saeczi: Small Area Estimation for Continuous Zero Inflated Data
Provides functionality to fit a zero-inflated estimator for small area estimation.
    This estimator is a combines a linear mixed effects regression model and a logistic
    mixed effects regression model via a two-stage modeling approach. The estimator's mean
    squared error is estimated via a parametric bootstrap method. Chandra and others
    (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean
    squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>) describe the 
    applicability of this estimator to estimation of forest attributes and further assess the
    estimator's properties. 
| Version: | 0.2.0 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | dplyr, lme4, purrr, progressr, furrr, future, rlang, Rcpp | 
| LinkingTo: | Rcpp, RcppEigen | 
| Suggests: | testthat (≥ 3.0.0) | 
| Published: | 2024-06-06 | 
| DOI: | 10.32614/CRAN.package.saeczi | 
| Author: | Josh Yamamoto [aut, cre],
  Dinan Elsyad [aut],
  Grayson White [aut],
  Julian Schmitt [aut],
  Niels Korsgaard [aut],
  Kelly McConville [aut],
  Kate Hu [aut] | 
| Maintainer: | Josh Yamamoto  <joshuayamamoto5 at gmail.com> | 
| License: | MIT + file LICENSE | 
| URL: | https://harvard-ufds.github.io/saeczi/ | 
| NeedsCompilation: | yes | 
| Materials: | README, NEWS | 
| CRAN checks: | saeczi results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=saeczi
to link to this page.