Creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.
| Version: | 0.1.2 | 
| Depends: | R (≥ 3.4.0) | 
| Imports: | dplyr (≥ 0.7.6), rlang (≥ 0.2.1), Rcpp (≥ 0.12.17), stats (≥ 3.4) | 
| LinkingTo: | Rcpp (≥ 0.12.17) | 
| Suggests: | testthat | 
| Published: | 2022-05-26 | 
| DOI: | 10.32614/CRAN.package.sboost | 
| Author: | Jadon Wagstaff [aut, cre] | 
| Maintainer: | Jadon Wagstaff <jadonw at gmail.com> | 
| BugReports: | https://github.com/jadonwagstaff/sboost/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/jadonwagstaff/sboost | 
| NeedsCompilation: | yes | 
| Materials: | README, NEWS | 
| CRAN checks: | sboost results | 
| Reference manual: | sboost.html , sboost.pdf | 
| Package source: | sboost_0.1.2.tar.gz | 
| Windows binaries: | r-devel: sboost_0.1.2.zip, r-release: sboost_0.1.2.zip, r-oldrel: sboost_0.1.2.zip | 
| macOS binaries: | r-release (arm64): sboost_0.1.2.tgz, r-oldrel (arm64): sboost_0.1.2.tgz, r-release (x86_64): sboost_0.1.2.tgz, r-oldrel (x86_64): sboost_0.1.2.tgz | 
| Old sources: | sboost archive | 
Please use the canonical form https://CRAN.R-project.org/package=sboost to link to this page.