply batch normalization after the acti-
vation function. Note that if vaeac. skip_conn_layer = TRUE, then the normal-
ization is applied after the inclusion of the skip connection. That is, we batch
normalize the whole quantity X + activation(WX + b).

vaeac.paired_sampling
Logical (default is TRUE). If TRUE, we apply paired sampling to the training
batches. That is, the training observations in each batch will be duplicated,
where the first instance will be masked by .S while the second instance will be
masked by S. This ensures that the training of the vaeac model becomes more
stable as the model has access to the full version of each training observation.

48

vaeac_get_extra_para_default

However, this will increase the training time due to more complex implemen-
tation and doubling the size of each batch. See paired_sampler() for more
information.

vaeac.masking_ratio

Numeric (default is . 5). Probability of masking a feature in the mcar_mask_generator ()

(MCAR = Missing Completely At Random). The MCAR masking scheme en-
sures that vaeac model can do arbitrary conditioning as all coalitions will be
trained. vaeac.masking_ratio will be overruled if vaeac.mask_gen_coalitions
is specified.

vaeac.mask_gen_coalitions
Matrix (default is NULL). Matrix containing the coalitions that the vaeac model
will be trained on, see specified_masks_mask_generator(). This parame-
ter is used internally in shapr when we only consider a subset of coalitions,
i.e., when n_coalitions < 2™uwes and for group Shapley, i.e., when group is
specified in explain().

vaeac.mask_gen_coalitions_prob

Numeric array (defaultis NULL). Array of length equal to the height of vaeac.mask_gen_coalitions
containing the probabilities of sampling the corresponding coalitions in vaeac.mask_gen_coalitions.

vaeac.sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sigma_sigma
Numeric (default is 1e-4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sample_random
Logical (default is TRUE). If TRUE, the function generates random Monte Carlo
samples from the inferred generative distributions. If FALSE, the function use
the most likely values, i.e., the mean and class with highest probability for con-
tinuous and categorical, respectively.

vaeac.save_data
Logical (default is FALSE). If TRUE, then the data is stored together with the

model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

vaeac.log_exp_cont_feat
Logical (default is FALSE). If we are to log transform all continuous features be-
fore sending the data to vaeac(). The vaeac model creates unbounded Monte
Carlo sample values. Thus, if the continuous features are strictly positive (as
for, e.g., the Burr distribution and Abalone data set), it can be advantageous
to log transform the data to unbounded form before using vaeac. If TRUE,
then vaeac_postprocess_data() will take the exp of the results to get back
to strictly positive values when using the vaeac model to impute missing val-
ues/generate the Monte Carlo samples.

vaeac.which_vaeac_model
String (default is best). The name of the vaeac model (snapshots from different
epochs) to use when generating the Monte Carlo samples. The standard choices
are: "best” (epoch with lowest IWAE), "best_running” (epoch with lowest
running IWAE, see vaeac.running_avg_n_values), and last (the last epoch).

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

vaeac_train_model_continue 49

Note that additional choices are available if vaeac.save_every_nth_epoch is
provided. For example, if vaeac. save_every_nth_epoch = 5, then vaeac.which_vaeac_model
can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

vaeac.save_model
Boolean. If TRUE (default), the vaeac model will be saved either in a base: : tempdir ()
folder or in a user specified location in vaeac.folder_to_save_model. If
FALSE, then the paths to model and the model will will be deleted from the
returned object from explain().

Details

The vaeac model consists of three neural network (a full encoder, a masked encoder, and a de-
coder) based on the provided vaeac.depth and vaeac.width. The encoders map the full and
masked input representations to latent representations, respectively, where the dimension is given
by vaeac.latent_dim. The latent representations are sent to the decoder to go back to the real
feature space and provide a samplable probabilistic representation, from which the Monte Carlo
samples are generated. We use the vaeac method at the epoch with the lowest validation error
(IWAE) by default, but other possibilities are available but setting the vaeac.which_vaeac_model
parameter. See Olsen et al. (2022) for more details.

Value

Named list of the default values vaeac extra parameter arguments specified in this function call.
Note that both vaeac.model_description and vaeac.folder_to_save_model will change with
time and R session.

Author(s)

Lars Henry Berge Olsen

References

e Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

vaeac_train_model_continue
Continue to Train the vaeac Model

Description

Function that loads a previously trained vaeac model and continue the training, either on new data
or on the same dataset as it was trained on before. If we are given a new dataset, then we assume
that new dataset has the same distribution and one_hot_max_sizes as the original dataset.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

50 vaeac_train_model_continue

Usage

vaeac_train_model_continue(
explanation,
epochs_new,
lr_new = NULL,
x_train = NULL,
save_data = FALSE,
verbose = NULL,
seed = 1

Arguments

explanation A explain() object and vaeac must be the used approach.
epochs_new Positive integer. The number of extra epochs to conduct.

1r_new Positive numeric. If we are to overwrite the old learning rate in the adam opti-
mizer.

x_train A data.table containing the training data. Categorical data must have class
names 1,2,..., K.

save_data Logical (default is FALSE). If TRUE, then the data is stored together with the

model. Useful if one are to continue to train the model later using vaeac_train_model_continue().
verbose String vector or NULL. Specifies the verbosity (printout detail level) through

one or more of strings "basic”, "progress”, "convergence”, "shapley” and

"vS_details”. "basic” (default) displays basic information about the compu-

tation which is being performed, in addition to some messages about parameters

being sets or checks being unavailable due to specific input. "progress displays

information about where in the calculation process the function currently is. #

"convergence” displays information on how close to convergence the Shapley

value estimates are (only when iterative = TRUE) . "shapley” displays inter-

mediate Shapley value estimates and standard deviations (only when iterative

= TRUE) and the final estimates. "vS_details"” displays information about the

v_S estimates. This is most relevant for approach %in% c("regression_separate”, "regression_su

NULL means no printout. Note that any combination of four strings can be used.

E.g. verbose = c("basic”, "vS_details") will display basic information +

details about the v(S)-estimation process.

seed Positive integer (default is 1). Seed for reproducibility. Specifies the seed before
any randomness based code is being run.
Value
A list containing the training/validation errors and paths to where the vaeac models are saved on the
disk.
Author(s)

Lars Henry Berge Olsen

vaeac_train_model_continue 51

References

e Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

Index

base: :make.names(), 46
base::Sys.time(), 46
base::tempdir(), 46, 49

explain, 2

explain(), 6, 17,21, 23, 25, 26, 30, 34, 35,
38, 39, 42, 45-50

explain_forecast, 13

future.apply:: future_apply, 22
future::future, 9, 22

get_extra_comp_args_default, 21
get_extra_comp_args_default(), 6, 17
get_iterative_args_default, 23
get_iterative_args_default(), 6, 17
get_output_args_default, 24
get_output_args_default(), 6, 17
get_supported_approaches, 25
get_supported_models, 25
get_supported_models(), 3-5, 14, 16
GGally: :ggpairs(), 42, 43
ggbeeswarm: : geom_beeswarm(), 27
ggplot2::coord_flip(), 35
ggplot2::element_text(), 35
ggplot2: :ggplot(), 27, 31, 35, 36, 38, 39
ggplot2::resolution(), 31, 35
ggplot2::theme(), 35

mcar_mask_generator(), 48

paired_sampler(), 48
parsnip::linear_reg(),”7
plot.shapr, 26
plot_MSEv_eval_crit, 30
plot_SV_several_approaches, 34
plot_vaeac_eval_crit, 38
plot_vaeac_imputed_ggpairs, 42
print.shapr, 44
progressr::progressr, 9, 22

RColorBrewer: :RColorBrewer(), 35
recipes: :recipe(), 8
rsample::vfold_cv(), 8

setup_approach(), 38
setup_approach.categorical, 6, 17
setup_approach.copula, 6, 17
setup_approach.ctree, 6, 17
setup_approach.ctree(), 4, 16
setup_approach.empirical, 6, 17
setup_approach.empirical(), 4, 16
setup_approach.gaussian, 6, 17

setup_approach.
setup_approach.
setup_approach.
setup_approach.
setup_approach.

independence, 6, 17
regression_separate, 6
regression_surrogate, 6
timeseries, 6, 17
vaeac, 6, 17

skip_connection(), 47
specified_masks_mask_generator(), 48

torch::cuda_is_available(), 46
torch: :dataloader(), 47

torch: :nn_leaky_relu(), 9, 18
torch: :nn_module(), 9, I8
torch::nn_relu(), 9, 18

torch: :nn_selu(), 9, I8

torch: :nn_sigmoid(), 9, I8
torch::optim_adam(), 9, I8

vaeac(), 48
vaeac_get_extra_para_default, 45
vaeac_get_extra_para_default(), 9, 19
vaeac_postprocess_data(), 48
vaeac_train_model_continue, 49
vaeac_train_model_continue(), 46, 48, 50

	explain
	explain_forecast
	get_extra_comp_args_default
	get_iterative_args_default
	get_output_args_default
	get_supported_approaches
	get_supported_models
	plot.shapr
	plot_MSEv_eval_crit
	plot_SV_several_approaches
	plot_vaeac_eval_crit
	plot_vaeac_imputed_ggpairs
	print.shapr
	vaeac_get_extra_para_default
	vaeac_train_model_continue
	Index

