
Mixture Hidden Markov Models for Sequence Data:

The seqHMM Package in R

Satu Helske

INVEST Research Flagship Centre
University of Turku, Finland

Jouni Helske

INVEST Research Flagship Centre
University of Turku, Finland

Abstract

Sequence analysis is being more and more widely used for the analysis of social se-
quences and other multivariate categorical time series data. However, it is often complex
to describe, visualize, and compare large sequence data, especially when there are multi-
ple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to
detect underlying latent structures and they can be used in various longitudinal settings:
to account for measurement error, to detect unobservable states, or to compress informa-
tion across several types of observations. Extending to mixture hidden Markov models
(MHMMs) allows clustering data into homogeneous subsets, with or without external co-
variates.

The seqHMM package in R is designed for the efficient modeling of sequences and
other categorical time series data containing one or multiple subjects with one or multiple
interdependent sequences using HMMs and MHMMs. Also other restricted variants of
the MHMM can be fitted, e.g., latent class models, Markov models, mixture Markov
models, or even ordinary multinomial regression models with suitable parameterization
of the HMM.

Good graphical presentations of data and models are useful during the whole analysis
process from the first glimpse at the data to model fitting and presentation of results. The
package provides easy options for plotting parallel sequence data, and proposes visualizing
HMMs as directed graphs.

Keywords: multichannel sequences, categorical time series, visualizing sequence data, visual-
izing models, latent Markov models, latent class models, R.

This vignette is based on the corresponding paper at Journal of Statistical Software (Helske
and Helske 2019), but some of the figures, related codes and texts are updated due to the
major changes in seqHMM version 2.0.0.

1. Introduction

Social sequence analysis is being more and more widely used for the analysis of longitudi-
nal data consisting of multiple independent subjects with one or multiple interdependent
sequences (channels). Sequence analysis is used for computing the (dis)similarities of se-
quences, and often the goal is to find patterns in data using cluster analysis. However,
describing, visualizing, and comparing large sequence data is often complex, especially in the
case of multiple channels. Hidden (latent) Markov models (HMMs) can be used to compress
and visualize information in such data. These models are able to detect underlying latent

2 seqHMM: Mixture Hidden Markov Models for Sequence Data

structures. Extending to mixture hidden Markov models (MHMMs) allows clustering via
latent classes, possibly with additional covariate information. One of the major benefits of
using hidden Markov modeling is that all stages of analysis are performed, evaluated, and
compared in a probabilistic framework.

The seqHMM (Helske and Helske 2019) package for R (R Core Team 2018) is designed for
modeling sequence data and other categorical time series with one or multiple subjects and
one or multiple channels using HMMs and MHMMs. The package provides functions for
the estimation and inference of models, as well as functions for the easy visualization of
multichannel sequences and HMMs. Even though the package was originally developed for
researchers familiar with social sequence analysis and the examples are related to life course,
knowledge on sequence analysis or social sciences is not necessary for the usage of seqHMM.
The package is available on Comprehensive R Archive Repository (CRAN) and easily installed
via install.packages("seqHMM"). Development versions can be obtained from GitHub1.

There are also other R packages in CRAN for HMM analysis of categorical data. The HMM

package (Himmelmann 2010) is a compact package designed for fitting an HMM for a single
observation sequence. The hmm.discnp package (Turner and Liu 2014) can handle multiple
observation sequences with possibly varying lengths. For modeling continuous-time processes
as hidden Markov models, the msm package (Jackson 2011) is available. Both hmm.discnp and
msm support only single-channel observations. The depmixS4 package (Visser and Speeken-
brink 2010) is able to fit HMMs for multiple interdependent time series (with continuous or
categorical values), but for one subject only. In the msm and depmixS4 packages, covari-
ates can be added for initial and transition probabilities. The mhsmm package (O’Connell
and Højsgaard 2011) allows modeling of multiple sequences using hidden Markov and semi-
Markov models. There are no ready-made options for modeling categorical data, but users
can write their own extensions for arbitrary distributions. The LMest package (Bartolucci
and Pandolfi 2015) is aimed to panel data with a large number of subjects and a small number
of time points. It can be used for hidden Markov modeling of multivariate and multichannel
categorical data, using covariates in emission and transition processes. LMest also supports
mixed latent Markov models, where the latent process is allowed to vary in different latent
subpopulations. This differs from mixture hidden Markov models used in seqHMM, where
also the emission probabilities vary between groups. The seqHMM package also supports
covariates in explaining group memberships. A drawback in the LMest package is that the
user cannot define initial values or zero constraints for model parameters, and thus important
special cases such as left-to-right models cannot be used.

We start with describing data and methods: a short introduction to sequence data and
sequence analysis, then the theory of hidden Markov models for such data, an expansion to
mixture hidden Markov models and a glance at some special cases, and then some propositions
on visualizing multichannel sequence data and hidden Markov models. After the theoretic
part we take a look at features of the seqHMM package and at the end show an example
on using the package for the analysis of life course data. The appendix shows the list of
notations.

1https://github.com/helske/seqHMM

https://github.com/helske/seqHMM

Satu Helske, Jouni Helske 3

2. Methods

2.1. Sequences and sequence analysis

By the term sequence we refer to an ordered set of categorical states. It can be a time series,
such as a career trajectory or residential history, or any other series with ordered categorical
observations, e.g., a DNA sequence or a structure of a story. Typically, sequence data consist
of multiple independent subjects (multivariate data). Sometimes there are also multiple
interdependent sequences per subject, often referred to as multichannel or multidimensional
sequence data.

As an example we use the biofam data available in the TraMineR package (Gabadinho,
Ritschard, Müller, and Studer 2011). It is a sample of 2000 individuals born in 1909–1972,
constructed from the Swiss Household Panel survey in 2002 (Müller, Studer, and Ritschard
2007). The data set contains sequences of annual family life statuses from age 15 to 30. Eight
observed states are defined from the combination of five basic states: living with parents, left
home, married, having children, and divorced. To show a more complex example, we split
the original data into three separate channels representing different life domains: marriage,
parenthood, and residence. The data for each individual now includes three parallel sequences
constituting of two or three states each: single/married/divorced, childless/parent, and living
with parents / having left home.

Sequence analysis (SA), as defined in the social science framework, is a model-free data-driven
approach to the analysis of successions of states. The approach has roots in bioinformatics
and computer science (see e.g. Durbin, Eddy, Krogh, and Mitchison 1998), but during the
past few decades SA has also become more common in other disciplines for the analysis of
longitudinal data. In social sciences SA has been used increasingly often and is now “central
to the life-course perspective” (Blanchard, Bühlmann, and Gauthier 2014).

SA is used for computing (dis)similarities of sequences. The most well-known method is
optimal matching (McVicar and Anyadike-Danes 2002), but several alternatives exist (see
e.g. Aisenbrey and Fasang 2010; Elzinga and Studer 2014; Gauthier, Widmer, Bucher, and
Notredame 2009; Halpin 2010; Hollister 2009; Lesnard 2010). Also a method for analyzing
multichannel data has been developed (Gauthier, Widmer, Bucher, and Notredame 2010).
Often the goal in SA is to find typical and atypical patterns in trajectories using cluster
analysis, but any approach suitable for compressing information on the dissimilarities can
be used. The data are usually presented also graphically in some way. So far the TraMineR

package has been the most extensive and frequently used software for social sequence analysis.

2.2. Hidden Markov models

In the context of hidden Markov models, sequence data consists of observed states, which
are regarded as probabilistic functions of hidden states. Hidden states cannot be observed
directly, but only through the sequence(s) of observations, since they emit the observations
on varying probabilities. A discrete first order hidden Markov model for a single sequence is
characterized by the following:

• Observed state sequence y = (y1, y2, . . . , yT) with observed states m ∈ {1, . . . , M}.

• Hidden state sequence z = (z1, z2, . . . , zT) with hidden states s ∈ {1, . . . , S}.

4 seqHMM: Mixture Hidden Markov Models for Sequence Data

• Initial probability vector π = {πs} of length S, where πs is the probability of starting
from the hidden state s:

πs = P (z1 = s); s ∈ {1, . . . , S}.

• Transition matrix A = {asr} of size S × S, where asr is the probability of moving from
the hidden state s at time t − 1 to the hidden state r at time t:

asr = P (zt = r|zt−1 = s); s, r ∈ {1, . . . , S}.

We only consider homogeneous HMMs, where the transition probabilities asr are con-
stant over time.

• Emission matrix B = {bs(m)} of size S × M , where bs(m) is the probability of the
hidden state s emitting the observed state m:

bs(m) = P (yt = m|zt = s); s ∈ {1, . . . , S}, m ∈ {1, . . . , M}.

The (first order) Markov assumption states that the hidden state transition probability at
time t only depends on the hidden state at the previous time point t − 1:

P (zt|zt−1, . . . , z1) = P (zt|zt−1). (1)

Also, the observation at time t is only dependent on the current hidden state, not on previous
hidden states or observations:

P (yt|yt−1, . . . , y1, zt, . . . , z1) = P (yt|zt). (2)

For a more detailed description of hidden Markov models, see e.g., Rabiner (1989), MacDonald
and Zucchini (1997), and Durbin et al. (1998).

HMM for multiple sequences

We can also fit the same HMM for multiple subjects; instead of one observed sequence y we
have N sequences as Y = (y1, . . . , yN)¦, where the observations yi = (yi1, . . . , yiT) of each
subject i take values in the observed state space. Observed sequences are assumed to be
mutually independent given the hidden states. The observations are assumed to be generated
by the same model, but each subject has its own hidden state sequence.

HMM for multichannel sequences

In the case of multichannel sequence data, such as the example described in Section 2.1, for
each subject i there are C parallel sequences. Observations are now of the form yitc, i =
1, . . . , N ; t = 1 . . . , T ; c = 1 . . . , C, so that our complete data is Y = {Y 1, . . . , Y C}. In
seqHMM, multichannel data are handled as a list of C data frames of size N × T . We also
define Yi as all the observations corresponding to subject i.

We apply the same latent structure for all channels. In such a case the model has one transition
matrix A but several emission matrices B1, . . . , BC , one for each channel. We assume that
the observed states in different channels at a given time point t are independent of each other
given the hidden state at t, i.e., P (yit|zit) = P (yit1|zit) · · · P (yitC |zit).

Satu Helske, Jouni Helske 5

Sometimes the independence assumption does not seem theoretically plausible. For example,
even conditioning on a hidden state representing a general life stage, are marital status and
parenthood truly independent? On the other hand, given a person’s religious views, could
their opinions on abortion and gay marriage be though as independent?

If the goal is to use hidden Markov models for prediction or simulating new sequence data,
the analyst should carefully check the validity of independence assumptions. However, if the
goal is merely to describe structures and compress information, it can be useful to accept the
independence assumption even though it is not completely reasonable in a theoretical sense.
When using multichannel sequences, the number of observed states is smaller, which leads
to a more parsimonious representation of the model and easier inference of the phenomenon.
Also due to the decreased number of observed states, the number of parameters of the model
is decreased leading to the improved computational efficiency of model estimation.

The multichannel approach is particularly useful if some of the channels are only partially
observed; combining missing and non-missing information into one observation is usually
problematic. One would have to decide whether such observations are coded completely
missing, which is simple but loses information, or whether all possible combinations of miss-
ing and non-missing states are included, which grows the state space larger and makes the
interpretation of the model more difficult. In the multichannel approach the data can be used
as it is.

Missing data

Missing observations are handled straightforwardly in the context of HMMs. When obser-
vation yitc is missing, we gain no additional information regarding hidden states. In such a
case, we set the emission probability bs(yitc) = 1 for all s ∈ 1, . . . , S. Sequences with varying
lengths are handled by setting missing values before and/or after the observed states.

Log-likelihood and parameter estimation

The unknown transition, emission and initial probabilities are commonly estimated via max-
imum likelihood. The log-likelihood of the parameters M = {π, A, B1, . . . , BC} for the HMM
is written as

log L =
N
∑

i=1

log P (Yi|M) , (3)

where Yi are the observed sequences in channels c = 1, . . . , C for subject i. The probability
of the observation sequence of subject i given the model parameters is

P (Yi|M) =
∑

all z

P (Yi|z, M) P (z|M)

=
∑

all z

P (z1|M)P (yi1|z1, M)
T
∏

t=2

P (zt|zt−1, M)P (yit|zt, M)

=
∑

all z

πz1
bz1

(yi11) · · · bz1
(yi1C)

T
∏

t=2

[

azt−1ztbzt(yit1) · · · bzt(yitC)
]

,

(4)

where the hidden state sequences z = (z1, . . . , zT) take all possible combinations of values
in the hidden state space {1, . . . , S} and where yit are the observations of subject i at t in

6 seqHMM: Mixture Hidden Markov Models for Sequence Data

channels 1, . . . , C; πz1
is the initial probability of the hidden state at time t = 1 in sequence

z; azt−1zt is the transition probability from the hidden state at time t − 1 to the hidden state
at t; and bzt(yitc) is the probability that the hidden state of subject i at time t emits the
observed state at t in channel c.

For direct numerical maximization (DNM) of the log-likelihood, any general-purpose opti-
mization routines such as BFGS or Nelder–Mead can be used (with suitable reparameteri-
zations). Another common estimation method is the expectation–maximization (EM) algo-
rithm, also known as the Baum–Welch algorithm in the HMM context. The EM algorithm
rapidly converges close to a local optimum, but compared to DNM, the converge speed is
often slow near the optimum.

The probability (4) is efficiently calculated using the forward part of the forward–backward
algorithm (Baum and Petrie 1966; Rabiner 1989). The backward part of the algorithm is
needed for the EM algorithm, as well as for the computation of analytic gradients for derivative
based optimization routines. For more information on the algorithms, see a supplementary
vignette on CRAN (Helske 2017a).

The estimation process starts by giving initial values to the estimates. Good starting values
are needed for finding the optimal solution in a reasonable time. In order to reduce the risk
of being trapped in a poor local maximum, a large number of initial values should be tested.

Inference on hidden states

Given our model and observed sequences, we can make several interesting inferences regard-
ing the hidden states. Forward probabilities αit(s) (Rabiner 1989) are defined as the joint
probability of hidden state s at time t and the observation sequences yi1, . . . , yit given the
model M, whereas backward probabilities βit(s) are defined as the joint probability of hidden
state s at time t and the observation sequences yi(t+1), . . . , yiT given the model M.

From forward and backward probabilities we can compute the posterior probabilities of states,
which give the probability of being in each hidden state at each time point, given the observed
sequences of subject i. These are defined as

P (zit = s|Yi, M) =
αitβit

P (Yi|M)
. (5)

Posterior probabilities can be used to find the locally most probable hidden state at each
time point, but the resulting sequence is not necessarily globally optimal. To find the single
best hidden state sequence ẑi(Yi) = ẑi1, ẑi2, . . . , ẑiT for subject i, we maximize P (z|Yi, M) or,
equivalently, P (z, Yi|M). A dynamic programming method, the Viterbi algorithm (Rabiner
1989), is used for solving the problem.

Model comparison

Models with the same number of parameters can be compared with the log-likelihood. For
choosing between models with a different number of hidden states, we need to take account
of the number of parameters. We define the Bayesian information criterion (BIC) as

BIC = −2 log(Ld) + p log

(

N
∑

i=1

T
∑

t=1

1

C

C
∑

c=1

I(yitc observed)

)

, (6)

Satu Helske, Jouni Helske 7

where Ld is computed using Equation 3, p is the number of estimated parameters, I is the
indicator function, and the summation in the logarithm is the size of the data. If data
are completely observed, the summation is simplified to N × T . Missing observations in
multichannel data may lead to non-integer data size.

2.3. Clustering by mixture hidden Markov models

There are many approaches for finding and describing clusters or latent classes when working
with HMMs. A simple option is to group sequences beforehand (e.g., using sequence analysis
and a clustering method), after which one HMM is fitted for each cluster. This approach is
simple in terms of HMMs. Models with a different number of hidden states and initial values
are explored and compared one cluster at a time. HMMs are used for compressing information
and comparing different clustering solutions, e.g., finding the best number of clusters. The
problem with this solution is that it is, of course, very sensitive to the original clustering and
the estimated HMMs might not be well suited for borderline cases.

Instead of fixing sequences into clusters, it is possible to fit one model for the whole data
and determine clustering during modeling. Now sequences are not in fixed clusters but get
assigned to clusters with certain probabilities during the modeling process. In this section we
expand the idea of HMMs to mixture hidden Markov models (MHMMs). This approach was
formulated by van de Pol and Langeheine (1990) as a mixed Markov latent class model and
later generalized to include time-constant and time-varying covariates by Vermunt, Tran, and
Magidson (2008) (who named the resulting model as mixture latent Markov model, MLMM).
The MHMM presented here is a variant of MLMM where only time-constant covariates are
allowed. Time-constant covariates deal with unobserved heterogeneity and they are used for
predicting cluster memberships of subjects.

Mixture hidden Markov model

Assume that we have a set of HMMs M = {M1, . . . , MK}, where Mk = {πk, Ak, Bk
1 , . . . , Bk

C}
for submodels k = 1, . . . , K. For each subject Yi, denote P (Mk) = wk as the prior probability
that the observation sequences of a subject follow the submodel Mk. Now the log-likelihood
of the parameters of the MHMM is extended from Equation 3 as

log L =
N
∑

i=1

log P (Yi|M)

=
N
∑

i=1

log

[

K
∑

k=1

P (Mk)
∑

all z

P
(

Yi|z, Mk
)

P
(

z|Mk
)

]

=
N
∑

i=1

log

[

K
∑

k=1

wk

∑

all z

πk
z1

bk
z1

(yi11) · · · bk
z1

(yi1C)
T
∏

t=2

[

ak
zt−1zt

bk
zt

(yit1) · · · bk
zt

(yitC)
]

]

.

(7)

Compared to the usual hidden Markov model, there is an additional summation over the
clusters in Equation 7, which seems to make the computations less straightforward than in
the non-mixture case. Fortunately, by redefining MHMM as a special type HMM allows us to
use standard HMM algorithms without major modifications. We combine the K submodels
into one large hidden Markov model consisting of

∑K
k=1 Sk states, where the initial state

8 seqHMM: Mixture Hidden Markov Models for Sequence Data

vector contains elements of the form wkπk. Now the transition matrix is block diagonal

A =













A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AK













, (8)

where the diagonal blocks Ak, k = 1, . . . , K, are square matrices containing the transition
probabilities of one cluster. The off-diagonal blocks are zero matrices, so transitions between
clusters are not allowed. Similarly, the emission matrices for each channel contain stacked
emission matrices Bk.

Covariates and cluster probabilities

Covariates can be added to MHMM to explain cluster memberships as in latent class analysis.
The prior cluster probabilities now depend on the subject’s covariate values xi and are defined
as multinomial distribution:

P (Mk|xi) = wik =
ex

¦

i
γk

1 +
∑K

j=2 ex
¦

i
γj

. (9)

The first submodel is set as the reference by fixing γ1 = (0, . . . , 0)¦.

As in MHMM without covariates, we can still use standard HMM algorithms with a slight
modification; we now allow initial state probabilities π to vary between subjects, i.e., for
subject i we have πi = (wi1π1, . . . , wiKπK)¦. Of course, we also need to estimate the coef-
ficients γ. For direct numerical maximization the modifications are straightforward. In the
EM algorithm, regarding the M-step for γ, seqHMM uses iterative Newton’s method with
analytic gradients and Hessian which are straightforward to compute given all other model
parameters. This Hessian can also be used for computing the conditional standard errors
of coefficients. For unconditional standard errors, which take account of possible correlation
between the estimates of γ and other model parameters, the Hessian is computed using finite
difference approximation of the Jacobian of the analytic gradients.

The posterior cluster probabilities P (Mk|Yi, xi) are obtained as

P (Mk|Yi, xi) =
P (Yi|M

k, xi)P (Mk|xi)

P (Yi|xi)

=
P (Yi|M

k, xi)P (Mk|xi)
∑K

j=1 P (Yi|Mj , xi)P (Mj |xi)
=

Li
k

Li
,

(10)

where Li is the likelihood of the complete MHMM for subject i, and Li
k is the likelihood

of cluster k for subject i. These are straightforwardly computed from forward probabilities.
Posterior cluster probabilities are used e.g., for computing classification tables.

2.4. Important special cases

The hidden Markov model is not the only important special case of the mixture hidden
Markov model. Here we cover some of the most important special cases that are included in
the seqHMM package.

Satu Helske, Jouni Helske 9

Markov model

The Markov model (MM) is a special case of the HMM, where there is no hidden structure.
It can be regarded as an HMM where the hidden states correspond to the observed states
perfectly. Now the number of hidden states matches the number of the observed states. The
emission probability P (yit) = 1 if zt = yit and 0 otherwise, i.e., the emission matrices are
identity matrices. Note that for building Markov models the data must be in a single-channel
format.

Mixture Markov model

Like MM, the mixture Markov model (MMM) is a special case of the MHMM, where there
is no hidden structure. The likelihood of the model is now of the form

log L =
N
∑

i=1

log P (yi|xi, Mk) =
N
∑

i=1

log
K
∑

k=1

P (Mk|xi)P (yi|xi, Mk)

=
N
∑

i=1

log
K
∑

k=1

P (Mk|xi)P (yi1|xi, Mk)
T
∏

t=2

P (yit|yi(t−1), xi, Mk).

(11)

Again, the data must be in a single-channel format.

Latent class model

Latent class models (LCM) are another class of models that are often used for longitudinal
research. Such models have been called, e.g., (latent) growth models, latent trajectory models,
or longitudinal latent class models (Vermunt et al. 2008; Collins and Wugalter 1992). These
models assume that dependencies between observations can be captured by a latent class,
i.e., a time-constant variable which we call cluster in this paper.

The seqHMM includes a function for fitting an LCM as a special case of MHMM where there
is only one hidden state for each cluster. The transition matrix of each cluster is now reduced
to a scalar 1 and the likelihood is of the form

log L =
N
∑

i=1

log P (Yi|xi, Mk) =
N
∑

i=1

log
K
∑

k=1

P (Mk|xi)P (Yi|xi, Mk)

=
N
∑

i=1

log
K
∑

k=1

P (Mk|xi)
T
∏

t=1

P (yit|xi, Mk).

(12)

For LCMs, the data can consist of multiple channels, i.e., the data for each subject consists
of multiple parallel sequences. It is also possible to use seqHMM for estimating LCMs for
non-longitudinal data with only one time point, e.g., to study multiple questions in a survey.

3. Package features

The purpose of the seqHMM package is to offer tools for the whole HMM analysis process from
sequence data manipulation and description to model building, evaluation, and visualization.
Naturally, seqHMM builds on other packages, especially the TraMineR package designed for
sequence analysis. For constructing, summarizing, and visualizing sequence data, TraMineR

10 seqHMM: Mixture Hidden Markov Models for Sequence Data

Usage Functions/methods

Model construction

build_hmm, build_mhmm, build_mm, build_mmm,
build_lcm, simulate_initial_probs,
simulate_transition_probs,
simulate_emission_probs

Model estimation fit_model

Model visualization
plot, stacked_sequence_plot (deprecated:,
ssplot, mssplot)

Model inference logLik, BIC, summary

State inference
hidden_paths, posterior_probs,
forward_backward

Data visualization
stacked_sequence_plot (deprecated: ssplot,
ssp + plot, ssp + gridplot)

Data and model manipulation
mc_to_sc, mc_to_sc_data, trim_model,
separate_mhmm

Data simulation simulate_hmm, simulate_mhmm

Table 1: Functions and methods in the seqHMM package.

provides many useful features. First of all, we use the TraMineR’s stslist class as the
sequence data structure of seqHMM. These state sequence objects have attributes such as
color palette and alphabet, and they have specific methods for plotting, summarizing, and
printing. Many other TraMineR’s features for plotting or data manipulation are also used in
seqHMM.

On the other hand, seqHMM extends the functionalities of TraMineR, e.g., by providing easy-
to-use plotting functions for multichannel data and a simple function for converting such data
into a single-channel representation.

Other significant packages used by seqHMM include the igraph package (Csardi and Nepusz
2006), which is used for drawing graphs of HMMs, and the nloptr package (Ypma, Borchers,
and Eddelbuettel 2014; Johnson 2014), which is used in direct numerical optimization of model
parameters. The computationally intensive parts of the package are written in C++ with the
help of the Rcpp (Eddelbuettel and François 2011; Eddelbuettel 2013) and RcppArmadillo

(Eddelbuettel and Sanderson 2014) packages. In addition to using C++ for major algorithms,
seqHMM also supports parallel computation via the OpenMP interface (Dagum and Enon
1998) by dividing computations for subjects between threads.

Table 1 shows the functions and methods available in the seqHMM package. The package
includes functions for estimating and evaluating HMMs and MHMMs as well as visualizing
data and models. There are some functions for manipulating data and models, and for
simulating model parameters or sequence data given a model. In the next sections we discuss
the usage of these functions more thoroughly.

As the straightforward implementation of the forward–backward algorithm poses a great risk
of under- and overflow, typically forward probabilities are scaled so that there should be no
underflow. seqHMM uses the scaling as in Rabiner (1989), which is typically sufficient for
numerical stability. In case of MHMM though, we have sometimes observed numerical issues
in the forward algorithm even with proper scaling. Fortunately this usually means that the

Satu Helske, Jouni Helske 11

backward algorithm fails completely, giving a clear signal that something is wrong. This
is especially true in the case of global optimization algorithms which can search unfeasible
areas of the parameter space, or when using bad initial values often with large number of
zero-constraints. Thus, seqHMM also supports computation on the logarithmic scale in most
of the algorithms, which further reduces the numerical unstabilities. On the other hand, as
there is a need to back-transform to the natural scale during the algorithms, the log-space
approach is somewhat slower than the scaling approach. Therefore, the default option is to
use the scaling approach, which can be changed to the log-space approach by setting the
log_space argument to TRUE in, e.g., fit_model. Note: Since version 2.0.0, the default
in all algorithms is to use log-space approach.

3.1. Building and fitting models

A model is first constructed using an appropriate build function. As Table 1 illustrates,
several such functions are available: build_hmm for hidden Markov models, build_mhmm for
mixture hidden Markov models, build_mm for Markov models, build_mmm for mixture Markov
models, and build_lcm for latent class models.

The user may give their own starting values for model parameters, which is typically advisable
for improved efficiency, or use random starting values. Build functions check that the data and
parameter matrices (when given) are of the right form and create an object of class hmm (for
HMMs and MMs) or mhmm (for MHMMs, MMMs, and LCMs). For ordinary Markov models,
the build_mm function automatically estimates the initial probabilities and the transition
matrix based on the observations. For this type of model, starting values or further estimation
are not needed. For mixture models, covariates can be omitted or added with the usual
formula argument using symbolic formulas familiar from, e.g., the lm function. Even though
missing observations are allowed in sequence data, covariates must be completely observed.

After a model is constructed, model parameters may be estimated with the fit_model func-
tion. MMs, MMMs, and LCMs are handled internally as their more general counterparts,
except in the case of print methods, where some redundant parts of the model are not
printed.

In all models, initial zero probabilities are regarded as structural zeroes and only positive
probabilities are estimated. Thus it is easy to construct, e.g., a left-to-right model by defining
the transition probability matrix as an upper triangular matrix.

The fit_model function provides three estimation steps: 1) EM algorithm, 2) global DNM,
and 3) local DNM. The user can call for one method or any combination of these steps, but
should note that they are performed in the above-mentioned order. At the first step, starting
values are based on the model object given to fit_model. Results from a former step are then
used as starting values in the latter. Exceptions to this rule include some global optimization
algorithms, which do not use initial values (because of this, performing just the local DNM
step can lead to a better solution than global DNM with a small number of iterations).

We have used our own implementation of the EM algorithm for MHMMs whereas the DNM
steps (2 and 3) rely on the optimization routines provided by the nloptr package. The
EM algorithm and computation of gradients were written in C++ with an option for parallel
computation between subjects. The user can choose the number of parallel threads (typically,
the number of cores) with the threads argument.

In order to reduce the risk of being trapped in a poor local optimum, a large number of initial

12 seqHMM: Mixture Hidden Markov Models for Sequence Data

values should be tested. The seqHMM package strives to automatize this. One option is to
run the EM algorithm multiple times with more or less random starting values for transition
or emission probabilities or both. These are called for in the control_em argument. Although
not done by default, this method seems to perform very well as the EM algorithm is relatively
fast compared to DNM.

Another option is to use a global DNM approach such as the multilevel single-linkage method
(MLSL) (Rinnooy Kan and Timmer 1987a,b). It draws multiple random starting values
and performs local optimization from each starting point. The LDS modification uses low-
discrepancy sequences instead of random numbers as starting points and should improve the
convergence rate (Kucherenko and Sytsko 2005).

By default, the fit_model function uses the EM algorithm with a maximum of 1000 itera-
tions and skips the local and global DNM steps. For the local step, the L-BFGS algorithm
(Nocedal 1980; Liu and Nocedal 1989) is used by default. Setting global_step = TRUE, the
function performs MSLS-LDS with the L-BFGS as the local optimizer. In order to reduce
the computation time spent on non-global optima, the convergence tolerance of the local
optimizer is set relatively large, so again local optimization should be performed at the final
step.

Unfortunately, there is no universally best optimization method. For unconstrained problems,
the computation time for a single EM or DNM rapidly increases as the model size increases
and at the same time the risk of getting trapped in a local optimum or a saddle point also
increases. As seqHMM provides functions for analytic gradients, the optimization routines of
nloptr which make use of this information are likely preferable. In practice we have had most
success with randomized EM, but it is advisable to try a couple of different settings; e.g.,
randomized EM, EM followed by global DNM, and only global DNM, perhaps with different
optimization routines. Documentation of the fit_model function gives examples of different
optimization strategies and how they can lead to different solutions.

For examples on model estimation and starting values, see a supplementary vignette on CRAN
(Helske 2017b).

State and model inference

In seqHMM, forward and backward probabilities are computed using the forward_backward

function, either on the logarithmic scale or in the form of scaled probabilities, depending on
the argument log_space. Posterior probabilities are obtained from the posterior_probs

function. In seqHMM, the most probable paths are computed with the hidden_paths func-
tion. For details of the Viterbi and the forward–backward algorithm, see e.g., Rabiner (1989).

The seqHMM package provides the logLik method for computing the log-likelihood of a
model. The method returns an object of class logLik which is compatible with the generic
information criterion functions AIC and BIC of R. When constructing the hmm and mhmm objects
via model building functions, the number of observations and the number of parameters of
the model are stored as attributes nobs and df which are extracted by the logLik method
for the computation of information criteria. The number of model parameters defined from
the initial model by taking account of the parameter redundancy constraints (stemming from
sum-to-one constraints of transition, emission, and initial state probabilities) and by defining
all zero probabilities as structural, fixed values.

The summary method automatically computes some features for the MHMM, MMM, and the

Satu Helske, Jouni Helske 13

latent class model, e.g., standard errors for covariates and prior and posterior cluster proba-
bilities for subjects. A print method for this summary shows an output of the summaries:
estimates and standard errors for covariates, log-likelihood and BIC, and information on most
probable clusters and prior probabilities.

3.2. Visualizing sequence data

Good graphical presentations of data and models are useful during the whole analysis process
from the first glimpse into the data to the model fitting and presentation of results. The
TraMineR package provides nice plotting options and summaries for simple sequence data,
but at the moment there is no easy way of plotting multichannel data. We propose to use a
so-called stacked sequence plot (ssp), where the channels are plotted on top of each other so
that the same row in each figure matches the same subject. Figure 1 illustrates an example
of a stacked sequence plot with the ten first sequences of the biofam data set. The code for
creating the figure is shown in Section 4.1.

Warning: package ’TraMineR’ was built under R version 4.4.2

The stacked_sequence_plot function is the simplest way of plotting multichannel sequence
data in seqHMM. It can be used to illustrate state distributions or sequence index plots.
The former is the default option, since index plots can take a lot of time and memory if
data are large. Figure 2 illustrates a default plot which the user can modify in many ways
(see the code in Section 4.1). More examples are shown in the documentation pages of the
stacked_sequence_plot function and on the vignette "Visualization tools in the seqHMM

package".

stacked_sequence_plot has also argument group, which can be used to group sequences
to separate subfigures. Figure 3 illustrates an example of such a plot showing sequence
index plots for women and men (see the code in Section 4.1). Sequences are ordered in a
more meaningful order using multidimensional scaling scores of observations (computed from
sequence dissimilarities).

We also provide a function mc_to_sc_data for the easy conversion of multichannel sequence
data into a single channel representation, as well as functions stslist_to_data and data_to_stslist

to convert TraMineRs stslist objects to data.frame and vice verse. Plotting combined data
is often useful in addition to (or instead of) showing separate channels.

3.3. Visualizing hidden Markov models

For the easy visualization of the model structure and parameters, we propose plotting HMMs
as directed graphs. Such graphs are easily called with the plot method, with an object of
class hmm as an argument. Figure 4 illustrates a five-state HMM. The code for producing the
plot is shown in Section 4.4.

Hidden states are presented with pie charts as vertices (or nodes), and transition probabilities
are shown as edges (arrows, arcs). By default, the higher the transition probability, the thicker
the stroke of the edge. Emitted observed states are shown as slices in the pies. For gaining a
simpler view, observations with small emission probabilities (less than 0.05 by default) can be
combined into one category. Initial state probabilities are given below or next to the respective

14 seqHMM: Mixture Hidden Markov Models for Sequence Data

Figure 1: Stacked sequence plot of the first ten individuals in the biofam data plotted with
the stacked_sequence_plot function. The top plot shows the original sequences, and the
three bottom plots show the sequences in the separate channels for the same individuals. The
sequences are in the same order in each plot, i.e., the same row always matches the same
individual.

Satu Helske, Jouni Helske 15

Figure 2: Stacked sequence plot of annual state distributions in the three-channel biofam

data. This is the default output of the stacked_sequence_plot function. The labels for the
channels are taken from the named list of state sequence objects, and the labels for the x axis
ticks are taken from the column names of the first object.

16 seqHMM: Mixture Hidden Markov Models for Sequence Data

Figure 3: Showing state distribution plots for women and men in the biofam data.

Satu Helske, Jouni Helske 17

Figure 4: Illustrating a hidden Markov model as a directed graph. Pies represent five hidden
states, with slices showing emission probabilities of combinations of observed states. States
with emission probability less than 0.05 are combined into one slice. Edges show the transtion
probabilities. Initial probabilities of hidden states are given below the pies.

vertices. In the case of multichannel sequences, the data and the model are converted into a
single-channel representation with the mc_to_sc function.

A simple default plot is easy to call, but the user has a lot of control over the layout. Figure
5 illustrates another possible visualization of the same model. The code is shown in Section
4.4.

The stacked_sequence_plot function (see Section 3.2) also accepts an object of class hmm

and nhmm. The user can easily choose to plot observations, most probable paths of hidden
states, or both. The function automatically computes hidden paths if the user does not
provide them.

Figure 6 shows observed sequences with the most probable paths of hidden states given the
model. Sequences are sorted according to multidimensional scaling scores computed from
hidden paths. The code for creating the plot is shown in Section 4.4.

The plot method works for mhmm objects as well. The user can choose between an interactive
mode, where the model for each (chosen) cluster is plotted separately, and a combined plot
with all models in one plot.

4. Examples with life course data

In this section we show examples of using the seqHMM package. We start by constructing
and visualizing sequence data, then show how HMMs are built and fitted for single-channel
and multichannel data, then move on to clustering with MHMMs, and finally illustrate how
to plot HMMs.

18 seqHMM: Mixture Hidden Markov Models for Sequence Data

Figure 5: Another version of the hidden Markov model of Figure 4 with a different layout
and modified labels, legends, and colors. All observed states are shown.

Throughout the examples we use the same biofam data described in Section 2.1. We use
both the original single-channel data and a three-channel modification named biofam3c,
which is included in the seqHMM package. For more information on the conversion, see the
documentation of the biofam3c data.

4.1. Sequence data

Before getting to the estimation, it is good to get to know the data. We start by loading the
original biofam data as well as the three-channel version of the same data, biofam3c. We
convert the data into the stslist form with the seqdef function. We set the starting age at
15 and set the order of the states with the alphabet argument (for plotting). Colors of the
states can be modified and stored as an attribute in the stslist object – this way the user
only needs to define them once.

library("seqHMM")

data("biofam", package = "TraMineR")

biofam_seq <- seqdef(

biofam[, 10:25], start = 15, labels = c(

"parent", "left", "married", "left+marr", "child", "left+child",

"left+marr+ch","divorced")

)

data("biofam3c")

marr_seq <- seqdef(

biofam3c$married, start = 15,

Satu Helske, Jouni Helske 19

Figure 6: Using the stacked_sequence_plot function for an hmm object makes it easy to
plot the observed sequences together with the most probable paths of hidden states given the
model.

20 seqHMM: Mixture Hidden Markov Models for Sequence Data

alphabet = c("single", "married", "divorced"),

cpal = c("violetred2", "darkgoldenrod2", "darkmagenta")

)

child_seq <- seqdef(

biofam3c$children, start = 15,

alphabet = c("childless", "children"),

cpal = c("darkseagreen1", "coral3")

)

left_seq <- seqdef(

biofam3c$left, start = 15, alphabet = c("with parents", "left home"),

cpal = c("lightblue", "red3")

)

Here we show codes for creating Figures 2 and 1. Such plots give a good glimpse into
multichannel data.

Figure 2: Plotting state distributions

We start by showing how to call the simple default plot of Figure 2 in Section 3.3. By default
the function plots state distributions (type = "d"). Multichannel data are given as a list
where each component is an stslist corresponding to one channel. If names are given, those
will be used as labels in plotting.

p <- stacked_sequence_plot(

list(

"Marriage" = marr_seq, "Parenthood" = child_seq, "Residence" = left_seq

)

)

p

Figure 1: Plotting sequences

Figure 1 with the whole sequences requires modifying more arguments. We call for sequence
index plots (type = "I") and sort sequences according to the first channel (the original
sequences), starting from the beginning. We give labels to y and x axes and modify the
positions of y labels. We give a title to the plot but omit the number of subjects, which
by default is printed. We set the proportion of the plot given to legends and the number of
columns in each legend.

For more examples on visualization, see a supplementary vignette on CRAN (Helske 2017c).

Satu Helske, Jouni Helske 21

4.2. Hidden Markov models

We start by showing how to fit an HMM for single-channel biofam data. The model is
initialized with the build_hmm function which creates an object of class hmm. The simplest
way is to use automatic starting values by giving the number of hidden states.

sc_initmod_random <- build_hmm(observations = biofam_seq, n_states = 5)

It is, however, often advisable to set starting values for initial, transition, and emission prob-
abilities manually. Here the hidden states are regarded as more general life stages, during
which individuals are more likely to meet certain observable life events. We expect that the
life stages are somehow related to age, so constructing starting values from the observed state
frequencies by age group seems like an option worth a try (these are easily computed using
the seqstatf function in TraMineR). We construct a model with four hidden states using
age groups 15–18, 19–21, 22–24, 25–27 and 28–30.

The fit_model function uses the probabilities given by the initial model as starting values
when estimating the parameters. Only positive probabilities are estimated; zero values are
fixed to zero. Thus, the amount of 0.1 is added to each value in case of zero-frequencies in
some categories (at this point we do not want to fix any parameters to zero). Each row is
divided by its sum, so that the row sums equal to 1.

sc_init <- c(0.9, 0.06, 0.02, 0.01, 0.01)

sc_trans <- matrix(c(

0.80, 0.10, 0.05, 0.03, 0.02, 0.02, 0.80, 0.10,

0.05, 0.03, 0.02, 0.03, 0.80, 0.10, 0.05, 0.02, 0.03, 0.05, 0.80, 0.10,

0.02, 0.03, 0.05, 0.05, 0.85

), nrow = 5, ncol = 5, byrow = TRUE)

sc_emiss <- matrix(NA, nrow = 5, ncol = 8)

sc_emiss[1,] <- seqstatf(biofam_seq[, 1:4])[, 2] + 0.1

sc_emiss[2,] <- seqstatf(biofam_seq[, 5:7])[, 2] + 0.1

sc_emiss[3,] <- seqstatf(biofam_seq[, 8:10])[, 2] + 0.1

sc_emiss[4,] <- seqstatf(biofam_seq[, 11:13])[, 2] + 0.1

sc_emiss[5,] <- seqstatf(biofam_seq[, 14:16])[, 2] + 0.1

sc_emiss <- sc_emiss / rowSums(sc_emiss)

rownames(sc_trans) <- colnames(sc_trans) <- rownames(sc_emiss) <-

paste("State", 1:5)

colnames(sc_emiss) <- attr(biofam_seq, "labels")

sc_trans

State 1 State 2 State 3 State 4 State 5

State 1 0.80 0.10 0.05 0.03 0.02

State 2 0.02 0.80 0.10 0.05 0.03

22 seqHMM: Mixture Hidden Markov Models for Sequence Data

State 3 0.02 0.03 0.80 0.10 0.05

State 4 0.02 0.03 0.05 0.80 0.10

State 5 0.02 0.03 0.05 0.05 0.85

round(sc_emiss, 3)

parent left married left+marr child left+child left+marr+ch

State 1 0.928 0.063 0.002 0.002 0.001 0.001 0.002

State 2 0.701 0.218 0.018 0.028 0.001 0.004 0.029

State 3 0.417 0.290 0.050 0.114 0.001 0.006 0.117

State 4 0.204 0.231 0.080 0.201 0.002 0.009 0.256

State 5 0.101 0.157 0.097 0.196 0.002 0.013 0.400

divorced

State 1 0.001

State 2 0.001

State 3 0.005

State 4 0.018

State 5 0.034

Now, the build_hmm checks that the data and matrices are of the right form.

sc_initmod <- build_hmm(

observations = biofam_seq, initial_probs = sc_init,

transition_probs = sc_trans, emission_probs = sc_emiss

)

We then use the fit_model function for parameter estimation. Here we estimate the model
using the default options of the EM step.

sc_fit <- fit_model(sc_initmod)

The fitting function returns the estimated model, its log-likelihood, and information on the
optimization steps.

sc_fit$logLik

[1] -16781.99

sc_fit$model

Hidden Markov model:

##

Number of sequences: 2000

Number of time points: 16

Number of observed symbols: 8

Satu Helske, Jouni Helske 23

Number of hidden states: 5

Initial probabilities :

State 1 State 2 State 3 State 4 State 5

0.986 0.000 0.014 0.000 0.000

##

Transition probabilities :

to

from State 1 State 2 State 3 State 4 State 5

State 1 0.786 0.175 0.0391 0.00000 0.0000

State 2 0.000 0.786 0.0751 0.07568 0.0631

State 3 0.000 0.000 0.8898 0.08342 0.0267

State 4 0.000 0.000 0.0000 0.78738 0.2126

State 5 0.000 0.000 0.0000 0.00136 0.9986

##

Emission probabilities :

symbol_names

state_names 0 1 2 3 4 5 6 7

State 1 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 2 1 0 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 3 0 1 0.00000 0.000 0.00000 0.0000 0.000 0.0000

State 4 0 0 0.00195 0.992 0.00581 0.0000 0.000 0.0000

State 5 0 0 0.21508 0.000 0.00000 0.0246 0.713 0.0474

As a multichannel example we fit a 5-state model for the 3-channel data. Emission probabil-
ities are now given as a list of three emission matrices, one for each channel. The alphabet

function from the TraMineR package can be used to check the order of the observed states –
the same order is used in the build functions. Here we construct a left-to-right model where
transitions to earlier states are not allowed, so the transition matrix is upper-triangular. This
seems like a valid option from a life-course perspective. Also, in the previous single-channel
model of the same data the transition matrix was estimated almost upper triangular. We
also give names for channels – these are used when printing and plotting the model.

We estimate model parameters using the local step with the default L-BFGS algorithm using
parallel computation with 4 threads.

mc_init <- c(0.9, 0.05, 0.02, 0.02, 0.01)

mc_trans <- matrix(

c(

0.80, 0.10, 0.05, 0.03, 0.02, 0, 0.90, 0.05, 0.03,

0.02, 0, 0, 0.90, 0.07, 0.03, 0, 0, 0, 0.90, 0.10, 0, 0, 0, 0, 1

),

nrow = 5, ncol = 5, byrow = TRUE

)

mc_emiss_marr <- matrix(

c(

24 seqHMM: Mixture Hidden Markov Models for Sequence Data

0.90, 0.05, 0.05, 0.90, 0.05, 0.05, 0.05, 0.90,

0.05, 0.05, 0.90, 0.05, 0.30, 0.30, 0.40

),

nrow = 5, ncol = 3,

byrow = TRUE

)

mc_emiss_child <- matrix(c(

0.9, 0.1, 0.9, 0.1, 0.1, 0.9, 0.1, 0.9, 0.5,

0.5

), nrow = 5, ncol = 2, byrow = TRUE)

mc_emiss_left <- matrix(c(

0.9, 0.1, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.5,

0.5

), nrow = 5, ncol = 2, byrow = TRUE)

mc_obs <- list(marr_seq, child_seq, left_seq)

mc_emiss <- list(mc_emiss_marr, mc_emiss_child, mc_emiss_left)

mc_initmod <- build_hmm(

observations = mc_obs, initial_probs = mc_init,

transition_probs = mc_trans, emission_probs = mc_emiss,

channel_names = c("Marriage", "Parenthood", "Residence")

)

For CRAN vignette: load the estimated model object for speed-up

data("hmm_biofam")

mc_fit <- fit_model(mc_initmod, em_step = FALSE, local_step = TRUE,

threads = 4)

We store the model as a separate object for the ease of use and then compute BIC.

Vignette: already loaded hmm_biofam

hmm_biofam <- mc_fit$model

BIC(hmm_biofam)

[1] 28842.7

4.3. Clustering and mixture hidden Markov models

When fitting mixture hidden Markov models, the starting values are given as lists, with one
component per cluster. For multichannel data, emission probabilities are given as a list of
lists. Here we fit a model for two clusters with 5 and 4 hidden states. For the cluster with
five states we use the same starting values as for the multichannel HMM described earlier.

Satu Helske, Jouni Helske 25

Covariates are defined with the usual formula and data arguments. Here we use sex and
birth cohort to explain cluster memberships.

We fit a model using 100 random restarts of the EM algorithm followed by the local L-BFGS
method. Again we use parallel computation.

mc_init2 <- c(0.9, 0.05, 0.03, 0.02)

mc_trans2 <- matrix(c(

0.85, 0.05, 0.05, 0.05, 0, 0.90, 0.05, 0.05, 0, 0,

0.95, 0.05, 0, 0, 0, 1

), nrow = 4, ncol = 4, byrow = TRUE)

mc_emiss_marr2 <- matrix(c(

0.90, 0.05, 0.05, 0.90, 0.05, 0.05, 0.05,

0.85, 0.10, 0.05, 0.80, 0.15

), nrow = 4, ncol = 3, byrow = TRUE)

mc_emiss_child2 <- matrix(c(0.9, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5),

nrow = 4, ncol = 2, byrow = TRUE

)

mc_emiss_left2 <- matrix(c(0.9, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5),

nrow = 4, ncol = 2, byrow = TRUE

)

mhmm_init <- list(mc_init, mc_init2)

mhmm_trans <- list(mc_trans, mc_trans2)

mhmm_emiss <- list(

list(mc_emiss_marr, mc_emiss_child, mc_emiss_left),

list(mc_emiss_marr2, mc_emiss_child2, mc_emiss_left2)

)

biofam3c$covariates$cohort <- cut(

biofam3c$covariates$birthyr,

c(1908, 1935, 1945, 1957)

)

biofam3c$covariates$cohort <- factor(biofam3c$covariates$cohort,

labels = c("1909-1935", "1936-1945", "1946-1957")

)

init_mhmm <- build_mhmm(

observations = mc_obs, initial_probs = mhmm_init,

transition_probs = mhmm_trans, emission_probs = mhmm_emiss,

formula = ~ sex + cohort, data = biofam3c$covariates,

26 seqHMM: Mixture Hidden Markov Models for Sequence Data

channel_names = c("Marriage", "Parenthood", "Residence"),

cluster_names = c("Cluster 1", "Cluster 2")

)

vignette: less restarts and no parallelization

set.seed(1011)

mhmm_fit <- fit_model(init_mhmm,

local_step = TRUE, threads = 2,

control_em = list(restart = list(times = 10))

)

mhmm <- mhmm_fit$model

The summary method automatically computes some features for an MHMM, e.g., standard
errors for covariates and prior and posterior cluster probabilities for subjects. A print method
shows some summaries of these: estimates and standard errors for covariates (see Section 2.3),
log-likelihood and BIC, and information on most probable clusters and prior probabilities.
Parameter estimates for transitions, emissions, and initial probabilities are omitted by default.
The classification table shows mean probabilities of belonging to each cluster by the most
probable cluster (defined from posterior cluster probabilities). A good model should have
values close to 1 on the diagonal.

summary(mhmm, conditional_se = FALSE)

Covariate effects :

Cluster 1 is the reference.

##

Cluster 2 :

Estimate Std. error

(Intercept) -1.209 0.138

sexwoman 0.213 0.141

cohort1936-1945 -0.785 0.172

cohort1946-1957 -1.238 0.165

##

Log-likelihood: -12969.57 BIC: 26592.66

##

Means of prior cluster probabilities :

Cluster 1 Cluster 2

0.857 0.143

##

Most probable clusters :

Cluster 1 Cluster 2

count 1753 247

proportion 0.876 0.124

##

Classification table :

Mean cluster probabilities (in columns) by the most probable cluster (rows)

Satu Helske, Jouni Helske 27

Figure 7: A default plot of a hidden Markov model.

##

Cluster 1 Cluster 2

Cluster 1 0.9775 0.0225

Cluster 2 0.0013 0.9987

4.4. Visualizing hidden Markov models

The figures in Section 3.3 illustrate the five-state multichannel HMM fitted in Section 4.2.

A basic HMM graph is easily called with the plot method. Figure 7 illustrates the default
plot.

plot(hmm_biofam)

A simple default plot is a convenient way of visualizing the models during the analysis process,
but for publishing it is often better to modify the plot to get an output that best illustrates
the structure of the model in hand. Figure 4 and Figure 5 show two variants of the same
model.

Figure 4: HMM plot with modifications

In Figure 4 we draw larger vertices, control the distances of initial probabilities (vertex labels),
set the curvatures of the edges, give a more descriptive label for the combined slices and give
less space for the legend.

28 seqHMM: Mixture Hidden Markov Models for Sequence Data

plot(

hmm_biofam,

vertex.size = 50, vertex.label.dist = 1.5,

edge.curved = c(0, 0.6, -0.8, 0.6, 0, 0.6, 0), legend.prop = 0.3,

combined.slice.label = "States with prob. < 0.05"

)

Figure 5: HMM plot with a different layout

Here we position the vertices using given coordinates. Coordinates are given in a two-column
matrix, with x coordinates in the first column and y coordinates in the second. Arguments
xlim and ylim set the lengths of the axes, and rescale = FALSE prevents rescaling the
coordinates to the [−1, 1] × [−1, 1] interval (the default). We modify the positions of initial
probabilities, fix edge widths to 1, reduce the size of the arrows in edges, position legend
on top of the figure, and print labels in two columns in the legend. Parameter values are
shown with one significant digit. All emission probabilities are shown regardless of their
value (combine.slices = 0).

New colors are set from the ready-defined colorpalette data. The seqHMM package uses
these palettes when determining colors automatically, e.g., in the mc_to_sc function. Since
here there are 10 combined states, the default color palette is number 10. To get different
colors, we choose the ten first colors from palette number 14.

vertex_layout <- matrix(c(1, 2, 2, 3, 1, 0, 0.5, -0.5, 0, -1), ncol = 2)

plot(

hmm_biofam,

layout = vertex_layout, xlim = c(0.5, 3.5),

ylim = c(-1.5, 1), rescale = FALSE, vertex.size = 50,

vertex.label.pos = c("left", "top", "bottom", "right", "left"),

edge.curved = FALSE, edge.width = 1, edge.arrow.size = 1,

with.legend = "left", legend.prop = 0.4, label.signif = 1,

combine.slices = 0, cpal = colorpalette[[30]][c(14:5)]

)

Figure 6: stacked_sequence_plot for an HMM object

Plotting observed and hidden state sequences is easy with the stacked_sequence_plot func-
tion: the function accepts an hmm object instead of (a list of) stslists.

suppressMessages(

p <- stacked_sequence_plot(

hmm_biofam,

plots = "both", type = "index", sort_by = "mds",

sort_channel = "Hidden states"

) +

Satu Helske, Jouni Helske 29

patchwork::plot_annotation("Observed and hidden state sequences") &

ggplot2::scale_x_discrete("Age", labels = 15:30)

)

p

4.5. Visualizing mixture hidden Markov models

Objects of class mhmm have similar plotting methods to hmm objects. The default way of
visualizing a model is to plot in an interactive mode, where the model for each cluster is
plotted separately. Another option is a combined plot with all models in one plot, although
it can be difficult to fit several graphs and legends in one figure.

Figure 8 illustrates the MHMM fitted in Section 4.3. By setting interactive = FALSE and
nrow = 2 we plot graphs in a grid with two rows. The rest of the arguments are similar to
basic HMM plotting and apply for all the graphs.

plot(mhmm,

interactive = FALSE, nrow = 2, legend.prop = 0.45,

vertex.size = 50, vertex.label.cex = 1.3, cex.legend = 1.3,

edge.curved = 0.65, edge.label.cex = 1.3, edge.arrow.size = 0.8

)

The equivalent of the ssplot function for mhmm objects is mssplot. It shows data and/or
hidden paths one cluster at a time. The function is interactive if more than one cluster is
plotted (thus omitted here). Subjects are allocated to clusters according to the most probable
hidden state paths. Since version 2.0.0, the same stacked_sequence_plot can be be
used with mixture models as well, or one can plot each cluster separately and
then use patchwork (Pedersen 2024) to combine the figures.

Deprecated code:

mssplot(mhmm, ask = TRUE)

New code

stacked_sequence_plot(mhmm)

If the user wants more control than the default mhmm plotting functions offer, they can use the
separate_mhmm function to convert a mhmm object into a list of separate hmm objects. These
can then be plotted as any hmm objects.

5. Conclusion

Hidden Markov models are useful in various longitudinal settings with categorical observa-
tions. They can be used for accounting measurement error in the observations (e.g., drug use
as in Vermunt et al. 2008), for detecting true unobservable states (e.g., different periods of

30 seqHMM: Mixture Hidden Markov Models for Sequence Data

Figure 8: Plotting submodels of an MHMM with the plot method.

Satu Helske, Jouni Helske 31

the bipolar disorder as in Lopez 2008), and for compressing information across several types
of observations (e.g., finding general life stages as in Helske, Helske, and Eerola 2018).

The seqHMM package is designed for analyzing categorical sequences with hidden Markov
models and mixture hidden Markov models, as well as their restricted variants Markov models,
mixture Markov models, and latent class models. It can handle many types of data from a
single sequence to multiple multichannel sequences. Covariates can be included in MHMMs
to explain cluster membership. The package also offers versatile plotting options for sequence
data and HMMs, and can easily convert multichannel sequence data and models into single-
channel representations.

Parameter estimation in (M)HMMs is often very sensitive to starting values. To deal with
that, seqHMM offers several fitting options with global and local optimization using direct
numerical estimation and the EM algorithm.

Almost all intensive computations are done in C++. The package also supports parallel
computation.

Especially combined with the TraMineR package, seqHMM is designed to offer tools for the
whole analysis process from data preparation and description to model fitting, evaluation,
and visualization. In future we plan to develop MHMMs to deal with time-varying covari-
ates in transition and emission matrices (Bartolucci, Farcomeni, and Pennoni 2012), and add
an option to incorporate sampling weights for model estimation. Also, the computational
efficiency of the restricted variants of (M)HMMs, such as latent class models, could be im-
proved by taking account of the restricted structure of those models in EM and log-likelihood
computations.

Acknowledgements

Satu Helske is grateful for support for this research from the John Fell Oxford University Press
(OUP) Research Fund and the Department of Mathematics and Statistics at the University
of Jyväskylä, Finland, and Jouni Helske for the Emil Aaltonen Foundation and the Academy
of Finland (research grants 284513 and 312605).

We also wish to thank Mervi Eerola and Jukka Nyblom as well as the editor and two anony-
mous referees for their helpful comments and suggestions. Comments, suggestions, and bug
reports from various users of seqHMM have also been highly appreciated.

32 seqHMM: Mixture Hidden Markov Models for Sequence Data

A. Notations

Symbol Meaning

Yi Observation sequences of subject i, i = 1 . . . , N

yit Observations of subject i at time t, t = 1, . . . , T

yitc Observation of subject i at time t in channel c, c = 1, . . . , C

mc ∈ {1, . . . , Mc} Observed state space for channel c

zit Hidden state at time t for subject i

s ∈ {1, . . . , S} Hidden state space
A = {asr} Transition matrix of size S × S

asr = P (zt = r|zt−1 = s) Transition probability between hidden states s and r

Bc = {bs(mc)} Emission matrix of size S × Mc for channel c

bs(mc) = P (yitc = mc|zit = s) Emission probability of observed state mc in channel c given
hidden state s

bs(yit) = bs(yit1) · · · bs(yitC) Joint emission probability of observations at time t in channels
1, . . . , C given hidden state s

π = (π1, . . . , πS)¦ Vector of initial probabilities
πs = P (z1 = s) Initial probability of hidden state s

ẑi(Yi) The most probable hidden state sequence for subject i

xi Covariates of subject i

Mk, k = 1, . . . , K Submodel for cluster k (latent class/cluster)
wik Probability of cluster k for subject i

γk Regression coefficients for cluster k

{πk, Ak, Bk
1
, . . . , Bk

C
, γk} Model parameters for cluster k

References

Aisenbrey S, Fasang A (2010). “New Life for Old Ideas: The “Second Wave” of Sequence
Analysis – Bringing the “Course” Back Into the Life Course.” Sociological Methods &
Research, 38(3), 420–462. doi:10.1177/0049124109357532.

Bartolucci F, Farcomeni A, Pennoni F (2012). Latent Markov models for longitudinal data.
CRC Press, Boca Raton, FL.

Bartolucci F, Pandolfi S (2015). LMest: Latent Markov Models with and without Covariates.
R Package Version 2.1, URL https://CRAN.R-project.org/package=LMest.

Baum LE, Petrie T (1966). “Statistical Inference for Probabilistic Functions of Finite State
Markov Chains.” The Annals of Mathematical Statistics, 67(6), 1554–1563. doi:10.1214/

aoms/1177699147.

Blanchard P, Bühlmann F, Gauthier JA (eds.) (2014). Advances in Sequence Analysis:
Theory, Method, Applications. Springer New York Heidelberg Dordrecht London. doi:

10.1007/978-3-319-04969-4.

Collins LM, Wugalter SE (1992). “Latent Class Models for Stage-Sequential Dynamic
Latent Variables.” Multivariate Behavioral Research, 27(1), 131–157. doi:10.1207/

s15327906mbr2701_8.

https://doi.org/10.1177/0049124109357532
https://CRAN.R-project.org/package=LMest
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1007/978-3-319-04969-4
https://doi.org/10.1007/978-3-319-04969-4
https://doi.org/10.1207/s15327906mbr2701_8
https://doi.org/10.1207/s15327906mbr2701_8

Satu Helske, Jouni Helske 33

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal Complex Systems, 1695. URL https://igraph.org.

Dagum L, Enon R (1998). “OpenMP: An Industry Standard API for Shared-Memory Pro-
gramming.” Computational Science & Engineering, IEEE, 5(1), 46–55.

Durbin R, Eddy S, Krogh A, Mitchison G (1998). Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York. ISBN 978-1-4614-6867-7.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. doi:

10.1016/j.csda.2013.02.005.

Elzinga CH, Studer M (2014). “Spell Sequences, State Proximities, and Distance Metrics.”
Sociological Methods & Research, pp. 3–47. doi:10.1177/0049124114540707.

Gabadinho A, Ritschard G, Müller NS, Studer M (2011). “Analyzing and Visualizing State
Sequences in R with TraMineR.” Journal of Statistical Software, 40(4), 1–37. doi:10.

18637/jss.v040.i04.

Gauthier JA, Widmer ED, Bucher P, Notredame C (2009). “How Much Does It Cost? Op-
timization of Costs in Sequence Analysis of Social Science Data.” Sociological Methods &
Research, 38(1), 197–231. doi:10.1177/0049124109342065.

Gauthier JA, Widmer ED, Bucher P, Notredame C (2010). “Multichannel Sequence Analysis
Applied to Social Science Data.” Sociological Methodology, 40(1), 1–38. doi:10.1111/j.

1467-9531.2010.01227.x.

Halpin B (2010). “Optimal Matching Analysis and Life-Course Data: The Impor-
tance of Duration.” Sociological Methods & Research, 38(3), 365–388. doi:10.1177/

0049124110363590.

Helske J (2017a). The main algorithms used in the seqHMM package. URL https://cran.

r-project.org/web/packages/seqHMM/vignettes/seqHMM_algorithms.pdf.

Helske S (2017b). Examples and tips for estimating Markovian models with
seqHMM. URL https://cran.r-project.org/web/packages/seqHMM/vignettes/

seqHMM_estimation.pdf.

Helske S (2017c). Visualization tools in the seqHMM package. URL https://cran.

r-project.org/web/packages/seqHMM/vignettes/seqHMM_visualization.pdf.

Helske S, Helske J (2019). “Mixture Hidden Markov Models for Sequence Data: The seqHMM
Package in R.” Journal of Statistical Software, 88(3), 1–32. doi:10.18637/jss.v088.i03.

https://igraph.org
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1177/0049124114540707
https://doi.org/10.18637/jss.v040.i04
https://doi.org/10.18637/jss.v040.i04
https://doi.org/10.1177/0049124109342065
https://doi.org/10.1111/j.1467-9531.2010.01227.x
https://doi.org/10.1111/j.1467-9531.2010.01227.x
https://doi.org/10.1177/0049124110363590
https://doi.org/10.1177/0049124110363590
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_algorithms.pdf
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_algorithms.pdf
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_estimation.pdf
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_estimation.pdf
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_visualization.pdf
https://cran.r-project.org/web/packages/seqHMM/vignettes/seqHMM_visualization.pdf
https://doi.org/10.18637/jss.v088.i03

34 seqHMM: Mixture Hidden Markov Models for Sequence Data

Helske S, Helske J, Eerola M (2018). “Combining Sequence Analysis and Hidden Markov Mod-
els in the Analysis of Complex Life Sequence Data.” In Life Course Research and Social Poli-
cies, pp. 185–200. Springer International Publishing. doi:10.1007/978-3-319-95420-2_

11. URL https://doi.org/10.1007%2F978-3-319-95420-2_11.

Himmelmann L (2010). HMM – Hidden Markov Models. R Package Version 1.0, URL https:

//CRAN.R-project.org/package=HMM.

Hollister M (2009). “Is Optimal Matching Suboptimal?” Sociological Methods & Research,
38(2), 235–264. doi:10.1177/0049124109346164.

Jackson CH (2011). “Multi-State Models for Panel Data: The msm Package for R.” Journal
of Statistical Software, 38(8), 1–29. doi:10.18637/jss.v038.i08.

Johnson SG (2014). The NLopt Nonlinear Optimization Package. URL http://ab-initio.

mit.edu/nlopt.

Kucherenko S, Sytsko Y (2005). “Application of Deterministic Low-Discrepancy Sequences
in Global Optimization.” Computational Optimization and Applications, 30(3), 297–318.
doi:10.1007/s10589-005-4615-1.

Lesnard L (2010). “Setting Cost in Optimal Matching to Uncover Contemporaneous Socio-
Temporal Patterns.” Sociological Methods & Research, 38(3), 389–419. doi:10.1177/

0049124110362526.

Liu DC, Nocedal J (1989). “On the Limited Memory BFGS Method for Large Scale Opti-
mization.” Mathematical Programming, 45(1), 503–528. doi:10.1007/BF01589116.

Lopez A (2008). Markov Models for Longitudinal Course of Youth Bipolar Disor-
der. ProQuest, Ann Arbor, MI. URL https://d-scholarship.pitt.edu/6524/1/

LopezAdrianaApril23.pdf.

MacDonald IL, Zucchini W (1997). Hidden Markov and Other Models for Discrete-Valued
Time Series. CRC Press, Boca Raton, FL.

McVicar D, Anyadike-Danes M (2002). “Predicting Successful and Unsuccessful Transitions
from School to Work by Using Sequence Methods.” Journal of the Royal Statistical Society:
Series A (Statistics in Society), 165(2), 317–334. doi:10.1111/1467-985X.00641.

Müller NS, Studer M, Ritschard G (2007). “Classification de Parcours de Vie à l’Aide de
l’Optimal Matching.” XIVe Rencontre de la Société francophone de classification (SFC
2007), pp. 157–160.

Nocedal J (1980). “Updating Quasi-Newton Matrices with Limited Storage.” Mathematics of
Computation, 35(151), 773–782. doi:10.1090/S0025-5718-1980-0572855-7.

O’Connell J, Højsgaard S (2011). “Hidden Semi Markov Models for Multiple Observation
Sequences: The mhsmm Package for R.” Journal of Statistical Software, 39(4), 1–22. doi:

10.18637/jss.v039.i04.

Pedersen TL (2024). patchwork: The Composer of Plots. R package version 1.2.0, URL
https://CRAN.R-project.org/package=patchwork.

https://doi.org/10.1007/978-3-319-95420-2_11
https://doi.org/10.1007/978-3-319-95420-2_11
https://doi.org/10.1007%2F978-3-319-95420-2_11
https://CRAN.R-project.org/package=HMM
https://CRAN.R-project.org/package=HMM
https://doi.org/10.1177/0049124109346164
https://doi.org/10.18637/jss.v038.i08
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
https://doi.org/10.1007/s10589-005-4615-1
https://doi.org/10.1177/0049124110362526
https://doi.org/10.1177/0049124110362526
https://doi.org/10.1007/BF01589116
https://d-scholarship.pitt.edu/6524/1/LopezAdrianaApril23.pdf
https://d-scholarship.pitt.edu/6524/1/LopezAdrianaApril23.pdf
https://doi.org/10.1111/1467-985X.00641
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.18637/jss.v039.i04
https://CRAN.R-project.org/package=patchwork

Satu Helske, Jouni Helske 35

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rabiner L (1989). “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition.” Proceedings of the IEEE, 77(2), 257–286. doi:10.1109/5.18626.

Rinnooy Kan A, Timmer G (1987a). “Stochastic Global Optimization Methods Part I: Clus-
tering Methods.” Mathematical Programming, 39(1), 27–56. doi:10.1007/BF02592070.

Rinnooy Kan A, Timmer G (1987b). “Stochastic Global Optimization Methods Part II: Multi-
Level Methods.” Mathematical Programming, 39(1), 57–78. doi:10.1007/BF02592071.

Turner R, Liu L (2014). hmm.discnp: Hidden Markov Models with Discrete Non-Parametric
Observation Distributions. R Package Version 0.2-3, URL https://CRAN.R-project.org/

package=hmm.discnp.

van de Pol F, Langeheine R (1990). “Mixed Markov Latent Class Models.” Sociological
Methodology, 20, 213–247. doi:10.2307/271087.

Vermunt JK, Tran B, Magidson J (2008). “Latent Class Models in Longitudinal Research.”
Handbook of Longitudinal Research: Design, Measurement, and Analysis, pp. 373–385.
Elsevier, Burlington, MA.

Visser I, Speekenbrink M (2010). “depmixS4: An R-package for Hidden Markov Models.”
Journal of Statistical Software, 36(7), 1–21. doi:10.18637/jss.v036.i07.

Ypma J, Borchers HW, Eddelbuettel D (2014). nloptr: R Interface to NLopt. R Package
Version 1.0.4, URL https://CRAN.R-project.org/package=nloptr.

Affiliation:

Satu Helske
INVEST Research Flagship Centre
University of Turku
Finland
E-mail: satu.helske@utu.fi

Jouni Helske
INVEST Research Flagship Centre
University of Turku
Finland
E-mail: Jouni.Helske@iki.fi

https://www.R-project.org/
https://doi.org/10.1109/5.18626
https://doi.org/10.1007/BF02592070
https://doi.org/10.1007/BF02592071
https://CRAN.R-project.org/package=hmm.discnp
https://CRAN.R-project.org/package=hmm.discnp
https://doi.org/10.2307/271087
https://doi.org/10.18637/jss.v036.i07
https://CRAN.R-project.org/package=nloptr
mailto:satu.helske@utu.fi
mailto:Jouni.Helske@iki.fi

	Introduction
	Methods
	Sequences and sequence analysis
	Hidden Markov models
	HMM for multiple sequences
	HMM for multichannel sequences
	Missing data
	Log-likelihood and parameter estimation
	Inference on hidden states
	Model comparison

	Clustering by mixture hidden Markov models
	Mixture hidden Markov model
	Covariates and cluster probabilities

	Important special cases
	Markov model
	Mixture Markov model
	Latent class model

	Package features
	Building and fitting models
	State and model inference

	Visualizing sequence data
	Visualizing hidden Markov models

	Examples with life course data
	Sequence data
	Figure 2: Plotting state distributions
	Figure 1: Plotting sequences

	Hidden Markov models
	Clustering and mixture hidden Markov models
	Visualizing hidden Markov models
	Figure 4
	Figure 5

	Visualizing mixture hidden Markov models

	Conclusion
	Notations

