--- title: "Bootstrap Confidence Intervals for Relative Weights Analysis" author: "Martin Chan" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Bootstrap Confidence Intervals for Relative Weights Analysis} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%", error = FALSE, warning = FALSE, message = FALSE ) ``` ```{r setup} library(rwa) library(dplyr) library(ggplot2) ``` ## Introduction Bootstrap confidence intervals represent a major advancement in Relative Weights Analysis, addressing a long-standing methodological limitation. This vignette provides comprehensive guidance on using bootstrap methods with the `rwa` package for statistical significance testing of predictor importance. ## Why Bootstrap for RWA? ### The Statistical Challenge As noted by Tonidandel et al. (2009): > "The difficulty in determining the statistical significance of relative weights stems from the fact that the exact (or small sample) sampling distribution of relative weights is unknown." Traditional RWA provides point estimates of relative importance but lacks a framework for statistical inference. Bootstrap methods solve this by empirically estimating the sampling distribution of relative weights. ### Bootstrap Solution Bootstrap resampling: 1. **Creates multiple samples** from your original data 2. **Calculates RWA** for each bootstrap sample 3. **Estimates confidence intervals** from the distribution of bootstrap results 4. **Enables significance testing** by examining whether CIs include zero ## Basic Bootstrap Analysis ### Simple Bootstrap Example ```{r bootstrap-basic} # Bootstrap analysis with 1000 samples result_bootstrap <- mtcars %>% rwa(outcome = "mpg", predictors = c("cyl", "disp", "hp", "gear"), bootstrap = TRUE, n_bootstrap = 1000, conf_level = 0.95) # View results with confidence intervals result_bootstrap$result ``` ### Understanding Bootstrap Output The bootstrap analysis enhances the standard RWA output with: - **Raw.RelWeight.CI.Lower/Upper**: 95% confidence intervals for raw weights - **Raw.Significant**: Automatic significance flagging (CI doesn't include zero) ```{r bootstrap-interpretation} # Bootstrap-specific information cat("Bootstrap samples used:", result_bootstrap$bootstrap$n_bootstrap, "\n") # Detailed CI information print(result_bootstrap$bootstrap$ci_results$raw_weights) # Identify significant predictors significant_vars <- result_bootstrap$result %>% filter(Raw.Significant == TRUE) %>% pull(Variables) cat("Significant predictors:", paste(significant_vars, collapse = ", ")) ``` ## Advanced Bootstrap Features ### Comprehensive Bootstrap Analysis For detailed analysis including focal variable comparisons: ```{r bootstrap-comprehensive} # Comprehensive bootstrap with focal variable comparison result_comprehensive <- mtcars %>% rwa(outcome = "mpg", predictors = c("cyl", "disp", "hp", "gear", "wt"), bootstrap = TRUE, comprehensive = TRUE, focal = "wt", # Compare other variables to weight n_bootstrap = 500) # Fewer samples for speed # Access all bootstrap results names(result_comprehensive$bootstrap$ci_results) ``` ### Bootstrap Parameters Key parameters for bootstrap analysis: - **`n_bootstrap`**: Number of bootstrap samples (default: 1000) - **`conf_level`**: Confidence level (default: 0.95) - **`focal`**: Focal variable for comparative analysis - **`comprehensive`**: Enable additional bootstrap tests ```{r bootstrap-parameters} # Example with different parameters custom_bootstrap <- mtcars %>% rwa(outcome = "mpg", predictors = c("cyl", "disp"), bootstrap = TRUE, n_bootstrap = 2000, # More samples for precision conf_level = 0.99) # 99% confidence intervals custom_bootstrap$result ``` ## Rescaled Weight Confidence Intervals ### Important Considerations **Rescaled weight confidence intervals should be interpreted with caution** due to compositional data constraints. They are not recommended for formal statistical inference. ```{r rescaled-ci-warning} # Rescaled CIs (use with caution) result_rescaled_ci <- mtcars %>% rwa(outcome = "mpg", predictors = c("cyl", "disp", "hp"), bootstrap = TRUE, include_rescaled_ci = TRUE, n_bootstrap = 500) # Note the warning message about interpretation result_rescaled_ci$result ``` ### Why Rescaled CIs Are Problematic Rescaled weights are **compositional data** (they sum to 100%), which creates dependencies between variables. This violates assumptions needed for independent confidence intervals. **Recommendation**: Focus on **raw weight confidence intervals** for statistical inference. ## Real-World Applications ### Diamond Price Analysis ```{r diamonds-example} # Analyze diamond price drivers diamonds_subset <- diamonds %>% select(price, carat, depth, table, x, y, z) %>% sample_n(1000) # Sample for faster computation diamond_rwa <- diamonds_subset %>% rwa(outcome = "price", predictors = c("carat", "depth", "table", "x", "y", "z"), bootstrap = TRUE, applysigns = TRUE, n_bootstrap = 500) print(diamond_rwa$result) ``` ### Interpreting Results ```{r diamonds-interpretation} # Focus on significant predictors (results are already sorted by importance) significant_drivers <- diamond_rwa$result %>% filter(Raw.Significant == TRUE) %>% select(Variables, Rescaled.RelWeight, Sign.Rescaled.RelWeight) cat("Significant diamond price drivers (sorted by importance):\n") print(significant_drivers) cat("\nModel R-squared:", round(diamond_rwa$rsquare, 3)) ``` ## Best Practices ### 1. Sample Size Guidelines ```{r sample-size} # Check your sample size n_obs <- mtcars %>% select(mpg, cyl, disp, hp, gear) %>% na.omit() %>% nrow() cat("Sample size:", n_obs) cat("\nRecommended bootstrap samples:", min(2000, n_obs * 10)) # Rule of thumb: At least 1000 bootstrap samples, more for smaller datasets ``` ### 2. Confidence Interval Interpretation ```{r ci-interpretation} # Examine CI characteristics ci_data <- result_bootstrap$bootstrap$ci_results$raw_weights print(head(ci_data)) # Assess precision ci_analysis <- ci_data %>% mutate( significant = ci_lower > 0 | ci_upper < 0, ci_width = ci_upper - ci_lower, precision = case_when( ci_width < 0.05 ~ "High precision", ci_width < 0.15 ~ "Medium precision", TRUE ~ "Low precision" ) ) print(ci_analysis) ``` ### 3. Bootstrap Method Selection The package automatically selects the best available bootstrap CI method: 1. **BCA (Bias-Corrected and Accelerated)** - Preferred when possible 2. **Percentile** - Fallback if BCA fails 3. **Basic bootstrap** - Final fallback option ```{r bootstrap-methods} # Check which methods were used ci_methods <- result_bootstrap$bootstrap$ci_results$raw_weights %>% count(ci_method) print(ci_methods) ``` ## Performance Considerations ### Bootstrap Speed Tips ```{r performance-tips} # For large datasets or many predictors, consider: # 1. Reduce bootstrap samples for initial exploration quick_result <- mtcars %>% rwa(outcome = "mpg", predictors = c("cyl", "disp"), bootstrap = TRUE, n_bootstrap = 500) # Faster # 2. Use comprehensive analysis only when needed # comprehensive = TRUE adds computational overhead # 3. Consider parallel processing for very large analyses # (not currently implemented but could be future enhancement) ``` ### Memory Usage ```{r memory-usage} # Bootstrap objects can be large - access specific components str(result_bootstrap$bootstrap, max.level = 1) # For memory efficiency, extract only needed results ci_summary <- result_bootstrap$bootstrap$ci_results$raw_weights %>% select(variable, ci_lower, ci_upper, ci_method) print(ci_summary) ``` ## Troubleshooting ### Common Bootstrap Issues ```{r troubleshooting} # 1. Check for perfect multicollinearity cor_check <- mtcars %>% select(cyl, disp, hp, gear) %>% cor() # Look for correlations = 1.0 (excluding diagonal) perfect_cor <- which(abs(cor_check) == 1 & cor_check != diag(diag(cor_check)), arr.ind = TRUE) if(length(perfect_cor) > 0) { cat("Perfect multicollinearity detected - remove redundant variables") } else { cat("No perfect multicollinearity detected") } # 2. Ensure adequate sample size min_sample_size <- 5 * length(c("cyl", "disp", "hp", "gear")) # 5 obs per predictor actual_sample_size <- nrow(na.omit(mtcars[c("mpg", "cyl", "disp", "hp", "gear")])) cat("\nMinimum recommended sample size:", min_sample_size) cat("\nActual sample size:", actual_sample_size) ``` ## Reporting Bootstrap Results ### Standard Reporting Format When reporting bootstrap RWA results, include: 1. **Sample size** and missing data handling 2. **Bootstrap parameters** (number of samples, confidence level) 3. **CI method** used (BCA, percentile, basic) 4. **Significant predictors** with confidence intervals 5. **Model fit** (R-squared) ### Example Report ```{r reporting-example} # Generate a summary report report_data <- result_bootstrap$result %>% filter(Raw.Significant == TRUE) %>% arrange(desc(Rescaled.RelWeight)) %>% select(Variables, Rescaled.RelWeight, Raw.RelWeight.CI.Lower, Raw.RelWeight.CI.Upper) cat("Relative Weights Analysis Results\n") cat("=================================\n") cat("Sample size:", result_bootstrap$n, "\n") cat("Bootstrap samples:", result_bootstrap$bootstrap$n_bootstrap, "\n") cat("Model R-squared:", round(result_bootstrap$rsquare, 3), "\n\n") cat("Significant Predictors:\n") print(report_data) ``` ## References **Bootstrap Methods in RWA:** - Tonidandel, S., LeBreton, J. M., & Johnson, J. W. (2009). Determining the statistical significance of relative weights. *Psychological Methods*, 14(4), 387-399. **General Bootstrap Theory:** - Efron, B., & Tibshirani, R. J. (1993). *An introduction to the bootstrap*. Chapman & Hall/CRC. **Compositional Data Analysis:** - Aitchison, J. (1986). *The statistical analysis of compositional data*. Chapman & Hall. ## Conclusion Bootstrap confidence intervals provide a robust solution for statistical inference in Relative Weights Analysis. By following the guidelines in this vignette, researchers can: - Determine statistical significance of predictor importance - Report confidence intervals with appropriate interpretations - Avoid common pitfalls in bootstrap analysis - Apply best practices for reliable results The bootstrap functionality in the `rwa` package represents a significant advancement in making RWA a complete tool for both exploratory analysis and confirmatory research.