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This vignette is supplementary material to the paper |Helske and Helske
(2019)), giving more detailed tips and suggestions on model estimation and set-
ting starting values. The examples here come from the social sciences but are
hopefully general enough to be understandable without any deeper knowledge.

Estimation of Markovian models typically needs starting values for model
parameters, i.e., initial, transition, and/or emission probabilities. If the models
are small and simple, any random starting values will usually do. With large
and complex models, good starting values are needed for finding the optimal
solution in a reasonable time. Starting values may also be used for setting
restrictions to the structure of the model (e.g., for determining a left-to-right
model, see Section . In order to reduce the risk of being trapped in a poor
local maximum, a large number of initial values should be tested.

The model building functions build_hmm (for hidden Markov models), build mhmm
(mixture hidden Markov models), build mmm (mixture Markov models), and
build-lcm (latent class models) do not require starting values given by the user;
if those are not provided, models are initialized with random values. In this case
the user must provide the number of hidden states or clusters/submodels. For
ordinary Markov models, the build mm function automatically estimates the
initial probabilities and the transition matrix based on the observations. The
helper functions simulate_initial probs, simulate_transition probs, and
simulate_emission_probs are also available for creating random starting values
for corresponding model parameters.

Here we mostly focus on the case of hidden Markov models (HMMs) but
everything should be relatively easily applied to other models as well.

1 Model parameters

Initial probabilities

Initial probabilities give the probability of starting in a given hidden state in
HMM or observed state in Markov model. In a typical life course problem, most
individuals start from a similar hidden state before any interesting transitions



have happened. This hidden state should be given the highest starting value
and states that typically occur later in life should have small probabilities. In
a time use problem, on the other hand, initial probabilities should reflect how
probable different activities are at the start of the follow-up: at 4am, for in-
stance, most individuals are typically still sleeping, some are working, and a
minority doing other activities. In an HMM, starting values for initial proba-
bilities of hidden states should thus be higher for hidden states that are related
to sleeping, lower for hidden states related to work, and very small for hidden
states related to other activities. If the goal is to distinguish different types of
time use patterns with mixture models, then in one submodel there might be
high initial probability for sleeping and in another submodel for working (and
small initial probabilities for other activities).

Transition probabilities

Typically, the highest transition probabilities are found on the diagonal, indi-
cating not leaving the state. With life course data, transitions between different
(hidden) states are often relatively rare, meaning that individuals tend to stay
in one state for quite a while. In a time use study, on the other hand, the
duration of some activities might typically be quite short, indicating that the
probability of staying in the state should be set relatively low.

The probabilities of making a transition to another state depend on the data
and the time scale, e.g., transitions are naturally more frequent if the same data
are coded annually rather than monthly. A transition probability of 0.9 on the
diagonal means that nine times out of ten, the hidden state remains the same.
In annually coded data that means a transition to a new state once every ten
years on average, whereas in monthly coded data the same transition probability
leads to more than one transition within a year, on average.

1.1 Emission probabilities

Emission probabilities in HMM, MHMM, and LCM tell how likely each observed
state is given being in a certain hidden state and/or subpopulation. The ques-
tion of setting starting values for emission probabilities comes down to what the
hidden states represent or what those are used for. Sometimes hidden states are
close to observed states with some ”error”, sometimes they ”generate” multiple
observed states with varying probabilities. The next section gives more detailed
suggestion regarding some special cases.

2 Tips for special cases

Measurement error

One situation for using HMMs is to account for measurement error (see, e.g.,
Breen and Moisio, |2004; [Pavlopoulos and Vermunt, 2015} |Vermunt, Tran, and
Magidson,, 2008| for some examples). As an example, let us consider sequences



of two observed states, employed and out of employment, where we know that
observations are recorded inaccurately. In this case, hidden states represent
”true” observations and they are most likely quite close to observed states, i.e.,
there are as many hidden states as there are observed states and the highest
emission probabilities are on the diagonal. If we assume that the chances of
having false measurements are 5% for both observations, starting values for the
emission matrix might look like this:

Hidden states Observed states

(" truth”) Employed Out of empl.
Employed 0.95 0.05
Out of empl. 0.05 0.95

Similarly, also transition probabilities between hidden states are likely to be
close to transition probabilities between observed states. Note that in the case
of observed zero transition probabilities, for the starting values one should make
a distinction between impossible transitions and transitions that are possible but
not observed in the sample. The former should be set to zero and the latter
given a small probability.

Episodes of stability and change

Another situation might be to look for episodes of stability and change. With
the employment/out of employment data the hidden states could represent a
relatively stable stage of employment, another relatively stable stage of being out
of employment, and a third stage characterized by frequent changes between the
two states (e.g., between unemployment and short-term jobs). In this case your
emission matrix would have one hidden state with a high emission probability
for employment, another hidden state with a high probability for being out of
employment, and a third hidden state with emission probabilities closer to 0.5
for both observed states. Good starting values for the emission probabilities
might thus be something like this:

Observed states

Hidden states Employed Out of empl.
Stable employment 0.97 0.03
Stable out of empl. 0.03 0.97
Unstable employment 0.50 0.50

For setting starting values for the transition matrix, one could look at the data
and see how frequent transitions in and out of employment are in general and
how long the episodes tend to be (statistics about the distribution, such as
percentiles, may be of use here).



Compressing multichannel data

Hidden Markov models may also be used for compressing multichannel observed
data, e.g., for finding more general life stages based on information from multiple
life domains (see Helske, Helske, and Eerolal 2016, for an example). In this
case, at least some of the hidden states may be quite close to the most prevalent
combinations of observed states. One option is to split the data, e.g., by time
period or age, and use observed state frequencies as starting values for emission
probabilities. The seqgstatf function in the TraMineR package is useful for this
task.

Mixture models

In the case of mixture models (MHMM, MMM, and LCM), starting values are
needed for several submodels. Model-free and data-driven sequence analysis
(see the TraMineR package) is often a good and relatively fast starting point
for finding subpopulations. As these subpopulations are relatively homogeneous
in terms of observed states and the timing and/or length of different episodes,
determining starting values should become easier.

3 Restricted models

In model estimation in seqHMM, zeros in starting values are regarded as structural
zeros and not changed during estimation. This makes it possible to determine
restricted model structures. These may be favourable due to easier interpreta-
tion, but simpler models with more structural zeros also reduce estimation time.
It is thus beneficial to restrict models when there is prior knowledge on some
parts of the model. For example, if all subjects are in the same situation at the
start of the follow-up, there is no need for estimating initial probabilities (i.e.,
the first hidden state is given the probability of 1 and others set to 0). Similarly,
if some transitions are impossible by theory, these should be set to zero before
estimation.

Left-to-right model is a model where transitions to previous hidden states
are impossible (on the hidden level of the HMM or on the observed level of the
Markov model). It is determined with an upper triangular transition probability
matrix such as the following one for the number of children.

To
From No child 1 child 2 children 3+ children
No child 0.90 0.085 0.0148 0.0002
1 child 0 0.800 0.1850 0.0150
2 children 0 0 0.9000 0.1000
3+ children 0 0 0 1

A Bakis model is a restricted version of the left-to-right model where transitions
are only possible to the next two states, i.e., skipping two or more states is not



allowed. In the previous example of the number of children this would mean
that it is only possible to have two children at a time which, given the rarity of
multiple births, might be the case in a sample.

To
From No child 1 child 2 children 3+ children
No child 0.90 0.085 0.015 0
1 child 0 0.800 0.185 0.015
2 children 0 0 0.900 0.100
3+ children 0 0 0 1

In this way it is, of course, possible to restrict the model in more unique
ways. For example, consider having eight types of partnership statuses: never-
partnered single, living apart together (LAT; having a committed relationship
before or without cohabitation or marriage), cohabiting, married, separated
from non-marital partner, separated from marital spouse, divorced, and wid-
owed. In a Western society, a transition probability matrix for these partnership
statuses might look something like the following.

To
From Single LAT Cohab. Marr. Sep. Sep. Div. Wid.
(p)  (s)
Single 0.70 0.28 0 0 0 0 0 0
LAT 0 0.60 0.12 0.12 0.16 0 0 0
Cohabiting 0 0 0.70 0.15 0.15 0 0 0
Married 0 0 0 0.80 0 0.08 0.08 0.04
Sep. (partner) 0 0.40 0 0 0.60 0 0 0
Sep. (spouse) 0 0 0 0 0 040 0.59 0.01
Divorced 0 0.30 0 0 0 0 0.70 0
Widowed 0 0.30 0 0 0 0 0 0.70

The structure of the transition matrix suggests that from the first state, never-
partnered single, the entry into any partnership is through LAT relationship.
From a LAT relationship it is possible to move in with the partner, get mar-
ried, or separate. Cohabiting partners may get married or separate and marital
spouses may separate or get divorced or widowed. Individuals separated from
marriage are assumed to get divorced or widowed before forming new partner-
ships, and after non-marital separation, divorce, or widowhood, the first step is
a LAT relationship.

4 Tips for model estimation

In order to reduce the risk of being trapped in a poor local optimum, a large
number of initial values should be tested. For finding the best solution, it



is advisable to try a few different approaches to parameter estimation such
as direct numerical maximization (DNM) and expectation-maximization (EM)
algorithm and a combination of these. The help file of the fit_model function
gives examples on several estimation options.

One option is to run the EM algorithm multiple times with more or less ran-
domized starting values for transition or emission probabilities or both. These
are called with the control_em argument. The user can set the number of
restarts and choose if they want randomization to transition or emission prob-
abilities or both. Randomization is done with the rnorm function, for which
the user can set the standard deviation. Smaller standard deviation keeps the
randomized values closer to the starting values. The function returns the log-
likelihoods of the best models (at most 25 by default, but this may be changed
with the n_optimum argument). It may be a good idea to first use a larger stan-
dard deviation for randomization and then re-estimate with smaller standard
deviation, using the estimated parameters of the best model from the previous
step as a starting point.

A global DNM method, the multilevel single-linkage method (MLSL), is
another option for estimating a number of models with a single call. There are
some theoretical guarantees that the MLSL method finds all local optima in a
finite number of local optimizations. Of course, it might not always succeed in
a reasonable time. Also, it requires setting boundaries for the parameter space,
which is not always straightforward. In DNM steps the transition, emission,
and initial probabilities are estimated using unconstrained reparameterization
using the softmax function (a generalization of the logistic function), but good
boundaries are essential for the efficient use of the MLSL algorithm. If the
boundaries are too strict, the global optimum cannot be found; if too wide, the
probability of finding the global optimum is decreased. The fit_model function
uses starting values or results from the preceding estimation step to adjust the
boundaries. EM can help in setting good boundaries, but in some cases it can
also lead to worse results.

In practice we have had most success with randomized EM, but it is advisable
to try a few of different settings, e.g., randomized EM, EM followed by global
DNM, and only global DNM with different optimization routines.

Note also that parallel computation may reduce estimation time consider-
ably. The number of parallel threads (typically, the number of cores) is chosen
with the threads argument. The system.time function may be of help in
determining the optimal number of threads.
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