s3 is an R package designed to download files from AWS S3. Files are downloaded to
the R user data directory (i.e.,
tools::R_user_dir("s3", "data")) so they can be cached
across all of an R user’s sessions and projects. Specify an alternative
download location by setting the R_USER_DATA_DIR
environment variable (see ?tools::R_user_dir).
A file is specified from AWS S3 using its URI and downloaded using
the s3_get() and s3_get_files() functions;
e.g., s3_get("s3://modis-aod-nasa/2020.05.22.tif"). The get
functions always (invisibly) return paths to downloaded files, making it
straightforward to read downloaded files into R. Files already present
in the download location will be used before trying to download a file
again. This means more concise code for downloading files, if they are
not already downloaded, and reading files within R.
Install the CRAN latest release inside R with:
install.packages("s3")Install the development version from GitHub:
# install.packages("remotes")
remotes::install_github("geomarker-io/s3")library(s3)Download a single file specified by its S3 URI with:
s3_get("s3://geomarker/testing_downloads/mtcars.rds")If a file has already been downloaded, then it will not be re-downloaded:
s3_get("s3://geomarker/testing_downloads/mtcars.rds")
#> ℹ 's3://geomarker/testing_downloads/mtcars.rds' already exists at '/var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T/RtmpTSph6V/R/s3/geomarker/testing_downloads/mtcars.rds'Download multiple files with:
s3_get_files(c(
          "s3://geomarker/testing_downloads/mtcars.rds",
          "s3://geomarker/testing_downloads/mtcars_again.rds"
        ),
    confirm = FALSE)
#> ℹ 1 file already exists
#> ℹ 1 file totaling 1.23 kB will be downloaded to /var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T//RtmpTSph6V/R/s3
#> → Downloading 1 file.
#> → Got 0 files, downloading 1
#> ✔ Downloaded 1 file in 150ms.Downloading private files requires the name of the S3 bucket’s region (this is determined automatically when the file is public):
s3_get("s3://geomarker/testing_downloads/mtcars_private.rds", region = "us-east-2")You must have the appropriate AWS S3 credentials set to gain access
to non-public files. As with other AWS command line tools and R
packages, you can use the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY to
gain access to such files.
It is highly recommended to setup your environment variables outside
of your R script to avoid including sensitive information within your R
script. This can be done by exporting environment variables before
starting R (see AWS
CLI documentation on this) or by defining them in a
.Renviron file (see ?.Renviron within
R).
You can use the internal helper function to check if AWS key environment variables are set.
s3:::check_for_aws_env_vars()
#> ✖ AWS_SECRET_ACCESS_KEY and/or AWS_ACCESS_KEY_ID are unset
#> ℹ Non-public S3 files will not be availableFiles are saved within a directory structure matching that of the S3
URI. s3_get and s3_get_files both invisibly
return the file path(s) of the downloaded files so that they can be
further used to access the downloaded files. This makes it possible for
different users with different operating systems and/or different
project file structures and locations to utilize a downloaded S3 file
without changing their source code:
s3_get("s3://geomarker/testing_downloads/mtcars.rds") |>
    readRDS()
#> ℹ 's3://geomarker/testing_downloads/mtcars.rds' already exists at '/var/folders/pg/q33bfwtj57d_v3vqpl7g26400000gn/T/RtmpTSph6V/R/s3/geomarker/testing_downloads/mtcars.rds'
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2