
Package ‘rust’
August 17, 2024

Type Package

Title Ratio-of-Uniforms Simulation with Transformation

Version 1.4.3

Date 2024-08-14

Description Uses the generalized ratio-of-uniforms (RU) method to simulate
from univariate and (low-dimensional) multivariate continuous distributions.
The user specifies the log-density, up to an additive constant. The RU
algorithm is applied after relocation of mode of the density to zero, and
the user can choose a tuning parameter r. For details see Wakefield, Gelfand
and Smith (1991) <DOI:10.1007/BF01889987>, Efficient generation of random
variates via the ratio-of-uniforms method, Statistics and Computing (1991)
1, 129-133. A Box-Cox variable transformation can be used to make the input
density suitable for the RU method and to improve efficiency. In the
multivariate case rotation of axes can also be used to improve efficiency.
From version 1.2.0 the 'Rcpp' package
<https://cran.r-project.org/package=Rcpp> can be used to improve efficiency.

Imports graphics, Rcpp (>= 0.12.10), stats

License GPL (>= 2)

Encoding UTF-8

Depends R (>= 3.3.0)

RoxygenNote 7.2.3

Suggests bang, knitr, microbenchmark, revdbayes, rmarkdown, testthat

VignetteBuilder knitr

URL https://paulnorthrop.github.io/rust/,

https://github.com/paulnorthrop/rust

BugReports https://github.com/paulnorthrop/rust/issues

LinkingTo Rcpp (>= 0.12.10), RcppArmadillo

Config/testthat/edition 3

NeedsCompilation yes

Author Paul J. Northrop [aut, cre, cph]

1

https://doi.org/10.1007/BF01889987
https://cran.r-project.org/package=Rcpp
https://paulnorthrop.github.io/rust/
https://github.com/paulnorthrop/rust
https://github.com/paulnorthrop/rust/issues

2 rust-package

Maintainer Paul J. Northrop <p.northrop@ucl.ac.uk>

Repository CRAN

Date/Publication 2024-08-17 06:30:02 UTC

Contents
rust-package . 2
create_log_j_xptr . 3
create_phi_to_theta_xptr . 4
create_xptr . 4
find_lambda . 5
find_lambda_one_d . 9
find_lambda_one_d_rcpp . 11
find_lambda_rcpp . 15
gpd_init . 19
gpd_logpost . 21
gpd_sum_stats . 22
plot.ru . 23
print.ru . 24
rgpd . 25
ru . 26
ru_rcpp . 34
summary.ru . 42

Index 44

rust-package rust: Ratio-of-Uniforms Simulation with Transformation

Description

Uses the multivariate generalized ratio-of-uniforms method to simulate from a distribution with log-
density logf (up to an additive constant). logf must be bounded, perhaps after a transformation of
variable.

Details

The main functions in the rust package are ru and ru_rcpp, which implement the generalized ratio-
of-uniforms algorithm. The latter uses the Rcpp package to improve efficiency. Also provided are
two functions, find_lambda and find_lambda_one_d, that may be used to set a suitable value for
the parameter lambda if Box-Cox transformation is used prior to simulation. If ru_rcpp is used
the equivalent functions are find_lambda_rcpp and find_lambda_one_d_rcpp Basic plot and
summary methods are also provided.

See the following package vignettes for information:

• Introducing rust or vignette("rust-a-vignette", package = "rust").

https://paulnorthrop.github.io/rust/articles/rust-a-vignette.html

create_log_j_xptr 3

• When can rust be used? or vignette("rust-b-when-to-use-vignette", package = "rust").

• Rusting faster: Simulation using Rcpp or vignette("rust-c-using-rcpp-vignette", package
= "rust").

Author(s)

Maintainer: Paul J. Northrop <p.northrop@ucl.ac.uk> [copyright holder]

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. Efficient generation of random variates via the
ratio-of-uniforms method. Statistics and Computing (1991) 1, 129-133. doi:10.1007/BF01889987.

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.i08.

Eddelbuettel, D. (2013) Seamless R and C++ Integration with Rcpp. Springer, New York. ISBN
978-1-4614-6867-7.

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.

summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algo-
rithm.

plot.ru for a diagnostic plot.

find_lambda_one_d and find_lambda_one_d_rcpp to produce (somewhat) automatically a list
for the argument lambda of ru for the d = 1 case.

find_lambda and find_lambda_rcpp to produce (somewhat) automatically a list for the argument
lambda of ru for any value of d.

create_log_j_xptr Create external pointer to a C++ function for log_j

Description

Create external pointer to a C++ function for log_j

Usage

create_log_j_xptr(fstr)

Arguments

fstr A string indicating the C++ function required.

https://paulnorthrop.github.io/rust/articles/rust-b-when-to-use-vignette.html
https://paulnorthrop.github.io/rust/articles/rust-c-using-rcpp-vignette.html
https://doi.org/10.1007/BF01889987
https://doi.org/10.18637/jss.v040.i08

4 create_xptr

Details

See the Rusting faster: Simulation using Rcpp vignette.

Examples

See the examples in ru_rcpp.

create_phi_to_theta_xptr

Create external pointer to a C++ function for phi_to_theta

Description

Create external pointer to a C++ function for phi_to_theta

Usage

create_phi_to_theta_xptr(fstr)

Arguments

fstr A string indicating the C++ function required.

Details

See the Rusting faster: Simulation using Rcpp vignette.

Examples

See the examples in ru_rcpp.

create_xptr Create external pointer to a C++ function for logf

Description

Create external pointer to a C++ function for logf

Usage

create_xptr(fstr)

Arguments

fstr A string indicating the C++ function required.

https://cran.r-project.org/package=rust
https://cran.r-project.org/package=rust

find_lambda 5

Details

See the Rusting faster: Simulation using Rcpp vignette.

Examples

See the examples in ru_rcpp.

find_lambda Selecting the Box-Cox parameter for general d

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive) random
variable with log-density log f has a density closer to that of a Gaussian random variable. In the
following we use theta (θ) to denote the argument of log f on the original scale and phi (ϕ) on the
Box-Cox transformed scale.

Usage

find_lambda(
logf,
...,
d = 1,
n_grid = NULL,
ep_bc = 1e-04,
min_phi = rep(ep_bc, d),
max_phi = rep(10, d),
which_lam = 1:d,
lambda_range = c(-3, 3),
init_lambda = NULL,
phi_to_theta = NULL,
log_j = NULL

)

Arguments

logf A function returning the log of the target density f .

... further arguments to be passed to logf and related functions.

d A numeric scalar. Dimension of f .

n_grid A numeric scalar. Number of ordinates for each variable in phi. If this is not
supplied a default value of ceiling(2501 ^ (1 / d)) is used.

ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to
avoid negative values of phi.

https://cran.r-project.org/package=rust

6 find_lambda

min_phi, max_phi
Numeric vectors. Smallest and largest values of phi at which to evaluate logf,
i.e. the range of values of phi over which to evaluate logf. Any components in
min_phi that are not positive are set to ep_bc.

which_lam A numeric vector. Contains the indices of the components of phi that ARE to
be Box-Cox transformed.

lambda_range A numeric vector of length 2. Range of lambda over which to optimise.

init_lambda A numeric vector of length 1 or d. Initial value of lambda used in the search
for the best lambda. If init_lambda is a scalar then rep(init_lambda, d) is
used.

phi_to_theta A function returning (inverse) of the transformation from theta to phi used to
ensure positivity of phi prior to Box-Cox transformation. The argument is phi
and the returned value is theta.

log_j A function returning the log of the Jacobian of the transformation from theta
to phi, i.e. based on derivatives of phi with respect to theta. Takes theta as
its argument.

Details

The general idea is to evaluate the density f on a d-dimensional grid, with n_grid ordinates for
each of the d variables. We treat each combination of the variables in the grid as a data point and
perform an estimation of the Box-Cox transformation parameter lambda, in which each data point is
weighted by the density at that point. The vectors min_phi and max_phi define the limits of the grid
and which_lam can be used to specify that only certain components of phi are to be transformed.

Value

A list containing the following components

lambda A numeric vector. The value of lambda.

gm A numeric vector. Box-Cox scaling parameter, estimated by the geometric
mean of the values of phi used in the optimisation to find the value of lambda,
weighted by the values of f evaluated at phi.

init_psi A numeric vector. An initial estimate of the mode of the Box-Cox transformed
density

sd_psi A numeric vector. Estimates of the marginal standard deviations of the Box-Cox
transformed variables.

phi_to_theta as detailed above (only if phi_to_theta is supplied)

log_j as detailed above (only if log_j is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate
Data, Biometrics, 27(4).

find_lambda 7

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.

find_lambda_one_d and find_lambda_one_d_rcpp to produce (somewhat) automatically a list
for the argument lambda of ru/ru_rcpp for the d = 1 case.

find_lambda_rcpp for a version of find_lambda that uses the Rcpp package to improve efficiency.

Examples

Log-normal density ===================
Note: the default value max_phi = 10 is OK here but this will not always
be the case
lambda <- find_lambda(logf = dlnorm, log = TRUE)
lambda
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, trans = "BC",

lambda = lambda)

Gamma density ===================
alpha <- 1
Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
[Of course, typically the quantile function won't be available. However,
In practice the value of lambda chosen is quite insensitive to the choice
of max_phi, provided that max_phi is not far too large or far too small.]

lambda <- find_lambda(logf = dgamma, shape = alpha, log = TRUE,
max_phi = max_phi)

lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

trans = "BC", lambda = lambda)

Generalized Pareto posterior distribution ===================

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate an initial estimate
init <- c(mean(gpd_data), 0)

n <- 1000
Sample on original scale, with no rotation ----------------
x1 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,

lower = c(0, -Inf), rotate = FALSE)
plot(x1, xlab = "sigma", ylab = "xi")
Parameter constraint line xi > -sigma/max(data)
[This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)

Sample on original scale, with rotation ----------------

8 find_lambda

x2 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,
lower = c(0, -Inf))

plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)

Sample on Box-Cox transformed scale ----------------

Find initial estimates for phi = (phi1, phi2),
where phi1 = sigma
and phi2 = xi + sigma / max(x),
and ranges of phi1 and phi2 over over which to evaluate
the posterior to find a suitable value of lambda.
temp <- do.call(gpd_init, ss)
min_phi <- pmax(0, temp$init_phi - 2 * temp$se_phi)
max_phi <- pmax(0, temp$init_phi + 2 * temp$se_phi)

Set phi_to_theta() that ensures positivity of phi
We use phi1 = sigma and phi2 = xi + sigma / max(data)
phi_to_theta <- function(phi) c(phi[1], phi[2] - phi[1] / ss$xm)
log_j <- function(x) 0

lambda <- find_lambda(logf = gpd_logpost, ss = ss, d = 2, min_phi = min_phi,
max_phi = max_phi, phi_to_theta = phi_to_theta, log_j = log_j)

lambda

Sample on Box-Cox transformed, without rotation
x3 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, trans = "BC",

lambda = lambda, rotate = FALSE)
plot(x3, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x3)

Sample on Box-Cox transformed, with rotation
x4 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, trans = "BC",

lambda = lambda)
plot(x4, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x4)

def_par <- graphics::par(no.readonly = TRUE)
par(mfrow = c(2,2), mar = c(4, 4, 1.5, 1))
plot(x1, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "mode relocation")
plot(x2, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "mode relocation and rotation")
plot(x3, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "Box-Cox and mode relocation")
plot(x4, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "Box-Cox, mode relocation and rotation")
graphics::par(def_par)

find_lambda_one_d 9

find_lambda_one_d Selecting the Box-Cox parameter in the 1D case

Description

Finds a value of the Box-Cox transformation parameter lambda (λ) for which the (positive uni-
variate) random variable with log-density log f has a density closer to that of a Gaussian random
variable. Works by estimating a set of quantiles of the distribution implied by log f and treating
those quantiles as data in a standard Box-Cox analysis. In the following we use theta (θ) to denote
the argument of log f on the original scale and phi (ϕ) on the Box-Cox transformed scale.

Usage

find_lambda_one_d(
logf,
...,
ep_bc = 1e-04,
min_phi = ep_bc,
max_phi = 10,
num = 1001,
xdiv = 100,
probs = seq(0.01, 0.99, by = 0.01),
lambda_range = c(-3, 3),
phi_to_theta = NULL,
log_j = NULL

)

Arguments

logf A function returning the log of the target density f .

... further arguments to be passed to logf and related functions.

ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to
avoid negative values of phi.

min_phi, max_phi
Numeric scalars. Smallest and largest values of phi at which to evaluate logf,
i.e., the range of values of phi over which to evaluate logf. Any components in
min_phi that are not positive are set to ep_bc.

num A numeric scalar. Number of values at which to evaluate logf.

xdiv A numeric scalar. Only values of phi at which the density f is greater than the
(maximum of f) / xdiv are used.

probs A numeric scalar. Probabilities at which to estimate the quantiles of that will be
used as data to find lambda.

lambda_range A numeric vector of length 2. Range of lambda over which to optimise.

10 find_lambda_one_d

phi_to_theta A function returning (inverse) of the transformation from theta to phi used to
ensure positivity of phi prior to Box-Cox transformation. The argument is phi
and the returned value is theta.

log_j A function returning the log of the Jacobian of the transformation from theta
to phi, i.e. based on derivatives of ϕ with respect to θ. Takes theta as its
argument. If this is not supplied then a constant Jacobian is used.

Details

The general idea is to estimate quantiles of f corresponding to a set of equally-spaced probabilities
in probs and to use these estimated quantiles as data in a standard estimation of the Box-Cox
transformation parameter lambda.

The density f is first evaluated at num points equally spaced over the interval (min_phi, max_phi).
The continuous density f is approximated by attaching trapezium-rule estimates of probabilities to
the midpoints of the intervals between the points. After standardizing to account for the fact that f
may not be normalized, (min_phi, max_phi) is reset so that values with small estimated probability
(determined by xdiv) are excluded and the procedure is repeated on this new range. Then the
required quantiles are estimated by inferring them from a weighted empirical distribution function
based on treating the midpoints as data and the estimated probabilities at the midpoints as weights.

Value

A list containing the following components

lambda A numeric scalar. The value of lambda.
gm A numeric scalar. Box-Cox scaling parameter, estimated by the geometric mean

of the quantiles used in the optimisation to find the value of lambda.
init_psi A numeric scalar. An initial estimate of the mode of the Box-Cox transformed

density
sd_psi A numeric scalar. Estimates of the marginal standard deviations of the Box-Cox

transformed variables.
phi_to_theta as detailed above (only if phi_to_theta is supplied)
log_j as detailed above (only if log_j is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate
Data, Biometrics, 27(4).

See Also

ru and ru_rcpp to perform ratio-of-uniforms sampling.

find_lambda and find_lambda_rcpp to produce (somewhat) automatically a list for the argument
lambda of ru/ru_rcpp for any value of d.

find_lambda_one_d_rcpp for a version of find_lambda_one_d that uses the Rcpp package to
improve efficiency.

find_lambda_one_d_rcpp 11

Examples

Log-normal density ===================

Note: the default value of max_phi = 10 is OK here but this will not
always be the case.

lambda <- find_lambda_one_d(logf = dlnorm, log = TRUE)
lambda
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, trans = "BC",

lambda = lambda)

Gamma density ===================

alpha <- 1
Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
[I appreciate that typically the quantile function won't be available.
In practice the value of lambda chosen is quite insensitive to the choice
of max_phi, provided that max_phi is not far too large or far too small.]

lambda <- find_lambda_one_d(logf = dgamma, shape = alpha, log = TRUE,
max_phi = max_phi)

lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

trans = "BC", lambda = lambda)

alpha <- 0.1
NB. for alpha < 1 the gamma(alpha, beta) density is not bounded
So the ratio-of-uniforms emthod can't be used but it may work after a
Box-Cox transformation.
find_lambda_one_d() works much better than find_lambda() here.

max_phi <- qgamma(0.999, shape = alpha)
lambda <- find_lambda_one_d(logf = dgamma, shape = alpha, log = TRUE,

max_phi = max_phi)
lambda
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

trans = "BC", lambda = lambda)

plot(x)
plot(x, ru_scale = TRUE)

find_lambda_one_d_rcpp

Selecting the Box-Cox parameter in the 1D case using Rcpp

12 find_lambda_one_d_rcpp

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive univariate)
random variable with log-density log f has a density closer to that of a Gaussian random vari-
able. Works by estimating a set of quantiles of the distribution implied by log f and treating those
quantiles as data in a standard Box-Cox analysis. In the following we use theta (θ) to denote the
argument of log f on the original scale and phi (ϕ) on the Box-Cox transformed scale.

Usage

find_lambda_one_d_rcpp(
logf,
...,
ep_bc = 1e-04,
min_phi = ep_bc,
max_phi = 10,
num = 1001L,
xdiv = 100,
probs = seq(0.01, 0.99, by = 0.01),
lambda_range = c(-3, 3),
phi_to_theta = NULL,
log_j = NULL,
user_args = list()

)

Arguments

logf A pointer to a compiled C++ function returning the log of the target density f .

... further arguments to be passed to logf and related functions.

ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to
avoid negative values of phi.

min_phi, max_phi
Numeric scalars. Smallest and largest values of phi at which to evaluate logf,
i.e., the range of values of phi over which to evaluate logf. Any components in
min_phi that are not positive are set to ep_bc.

num A numeric scalar. Number of values at which to evaluate logf.

xdiv A numeric scalar. Only values of phi at which the density f is greater than the
(maximum of f) / xdiv are used.

probs A numeric scalar. Probabilities at which to estimate the quantiles of that will be
used as data to find lambda.

lambda_range A numeric vector of length 2. Range of lambda over which to optimise.

phi_to_theta A pointer to a compiled C++ function returning (the inverse) of the transforma-
tion from theta to phi used to ensure positivity of phi prior to Box-Cox trans-
formation. The argument is phi and the returned value is theta. If phi_to_theta
is undefined at the input value then the function should return NA.

find_lambda_one_d_rcpp 13

log_j A pointer to a compiled C++ function returning the log of the Jacobian of the
transformation from theta to phi, i.e., based on derivatives of ϕ with respect to
θ. Takes theta as its argument. If this is not supplied then a constant Jacobian
is used.

user_args A list of numeric components providing arguments to the user-supplied func-
tions phi_to_theta and log_j.

Details

The general idea is to estimate quantiles of f corresponding to a set of equally-spaced probabilities
in probs and to use these estimated quantiles as data in a standard estimation of the Box-Cox
transformation parameter lambda.

The density f is first evaluated at num points equally spaced over the interval (min_phi, max_phi).
The continuous density f is approximated by attaching trapezium-rule estimates of probabilities to
the midpoints of the intervals between the points. After standardizing to account for the fact that f
may not be normalized, (min_phi, max_phi) is reset so that values with small estimated probability
(determined by xdiv) are excluded and the procedure is repeated on this new range. Then the
required quantiles are estimated by inferring them from a weighted empirical distribution function
based on treating the midpoints as data and the estimated probabilities at the midpoints as weights.

Value

A list containing the following components

lambda A numeric scalar. The value of lambda.

gm A numeric scalar. Box-Cox scaling parameter, estimated by the geometric mean
of the quantiles used in the optimisation to find the value of lambda.

init_psi A numeric scalar. An initial estimate of the mode of the Box-Cox transformed
density

sd_psi A numeric scalar. Estimates of the marginal standard deviations of the Box-Cox
transformed variables.

phi_to_theta as detailed above (only if phi_to_theta is supplied)

log_j as detailed above (only if log_j is supplied)

user_args as detailed above (only if user_args is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate
Data, Biometrics, 27(4).

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.i08

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp, Springer, New York. ISBN
978-1-4614-6867-7.

https://doi.org/10.18637/jss.v040.i08

14 find_lambda_one_d_rcpp

See Also

ru_rcpp to perform ratio-of-uniforms sampling.

find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for
any value of d.

Examples

Log-normal density ===================

Note: the default value of max_phi = 10 is OK here but this will not
always be the case.

ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
lambda <- find_lambda_one_d_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma)
lambda
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, log = TRUE, d = 1,

n = 1000, trans = "BC", lambda = lambda)

Gamma density ===================

alpha <- 1
Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
[I appreciate that typically the quantile function won't be available.
In practice the value of lambda chosen is quite insensitive to the choice
of max_phi, provided that max_phi is not far too large or far too small.]

ptr_gam <- create_xptr("logdgamma")
lambda <- find_lambda_one_d_rcpp(logf = ptr_gam, alpha = alpha,

max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1000, trans = "BC",

lambda = lambda)

alpha <- 0.1
NB. for alpha < 1 the gamma(alpha, beta) density is not bounded
So the ratio-of-uniforms emthod can't be used but it may work after a
Box-Cox transformation.
find_lambda_one_d() works much better than find_lambda() here.

max_phi <- qgamma(0.999, shape = alpha)
lambda <- find_lambda_one_d_rcpp(logf = ptr_gam, alpha = alpha,

max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1000, trans = "BC",

lambda = lambda)

plot(x)
plot(x, ru_scale = TRUE)

find_lambda_rcpp 15

find_lambda_rcpp Selecting the Box-Cox parameter for general d using Rcpp

Description

Finds a value of the Box-Cox transformation parameter lambda for which the (positive) random
variable with log-density log f has a density closer to that of a Gaussian random variable. In the
following we use theta (θ) to denote the argument of logf on the original scale and phi (ϕ) on the
Box-Cox transformed scale.

Usage

find_lambda_rcpp(
logf,
...,
d = 1,
n_grid = NULL,
ep_bc = 1e-04,
min_phi = rep(ep_bc, d),
max_phi = rep(10, d),
which_lam = 1:d,
lambda_range = c(-3, 3),
init_lambda = NULL,
phi_to_theta = NULL,
log_j = NULL,
user_args = list()

)

Arguments

logf A pointer to a compiled C++ function returning the log of the target density f .

... further arguments to be passed to logf and related functions.

d A numeric scalar. Dimension of f .

n_grid A numeric scalar. Number of ordinates for each variable in phi. If this is not
supplied a default value of ceiling(2501 ^ (1 / d)) is used.

ep_bc A (positive) numeric scalar. Smallest possible value of phi to consider. Used to
avoid negative values of phi.

min_phi, max_phi
Numeric vectors. Smallest and largest values of phi at which to evaluate logf,
i.e., the range of values of phi over which to evaluate logf. Any components in
min_phi that are not positive are set to ep_bc.

which_lam A numeric vector. Contains the indices of the components of phi that ARE to
be Box-Cox transformed.

lambda_range A numeric vector of length 2. Range of lambda over which to optimise.

16 find_lambda_rcpp

init_lambda A numeric vector of length 1 or d. Initial value of lambda used in the search
for the best lambda. If init_lambda is a scalar then rep(init_lambda, d) is
used.

phi_to_theta A pointer to a compiled C++ function returning (the inverse) of the transforma-
tion from theta to phi used to ensure positivity of phi prior to Box-Cox trans-
formation. The argument is phi and the returned value is theta. If phi_to_theta
is undefined at the input value then the function should return NA.

log_j A pointer to a compiled C++ function returning the log of the Jacobian of the
transformation from theta to phi, i.e., based on derivatives of phi with respect
to theta. Takes theta as its argument.

user_args A list of numeric components providing arguments to the user-supplied func-
tions phi_to_theta and log_j.

Details

The general idea is to evaluate the density f on a d-dimensional grid, with n_grid ordinates for
each of the d variables. We treat each combination of the variables in the grid as a data point and
perform an estimation of the Box-Cox transformation parameter lambda, in which each data point is
weighted by the density at that point. The vectors min_phi and max_phi define the limits of the grid
and which_lam can be used to specify that only certain components of phi are to be transformed.

Value

A list containing the following components

lambda A numeric vector. The value of lambda.
gm A numeric vector. Box-Cox scaling parameter, estimated by the geometric mean

of the values of phi used in the optimisation to find the value of lambda, weighted
by the values of f evaluated at phi.

init_psi A numeric vector. An initial estimate of the mode of the Box-Cox transformed
density

sd_psi A numeric vector. Estimates of the marginal standard deviations of the Box-Cox
transformed variables.

phi_to_theta as detailed above (only if phi_to_theta is supplied)
log_j as detailed above (only if log_j is supplied)
user_args as detailed above (only if user_args is supplied)

References

Box, G. and Cox, D. R. (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2), 211-252.

Andrews, D. F. and Gnanadesikan, R. and Warner, J. L. (1971) Transformations of Multivariate
Data, Biometrics, 27(4).

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.i08

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp, Springer, New York. ISBN
978-1-4614-6867-7.

https://doi.org/10.18637/jss.v040.i08

find_lambda_rcpp 17

See Also

ru_rcpp to perform ratio-of-uniforms sampling.

find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of
ru for the d = 1 case.

Examples

Log-normal density ===================
Note: the default value max_phi = 10 is OK here but this will not always
be the case
ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
lambda <- find_lambda_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma)
lambda
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = 1000,

trans = "BC", lambda = lambda)

Gamma density ===================
alpha <- 1
Choose a sensible value of max_phi
max_phi <- qgamma(0.999, shape = alpha)
[Of course, typically the quantile function won't be available. However,
In practice the value of lambda chosen is quite insensitive to the choice
of max_phi, provided that max_phi is not far too large or far too small.]

ptr_gam <- create_xptr("logdgamma")
lambda <- find_lambda_rcpp(logf = ptr_gam, alpha = alpha, max_phi = max_phi)
lambda
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1000, trans = "BC",

lambda = lambda)

Generalized Pareto posterior distribution ===================

n <- 1000
Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate an initial estimate
init <- c(mean(gpd_data), 0)

n <- 1000
Sample on original scale, with no rotation ----------------
ptr_gp <- create_xptr("loggp")
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,

lower = c(0, -Inf)), ss, rotate = FALSE)
x1 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x1, xlab = "sigma", ylab = "xi")
Parameter constraint line xi > -sigma/max(data)
[This may not appear if the sample is far from the constraint.]

18 find_lambda_rcpp

abline(a = 0, b = -1 / ss$xm)
summary(x1)

Sample on original scale, with rotation ----------------
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,

lower = c(0, -Inf)), ss)
x2 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)

Sample on Box-Cox transformed scale ----------------

Find initial estimates for phi = (phi1, phi2),
where phi1 = sigma
and phi2 = xi + sigma / max(x),
and ranges of phi1 and phi2 over over which to evaluate
the posterior to find a suitable value of lambda.
temp <- do.call(gpd_init, ss)
min_phi <- pmax(0, temp$init_phi - 2 * temp$se_phi)
max_phi <- pmax(0, temp$init_phi + 2 * temp$se_phi)

Set phi_to_theta() that ensures positivity of phi
We use phi1 = sigma and phi2 = xi + sigma / max(data)

Create an external pointer to this C++ function
ptr_phi_to_theta_gp <- create_phi_to_theta_xptr("gp")
Note: log_j is set to zero by default inside find_lambda_rcpp()
lambda <- find_lambda_rcpp(logf = ptr_gp, ss = ss, d = 2, min_phi = min_phi,

max_phi = max_phi, user_args = list(xm = ss$xm),
phi_to_theta = ptr_phi_to_theta_gp)

lambda

Sample on Box-Cox transformed, without rotation
x3 <- ru_rcpp(logf = ptr_gp, ss = ss, d = 2, n = n, trans = "BC",

lambda = lambda, rotate = FALSE)
plot(x3, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x3)

Sample on Box-Cox transformed, with rotation
x4 <- ru_rcpp(logf = ptr_gp, ss = ss, d = 2, n = n, trans = "BC",

lambda = lambda)
plot(x4, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x4)

def_par <- graphics::par(no.readonly = TRUE)
par(mfrow = c(2,2), mar = c(4, 4, 1.5, 1))
plot(x1, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "mode relocation")
plot(x2, xlab = "sigma", ylab = "xi", ru_scale = TRUE,

main = "mode relocation and rotation")

gpd_init 19

plot(x3, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
main = "Box-Cox and mode relocation")

plot(x4, xlab = "sigma", ylab = "xi", ru_scale = TRUE,
main = "Box-Cox, mode relocation and rotation")

graphics::par(def_par)

gpd_init Initial estimates for Generalized Pareto parameters

Description

Calculates initial estimates and estimated standard errors (SEs) for the generalized Pareto param-
eters σ and ξ based on an assumed random sample from this distribution. Also, calculates initial
estimates and estimated standard errors for

ϕ1 = σ and ϕ1 = ξ + σx(m), where x(m) is the sample maximum threshold exceedance.

Usage

gpd_init(gpd_data, m, xm, sum_gp = NULL, xi_eq_zero = FALSE, init_ests = NULL)

Arguments

gpd_data A numeric vector containing positive sample values.

m A numeric scalar. The sample size, i.e., the length of gpd_data.

xm A numeric scalar. The sample maximum.

sum_gp A numeric scalar. The sum of the sample values.

xi_eq_zero A logical scalar. If TRUE assume that the shape parameter ξ = 0.

init_ests A numeric vector. Initial estimate of θ = (σ, ξ). If supplied gpd_init() returns
the corresponding initial estimate of ϕ = (ϕ1, ϕ2).

Details

The main aim is to calculate an admissible estimate of θ, i.e., one at which the log-likelihood is
finite (necessary for the posterior log-density to be finite) at the estimate, and associated estimated
SEs. These are converted into estimates and SEs for ϕ. The latter can be used to set values of
min_phi and max_phi for input to find_lambda.

In the default setting (xi_eq_zero = FALSE and init_ests = NULL) the methods tried are Maximum
Likelihood Estimation (MLE) (Grimshaw, 1993), Probability-Weighted Moments (PWM) (Hosking
and Wallis, 1987) and Linear Combinations of Ratios of Spacings (LRS) (Reiss and Thomas, 2007,
page 134) in that order.

For ξ < −1 the likelihood is unbounded, MLE may fail when ξ is not greater than −0.5 and the
observed Fisher information for (σ, ξ) has finite variance only if ξ > −0.25. We use the ML
estimate provided that the estimate of ξ returned from gpd_mle is greater than −1. We only use the
SE if the MLE of ξ is greater than −0.25.

20 gpd_init

If either the MLE or the SE are not OK then we try PWM. We use the PWM estimate only if is
admissible, and the MLE was not OK. We use the PWM SE, but this will be c(NA, NA) if the PWM
estimate of ξ is > 1/2. If the estimate is still not OK then we try LRS. As a last resort, which will
tend to occur only when ξ is strongly negative, we set ξ = −1 and estimate sigma conditional on
this.

Value

If init_ests is not supplied by the user, a list is returned with components

init A numeric vector. Initial estimates of σ and ξ.

se A numeric vector. Estimated standard errors of σ and ξ.

init_phi A numeric vector. Initial estimates of
ϕ1 = σ and ϕ1 = ξ + σx(m) where x(m) is the maximum of gpd_data.

se_phi A numeric vector. Estimated standard errors of ϕ1 and ϕ2.

If init_ests is supplied then only the numeric vector init_phi is returned.

References

Grimshaw, S. D. (1993) Computing Maximum Likelihood Estimates for the Generalized Pareto
Distribution. Technometrics, 35(2), 185-191. and Computing (1991) 1, 129-133. doi:10.1007/
BF01889987.

Hosking, J. R. M. and Wallis, J. R. (1987) Parameter and Quantile Estimation for the Generalized
Pareto Distribution. Technometrics, 29(3), 339-349. doi:10.2307/1269343.

Reiss, R.-D., Thomas, M. (2007) Statistical Analysis of Extreme Values with Applications to Insur-
ance, Finance, Hydrology and Other Fields.Birkhauser. doi:10.1007/9783764373993.

See Also

gpd_sum_stats to calculate summary statistics for use in gpd_loglik.

rgpd for simulation from a generalized Pareto

find_lambda to produce (somewhat) automatically a list for the argument lambda of ru.

Examples

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate initial estimates
do.call(gpd_init, ss)

https://doi.org/10.1007/BF01889987
https://doi.org/10.1007/BF01889987
https://doi.org/10.2307/1269343
https://doi.org/10.1007/978-3-7643-7399-3

gpd_logpost 21

gpd_logpost Generalized Pareto posterior log-density

Description

Calculates the generalized Pareto posterior log-density based on a particular prior for the general-
ized Pareto parameters, a Maximal Data Information (MDI) prior truncated to ξ ≥ −1 in order to
produce a posterior density that is proper.

Usage

gpd_logpost(pars, ss)

Arguments

pars A numeric vector containing the values of the generalized Pareto parameters σ
and ξ.

ss A numeric list. Summary statistics to be passed to the generalized Pareto log-
likelihood. Calculated using gpd_sum_stats

Value

A numeric scalar. The value of the log-likelihood.

References

Northrop, P. J. and Attalides, N. (2016) Posterior propriety in Bayesian extreme value analyses
using reference priors. Statistica Sinica, 26(2), 721-743, doi:10.5705/ss.2014.034.

See Also

gpd_sum_stats to calculate summary statistics for use in gpd_loglik.

rgpd for simulation from a generalized Pareto

Examples

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate the generalized Pareto log-posterior
gpd_logpost(pars = c(1, 0), ss = ss)

https://doi.org/10.5705/ss.2014.034

22 gpd_sum_stats

gpd_sum_stats Generalized Pareto summary statistics

Description

Calculates summary statistics involved in the Generalized Pareto log-likelihood.

Usage

gpd_sum_stats(gpd_data)

Arguments

gpd_data A numeric vector containing positive values.

Value

A list with components

gpd_data A numeric vector. The input vector with any missings removed.

m A numeric scalar. The sample size, i.e., the number of non-missing values.

xm A numeric scalar. The sample maximum

sum_gp A numeric scalar. The sum of the non-missing sample values.

See Also

rgpd for simulation from a generalized Pareto distribution.

Examples

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)

plot.ru 23

plot.ru Plot diagnostics for an ru object

Description

plot method for class "ru". For d = 1 a histogram of the simulated values is plotted with a the
density function superimposed. The density is normalized crudely using the trapezium rule. For d
= 2 a scatter plot of the simulated values is produced with density contours superimposed. For d >
2 pairwise plots of the simulated values are produced.

Usage

S3 method for class 'ru'
plot(
x,
y,
...,
n = ifelse(x$d == 1, 1001, 101),
prob = c(0.1, 0.25, 0.5, 0.75, 0.95, 0.99),
ru_scale = FALSE,
rows = NULL,
xlabs = NULL,
ylabs = NULL,
var_names = NULL,
points_par = list(col = 8)

)

Arguments

x an object of class "ru", a result of a call to ru.

y Not used.

... Additional arguments passed on to hist, lines, contour or points.

n A numeric scalar. Only relevant if x$d = 1 or x$d = 2. The meaning depends on
the value of x$d.

• For d = 1 : n + 1 is the number of abscissae in the trapezium method used
to normalize the density.

• For d = 2 : an n by n regular grid is used to contour the density.

prob Numeric vector. Only relevant for d = 2. The contour lines are drawn such that
the respective probabilities that the variable lies within the contour are approxi-
mately equal to the values in prob.

ru_scale A logical scalar. Should we plot data and density on the scale used in the ratio-
of-uniforms algorithm (TRUE) or on the original scale (FALSE)?

rows A numeric scalar. When d > 2 this sets the number of rows of plots. If the user
doesn’t provide this then it is set internally.

24 print.ru

xlabs, ylabs Numeric vectors. When d > 2 these set the labels on the x and y axes respec-
tively. If the user doesn’t provide these then the column names of the simulated
data matrix to be plotted are used.

var_names A character (or numeric) vector of length x$d. This argument can be used to
replace variable names set using var_names in the call to ru or ru_rcpp.

points_par A list of arguments to pass to points to control the appearance of points depict-
ing the simulated values. Only relevant when d = 2.

Value

No return value, only the plot is produced.

See Also

summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algo-
rithm.

Examples

Log-normal density ----------------
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 1)

plot(x)

Improve appearance using arguments to plot() and hist()

plot(x, breaks = seq(0, ceiling(max(x$sim_vals)), by = 0.25),
xlim = c(0, 10))

Two-dimensional normal with positive association ----------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {

x <- matrix(x, ncol = length(x))
d <- ncol(x)
- 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)

}
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))

plot(x)

print.ru Print method for an "ru" object

Description

print method for class "ru".

rgpd 25

Usage

S3 method for class 'ru'
print(x, ...)

Arguments

x an object of class "ru", a result of a call to ru or ru_rcpp.
... Additional arguments. None are used in this function.

Details

Simply prints the call to ru or ru_rcpp.

Value

The argument x, invisibly.

See Also

summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algo-
rithm.

plot.ru for a diagnostic plot.

rgpd Generalized Pareto simulation

Description

Simulates a sample of size m from a generalized Pareto distribution.

Usage

rgpd(m = 1, sigma = 1, xi = 0)

Arguments

m A numeric scalar. The size of sample required.
sigma A numeric scalar. The generalized Pareto scale parameter σ.
xi A numeric scalar. The generalized Pareto shape parameter ξ.

Value

A numeric vector. A generalized Pareto sample of size m.

Examples

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = 0, sigma = 1)

26 ru

ru Generalized ratio-of-uniforms sampling

Description

Uses the generalized ratio-of-uniforms method to simulate from a distribution with log-density
log f (up to an additive constant). The density f must be bounded, perhaps after a transformation
of variable.

Usage

ru(
logf,
...,
n = 1,
d = 1,
init = NULL,
mode = NULL,
trans = c("none", "BC", "user"),
phi_to_theta = NULL,
log_j = NULL,
user_args = list(),
lambda = rep(1L, d),
lambda_tol = 1e-06,
gm = NULL,
rotate = ifelse(d == 1, FALSE, TRUE),
lower = rep(-Inf, d),
upper = rep(Inf, d),
r = 1/2,
ep = 0L,
a_algor = if (d == 1) "nlminb" else "optim",
b_algor = c("nlminb", "optim"),
a_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
b_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
a_control = list(),
b_control = list(),
var_names = NULL,
shoof = 0.2

)

Arguments

logf A function returning the log of the target density f evaluated at its first argu-
ment. This function should return -Inf when the density is zero. It is bet-
ter to use logf = explicitly, for example, ru(logf = dnorm, log = TRUE, init
= 0.1), to avoid argument matching problems. In contrast, ru(dnorm, log =

ru 27

TRUE, init = 0.1) will throw an error because partial matching results in logf
being matched to log = TRUE.

... Further arguments to be passed to logf and related functions.

n A non-negative integer scalar. The number of simulated values required. If n =
0 then no simulation is performed but the component box in the returned object
gives the ratio-of-uniforms bounding box that would have been used.

d A positive integer scalar. The dimension of f .

init A numeric vector of length d. Initial estimate of the mode of logf. If trans
= "BC" or trans = "user" this is after Box-Cox transformation or user-defined
transformation, but before any rotation of axes. If init is not supplied then
rep(1, d) is used. If length(init) = 1 and d > 1 then init <- rep(init,
length.out = d) is used.

mode A numeric vector of length d. The mode of logf. If trans = "BC" or trans =
"user" this is after Box-Cox transformation or user-defined transformation, but
before any rotation of axes. Only supply mode if the mode is known: it will not
be checked. If mode is supplied then init is ignored.

trans A character scalar. trans = "none" for no transformation, trans = "BC" for
Box-Cox transformation, trans = "user" for a user-defined transformation. If
trans = "user" then the transformation should be specified using phi_to_theta
and log_j and user_args may be used to pass arguments to phi_to_theta and
log_j. See Details and the Examples.

phi_to_theta A function returning (the inverse) of the transformation from theta (θ) to phi
(ϕ) that may be used to ensure positivity of ϕ prior to Box-Cox transformation.
The argument is phi and the returned value is theta. If phi_to_theta is un-
defined at the input value then the function should return NA. See Details. If
lambda$phi_to_theta (see argument lambda below) is supplied then this is
used instead of any function supplied via phi_to_theta.

log_j A function returning the log of the Jacobian of the transformation from theta
(θ) to phi (ϕ), i.e., based on derivatives of ϕ with respect to θ. Takes theta as
its argument. If lambda$log_j (see argument lambda below) is supplied then
this is used instead of any function supplied via log_j.

user_args A list of numeric components. If trans = "user" then user_args is a list pro-
viding arguments to the user-supplied functions phi_to_theta and log_j.

lambda Either

• A numeric vector. Box-Cox transformation parameters, or
• A list with components

lambda A numeric vector. Box-Cox parameters (required).
gm A numeric vector. Box-Cox scaling parameters (optional). If supplied

this overrides any gm supplied by the individual gm argument described
below.

init_psi A numeric vector. Initial estimate of mode after Box-Cox trans-
formation (optional).

sd_psi A numeric vector. Estimates of the marginal standard deviations of
the Box-Cox transformed variables (optional).

28 ru

phi_to_theta As above (optional).
log_j As above (optional).
This list may be created using find_lambda_one_d (for d = 1) or find_lambda
(for any d).

lambda_tol A numeric scalar. Any values in lambda that are less than lambda_tol in mag-
nitude are set to zero.

gm A numeric vector. Box-Cox scaling parameters (optional). If lambda$gm is
supplied in input list lambda then lambda$gm is used, not gm.

rotate A logical scalar. If TRUE (d > 1 only) use Choleski rotation. If d = 1 and rotate
= TRUE then rotate will be set to FALSE with a warning. See Details.

lower, upper Numeric vectors. Lower/upper bounds on the arguments of the function after
any transformation from theta to phi implied by the inverse of phi_to_theta.
If rotate = FALSE these are used in all of the optimisations used to construct the
bounding box. If rotate = TRUE then they are use only in the first optimisation
to maximise the target density.‘ If trans = "BC" components of lower that are
negative are set to zero without warning and the bounds implied after the Box-
Cox transformation are calculated inside ru.

r A numeric scalar. Parameter of generalized ratio-of-uniforms.

ep A numeric scalar. Controls initial estimates for optimisations to find the b-
bounding box parameters. The default (ep = 0) corresponds to starting at the
mode of logf small positive values of ep move the constrained variable slightly
away from the mode in the correct direction. If ep is negative its absolute value
is used, with no warning given.

a_algor, b_algor
Character scalars. Either "nlminb" or "optim". Respective optimisation algo-
rithms used to find a(r) and (b−i (r), b

+
i (r)).

a_method, b_method
Character scalars. Respective methods used by optim to find a(r) and (b−i (r),
b+i (r)). Only used if optim is the chosen algorithm. If d = 1 then a_method and
b_method are set to "Brent" without warning.

a_control, b_control
Lists of control arguments to optim or nlminb to find a(r) and (b−i (r), b

+
i (r))

respectively.

var_names A character (or numeric) vector of length d. Names to give to the column(s) of
the simulated values.

shoof A numeric scalar in [0, 1]. Sometimes a spurious non-zero convergence indi-
cator is returned from optim or nlminb). In this event we try to check that a
minimum has indeed been found using different algorithm. shoof controls the
starting value provided to this algorithm. If shoof = 0 then we start from the
current solution. If shoof = 1 then we start from the initial estimate provided
to the previous minimisation. Otherwise, shoof interpolates between these two
extremes, with a value close to zero giving a starting value that is close to the
current solution. The exception to this is when the initial and current solutions
are equal. Then we start from the current solution multiplied by 1 - shoof.

ru 29

Details

For information about the generalised ratio-of-uniforms method and transformations see the Intro-
ducing rust vignette. This can also be accessed using vignette("rust-a-vignette", package =
"rust").

If trans = "none" and rotate = FALSE then ru implements the (multivariate) generalized ratio of
uniforms method described in Wakefield, Gelfand and Smith (1991) using a target density whose
mode is relocated to the origin (‘mode relocation’) in the hope of increasing efficiency.

If trans = "BC" then marginal Box-Cox transformations of each of the d variables is performed,
with parameters supplied in lambda. The function phi_to_theta may be used, if necessary, to
ensure positivity of the variables prior to Box-Cox transformation.

If trans = "user" then the function phi_to_theta enables the user to specify their own transfor-
mation.

In all cases the mode of the target function is relocated to the origin after any user-supplied trans-
formation and/or Box-Cox transformation.

If d is greater than one and rotate = TRUE then a rotation of the variable axes is performed after
mode relocation. The rotation is based on the Choleski decomposition (see chol) of the estimated
Hessian (computed using optimHess of the negated log-density after any user-supplied transforma-
tion or Box-Cox transformation. If any of the eigenvalues of the estimated Hessian are non-positive
(which may indicate that the estimated mode of logf is close to a variable boundary) then rotate
is set to FALSE with a warning. A warning is also given if this happens when d = 1.

The default value of the tuning parameter r is 1/2, which is likely to be close to optimal in many
cases, particularly if trans = "BC".

Value

An object of class "ru" is a list containing the following components:

sim_vals An n by d matrix of simulated values.

box A (2 * d + 1) by d + 2 matrix of ratio-of-uniforms bounding box information,
with row names indicating the box parameter. The columns contain

column 1 values of box parameters.
columns 2 to (2+d-1) values of variables at which these box parameters are ob-

tained.
column 2+d convergence indicators.

Scaling of f within ru and relocation of the mode to the origin means that the
first row of box will always be c(1, rep(0, d)).

pa A numeric scalar. An estimate of the probability of acceptance.

r The value of r.

d The value of d.

logf A function. logf supplied by the user, but with f scaled by the maximum of
the target density used in the ratio-of-uniforms method (i.e. logf_rho), to avoid
numerical problems in contouring f in plot.ru when d = 2.

logf_rho A function. The target function actually used in the ratio-of-uniforms algorithm.

https://paulnorthrop.github.io/rust/articles/rust-a-vignette.html
https://paulnorthrop.github.io/rust/articles/rust-a-vignette.html

30 ru

sim_vals_rho An n by d matrix of values simulated from the function used in the ratio-of-
uniforms algorithm.

logf_args A list of further arguments to logf.

f_mode The estimated mode of the target density f, after any Box-Cox transformation
and/or user supplied transformation, but before mode relocation.

trans_fn An R function that performs the inverse transformation from the transformed
variable ρ, on which the generalised ratio-of-uniforms method is performed,
back to the original variable θ. Note: trans_fn is not vectorised with respect
to ρ.

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. (1991) Efficient generation of random vari-
ates via the ratio-of-uniforms method. Statistics and Computing (1991), 1, 129-133. doi:10.1007/
BF01889987.

See Also

ru_rcpp for a version of ru that uses the Rcpp package to improve efficiency.

summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algo-
rithm.

plot.ru for a diagnostic plot.

find_lambda_one_d to produce (somewhat) automatically a list for the argument lambda of ru for
the d = 1 case.

find_lambda to produce (somewhat) automatically a list for the argument lambda of ru for any
value of d.

optim for choices of the arguments a_method, b_method, a_control and b_control.

nlminb for choices of the arguments a_control and b_control.

optimHess for Hessian estimation.

chol for the Choleski decomposition.

Examples

Normal density ===================

One-dimensional standard normal ----------------
x <- ru(logf = function(x) -x ^ 2 / 2, d = 1, n = 1000, init = 0.1)

Two-dimensional standard normal ----------------
x <- ru(logf = function(x) -(x[1]^2 + x[2]^2) / 2, d = 2, n = 1000,

init = c(0, 0))

Two-dimensional normal with positive association ----------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {

x <- matrix(x, ncol = length(x))

https://doi.org/10.1007/BF01889987
https://doi.org/10.1007/BF01889987

ru 31

d <- ncol(x)
- 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)

}

No rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0),

rotate = FALSE)

With rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))

three-dimensional normal with positive association ----------------
covmat <- matrix(rho, 3, 3) + diag(1 - rho, 3)

No rotation. Slow !
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 3, n = 1000,

init = c(0, 0, 0), rotate = FALSE)

With rotation.
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 3, n = 1000,

init = c(0, 0, 0))

Log-normal density ===================

Sampling on original scale ----------------
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 1)

Box-Cox transform with lambda = 0 ----------------
lambda <- 0
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, lower = 0, init = 0.1,

trans = "BC", lambda = lambda)

Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
transformation and the log-Jacobian by hand
x <- ru(logf = dlnorm, log = TRUE, d = 1, n = 1000, init = 0.1,

trans = "user", phi_to_theta = function(x) exp(x),
log_j = function(x) -log(x))

Gamma(alpha, 1) density ===================

Note: the gamma density in unbounded when its shape parameter is < 1.
Therefore, we can only use trans="none" if the shape parameter is >= 1.

Sampling on original scale ----------------

alpha <- 10
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

lower = 0, init = alpha)

alpha <- 1
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

lower = 0, init = alpha)

32 ru

Box-Cox transform with lambda = 1/3 works well for shape >= 1. -----------

alpha <- 1
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

trans = "BC", lambda = 1/3, init = alpha)
summary(x)

Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
transformation and the log-Jacobian by hand

Note: when phi_to_theta is undefined at x this function returns NA
phi_to_theta <- function(x, lambda) {

ifelse(x * lambda + 1 > 0, (x * lambda + 1) ^ (1 / lambda), NA)
}
log_j <- function(x, lambda) (lambda - 1) * log(x)
lambda <- 1/3
x <- ru(logf = dgamma, shape = alpha, log = TRUE, d = 1, n = 1000,

trans = "user", phi_to_theta = phi_to_theta, log_j = log_j,
user_args = list(lambda = lambda), init = alpha)

summary(x)

Generalized Pareto posterior distribution ===================

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate an initial estimate
init <- c(mean(gpd_data), 0)

Mode relocation only ----------------
n <- 1000
x1 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,

lower = c(0, -Inf), rotate = FALSE)
plot(x1, xlab = "sigma", ylab = "xi")
Parameter constraint line xi > -sigma/max(data)
[This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)

Rotation of axes plus mode relocation ----------------
x2 <- ru(logf = gpd_logpost, ss = ss, d = 2, n = n, init = init,

lower = c(0, -Inf))
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)

Cauchy ========================

The bounding box cannot be constructed if r < 1. For r = 1 the
bounding box parameters b1-(r) and b1+(r) are attained in the limits
as x decreases/increases to infinity respectively. This is fine in

ru 33

theory but using r > 1 avoids this problem and the largest probability
of acceptance is obtained for r approximately equal to 1.26.

res <- ru(logf = dcauchy, log = TRUE, init = 0, r = 1.26, n = 1000)

Half-Cauchy ===================

log_halfcauchy <- function(x) {
return(ifelse(x < 0, -Inf, dcauchy(x, log = TRUE)))

}

Like the Cauchy case the bounding box cannot be constructed if r < 1.
We could use r > 1 but the mode is on the edge of the support of the
density so as an alternative we use a log transformation.

x <- ru(logf = log_halfcauchy, init = 0, trans = "BC", lambda = 0, n = 1000)
x$pa
plot(x, ru_scale = TRUE)

Example 4 from Wakefield et al. (1991) ===================

Bivariate normal x bivariate student-t
log_norm_t <- function(x, mean = rep(0, d), sigma1 = diag(d), sigma2 = diag(d)) {

x <- matrix(x, ncol = length(x))
log_h1 <- -0.5 * (x - mean) %*% solve(sigma1) %*% t(x - mean)
log_h2 <- -2 * log(1 + 0.5 * x %*% solve(sigma2) %*% t(x))
return(log_h1 + log_h2)

}

rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
y <- c(0, 0)

Case in the top right corner of Table 3
x <- ru(logf = log_norm_t, mean = y, sigma1 = covmat, sigma2 = covmat,

d = 2, n = 10000, init = y, rotate = FALSE)
x$pa

Rotation increases the probability of acceptance
x <- ru(logf = log_norm_t, mean = y, sigma1 = covmat, sigma2 = covmat,

d = 2, n = 10000, init = y, rotate = TRUE)
x$pa

Normal x log-normal: different Box-Cox parameters ==================
norm_lognorm <- function(x, ...) {

dnorm(x[1], ...) + dlnorm(x[2], ...)
}
x <- ru(logf = norm_lognorm, log = TRUE, n = 1000, d = 2, init = c(-1, 0),

trans = "BC", lambda = c(1, 0))
plot(x)
plot(x, ru_scale = TRUE)

34 ru_rcpp

ru_rcpp Generalized ratio-of-uniforms sampling using C++ via Rcpp

Description

Uses the generalized ratio-of-uniforms method to simulate from a distribution with log-density
log f (up to an additive constant). The density f must be bounded, perhaps after a transformation
of variable. The file user_fns.cpp that is sourced before running the examples below is available
at the rust Github page at https://raw.githubusercontent.com/paulnorthrop/rust/master/
src/user_fns.cpp.

Usage

ru_rcpp(
logf,
...,
n = 1,
d = 1,
init = NULL,
mode = NULL,
trans = c("none", "BC", "user"),
phi_to_theta = NULL,
log_j = NULL,
user_args = list(),
lambda = rep(1L, d),
lambda_tol = 1e-06,
gm = NULL,
rotate = ifelse(d == 1, FALSE, TRUE),
lower = rep(-Inf, d),
upper = rep(Inf, d),
r = 1/2,
ep = 0L,
a_algor = if (d == 1) "nlminb" else "optim",
b_algor = c("nlminb", "optim"),
a_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
b_method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
a_control = list(),
b_control = list(),
var_names = NULL,
shoof = 0.2

)

Arguments

logf An external pointer to a compiled C++ function returning the log of the target
density f evaluated at its first argument. This function should return -Inf when
the density is zero. It is better to use logf = explicitly, for example, ru(logf

https://raw.githubusercontent.com/paulnorthrop/rust/master/src/user_fns.cpp
https://raw.githubusercontent.com/paulnorthrop/rust/master/src/user_fns.cpp

ru_rcpp 35

= dnorm, log = TRUE, init = 0.1), to avoid argument matching problems. In
contrast, ru(dnorm, log = TRUE, init = 0.1) will throw an error because par-
tial matching results in logf being matched to log = TRUE.
See the Passing user-supplied C++ functions in the Rcpp Gallery and the Pro-
viding a C++ function to ru_rcpp section in the Rusting faster: Simulation
using Rcpp vignette.

... Further arguments to be passed to logf and related functions.
n A non-negative integer scalar. The number of simulated values required. If n =

0 then no simulation is performed but the component box in the returned object
gives the ratio-of-uniforms bounding box that would have been used.

d A positive integer scalar. The dimension of f .
init A numeric vector of length d. Initial estimate of the mode of logf. If trans

= "BC" or trans = "user" this is after Box-Cox transformation or user-defined
transformation, but before any rotation of axes. If init is not supplied then
rep(1, d) is used. If length(init) = 1 and d > 1 then init <- rep(init,
length.out = d) is used.

mode A numeric vector of length d. The mode of logf. If trans = "BC" or trans =
"user" this is after Box-Cox transformation or user-defined transformation, but
before any rotation of axes. Only supply mode if the mode is known: it will not
be checked. If mode is supplied then init is ignored.

trans A character scalar. trans = "none" for no transformation, trans = "BC" for
Box-Cox transformation, trans = "user" for a user-defined transformation. If
trans = "user" then the transformation should be specified using phi_to_theta
and log_j and user_args may be used to pass arguments to phi_to_theta and
log_j. See Details and the Examples.

phi_to_theta An external pointer to a compiled C++ function returning (the inverse) of the
transformation from theta (θ) to phi (ϕ) that may be used to ensure positivity
of ϕ prior to Box-Cox transformation. The argument is phi and the returned
value is theta. If phi_to_theta is undefined at the input value then the func-
tion should return NA. See Details. If lambda$phi_to_theta (see argument
lambda below) is supplied then this is used instead of any function supplied via
phi_to_theta.

log_j An external pointer to a compiled C++ function returning the log of the Jacobian
of the transformation from theta (θ) to phi (ϕ), i.e., based on derivatives of ϕ
with respect to θ. Takes theta as its argument. If lambda$log_j (see argument
lambda below) is supplied then this is used instead of any function supplied via
log_j.

user_args A list of numeric components. If trans = ``user'' then user_args is a list
providing arguments to the user-supplied functions phi_to_theta and log_j.

lambda Either
• A numeric vector. Box-Cox transformation parameters, or
• A list with components

lambda A numeric vector. Box-Cox parameters (required).
gm A numeric vector. Box-Cox scaling parameters (optional). If supplied

this overrides any gm supplied by the individual gm argument described
below.

https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
https://gallery.rcpp.org/
https://paulnorthrop.github.io/rust/articles/rust-c-using-rcpp-vignette.html
https://paulnorthrop.github.io/rust/articles/rust-c-using-rcpp-vignette.html

36 ru_rcpp

init_psi A numeric vector. Initial estimate of mode after Box-Cox trans-
formation (optional).

sd_psi A numeric vector. Estimates of the marginal standard deviations of
the Box-Cox transformed variables (optional).

phi_to_theta as above (optional).
log_j As above (optional).
user_args As above (optional).
This list may be created using find_lambda_one_d_rcpp (for d = 1) or
find_lambda_rcpp (for any d).

lambda_tol A numeric scalar. Any values in lambda that are less than lambda_tol in mag-
nitude are set to zero.

gm A numeric vector. Box-Cox scaling parameters (optional). If lambda$gm is
supplied in input list lambda then lambda$gm is used, not gm.

rotate A logical scalar. If TRUE (d > 1 only) use Choleski rotation. If d = 1 and rotate
= TRUE then rotate will be set to FALSE with a warning. See Details.

lower, upper Numeric vectors. Lower/upper bounds on the arguments of the function after
any transformation from theta to phi implied by the inverse of phi_to_theta.
If rotate = FALSE these are used in all of the optimisations used to construct the
bounding box. If rotate = TRUE then they are use only in the first optimisation
to maximise the target density.‘ If trans = "BC" components of lower that are
negative are set to zero without warning and the bounds implied after the Box-
Cox transformation are calculated inside ru.

r A numeric scalar. Parameter of generalized ratio-of-uniforms.

ep A numeric scalar. Controls initial estimates for optimisations to find the b-
bounding box parameters. The default (ep = 0) corresponds to starting at the
mode of logf small positive values of ep move the constrained variable slightly
away from the mode in the correct direction. If ep is negative its absolute value
is used, with no warning given.

a_algor, b_algor
Character scalars. Either "nlminb" or "optim". Respective optimisation algo-
rithms used to find a(r) and (b−i (r), b

+
i (r)).

a_method, b_method
Character scalars. Respective methods used by optim to find a(r) and (b−i (r),
b+i (r)). Only used if optim is the chosen algorithm. If d = 1 then a_method and
b_method are set to "Brent" without warning.

a_control, b_control
Lists of control arguments to optim or nlminb to find a(r) and (b−i (r), b

+
i (r))

respectively.

var_names A character (or numeric) vector of length d. Names to give to the column(s) of
the simulated values.

shoof A numeric scalar in [0, 1]. Sometimes a spurious non-zero convergence indi-
cator is returned from optim or nlminb). In this event we try to check that a
minimum has indeed been found using different algorithm. shoof controls the
starting value provided to this algorithm. If shoof = 0 then we start from the
current solution. If shoof = 1 then we start from the initial estimate provided

ru_rcpp 37

to the previous minimisation. Otherwise, shoof interpolates between these two
extremes, with a value close to zero giving a starting value that is close to the
current solution. The exception to this is when the initial and current solutions
are equal. Then we start from the current solution multiplied by 1 - shoof.

Details

For information about the generalised ratio-of-uniforms method and transformations see the Intro-
ducing rust vignette. See also Rusting faster: Simulation using Rcpp.

These vignettes can also be accessed using vignette("rust-a-vignette", package = "rust")
and vignette("rust-c-using-rcpp-vignette", package = "rust").

If trans = "none" and rotate = FALSE then ru implements the (multivariate) generalized ratio of
uniforms method described in Wakefield, Gelfand and Smith (1991) using a target density whose
mode is relocated to the origin (‘mode relocation’) in the hope of increasing efficiency.

If trans = "BC" then marginal Box-Cox transformations of each of the d variables is performed,
with parameters supplied in lambda. The function phi_to_theta may be used, if necessary, to
ensure positivity of the variables prior to Box-Cox transformation.

If trans = "user" then the function phi_to_theta enables the user to specify their own transfor-
mation.

In all cases the mode of the target function is relocated to the origin after any user-supplied trans-
formation and/or Box-Cox transformation.

If d is greater than one and rotate = TRUE then a rotation of the variable axes is performed after
mode relocation. The rotation is based on the Choleski decomposition (see chol) of the estimated
Hessian (computed using optimHess of the negated log-density after any user-supplied transforma-
tion or Box-Cox transformation. If any of the eigenvalues of the estimated Hessian are non-positive
(which may indicate that the estimated mode of logf is close to a variable boundary) then rotate
is set to FALSE with a warning. A warning is also given if this happens when d = 1.

The default value of the tuning parameter r is 1/2, which is likely to be close to optimal in many
cases, particularly if trans = "BC".

Value

An object of class "ru" is a list containing the following components:

sim_vals An n by d matrix of simulated values.

box A (2 * d + 1) by d + 2 matrix of ratio-of-uniforms bounding box information,
with row names indicating the box parameter. The columns contain

column 1 values of box parameters.
columns 2 to (2+d-1) values of variables at which these box parameters are ob-

tained.
column 2+d convergence indicators.

Scaling of f within ru and relocation of the mode to the origin means that the
first row of box will always be c(1, rep(0, d)).

pa A numeric scalar. An estimate of the probability of acceptance.

r The value of r.

https://paulnorthrop.github.io/rust/articles/rust-a-vignette.html
https://paulnorthrop.github.io/rust/articles/rust-a-vignette.html
https://paulnorthrop.github.io/rust/articles/rust-c-using-rcpp-vignette.html

38 ru_rcpp

d The value of d.

logf A function. logf supplied by the user, but with f scaled by the maximum of
the target density used in the ratio-of-uniforms method (i.e. logf_rho), to avoid
numerical problems in contouring f in plot.ru when d = 2.

logf_rho A function. The target function actually used in the ratio-of-uniforms algorithm.

sim_vals_rho An n by d matrix of values simulated from the function used in the ratio-of-
uniforms algorithm.

logf_args A list of further arguments to logf.

logf_rho_args A list of further arguments to logf_rho. Note: this component is returned by
ru_rcpp but not by ru.

f_mode The estimated mode of the target density f, after any Box-Cox transformation
and/or user supplied transformation, but before mode relocation.

References

Wakefield, J. C., Gelfand, A. E. and Smith, A. F. M. (1991) Efficient generation of random vari-
ates via the ratio-of-uniforms method. Statistics and Computing (1991), 1, 129-133. doi:10.1007/
BF01889987.

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18. doi:10.18637/jss.v040.i08

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp, Springer, New York. ISBN
978-1-4614-6867-7.

See Also

ru for a version of ru_rcpp that accepts R functions as arguments.

summary.ru for summaries of the simulated values and properties of the ratio-of-uniforms algo-
rithm.

plot.ru for a diagnostic plot.

find_lambda_one_d_rcpp to produce (somewhat) automatically a list for the argument lambda of
ru for the d = 1 case.

find_lambda_rcpp to produce (somewhat) automatically a list for the argument lambda of ru for
any value of d.

optim for choices of the arguments a_method, b_method, a_control and b_control.

nlminb for choices of the arguments a_control and b_control.

optimHess for Hessian estimation.

chol for the Choleski decomposition.

Examples

n <- 1000

Normal density ===================

https://doi.org/10.1007/BF01889987
https://doi.org/10.1007/BF01889987
https://doi.org/10.18637/jss.v040.i08

ru_rcpp 39

One-dimensional standard normal ----------------
ptr_N01 <- create_xptr("logdN01")
x <- ru_rcpp(logf = ptr_N01, d = 1, n = n, init = 0.1)

Two-dimensional standard normal ----------------
ptr_bvn <- create_xptr("logdnorm2")
rho <- 0
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n,

init = c(0, 0))

Two-dimensional normal with positive association ===================
rho <- 0.9
No rotation.
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n, init = c(0, 0),

rotate = FALSE)

With rotation.
x <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = n, init = c(0, 0))

Using general multivariate normal function.
ptr_mvn <- create_xptr("logdmvnorm")
covmat <- matrix(rho, 2, 2) + diag(1 - rho, 2)
x <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = n, init = c(0, 0))

Three-dimensional normal with positive association ----------------
covmat <- matrix(rho, 3, 3) + diag(1 - rho, 3)

No rotation.
x <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = n,

init = c(0, 0, 0), rotate = FALSE)

With rotation.
x <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = n,

init = c(0, 0, 0))

Log-normal density ===================

ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
Sampling on original scale ----------------
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,

lower = 0, init = exp(mu))

Box-Cox transform with lambda = 0 ----------------
lambda <- 0
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,

lower = 0, init = exp(mu), trans = "BC", lambda = lambda)

Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
transformation and the log-Jacobian by hand
ptr_phi_to_theta_lnorm <- create_phi_to_theta_xptr("exponential")
ptr_log_j_lnorm <- create_log_j_xptr("neglog")

40 ru_rcpp

x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = n,
init = 0.1, trans = "user", phi_to_theta = ptr_phi_to_theta_lnorm,
log_j = ptr_log_j_lnorm)

Gamma (alpha, 1) density ===================

Note: the gamma density in unbounded when its shape parameter is < 1.
Therefore, we can only use trans="none" if the shape parameter is >= 1.

Sampling on original scale ----------------

ptr_gam <- create_xptr("logdgamma")
alpha <- 10
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,

lower = 0, init = alpha)

alpha <- 1
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,

lower = 0, init = alpha)

Box-Cox transform with lambda = 1/3 works well for shape >= 1. -----------

alpha <- 1
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,

trans = "BC", lambda = 1/3, init = alpha)
summary(x)

Equivalently, we could use trans = "user" and supply the (inverse) Box-Cox
transformation and the log-Jacobian by hand

lambda <- 1/3
ptr_phi_to_theta_bc <- create_phi_to_theta_xptr("bc")
ptr_log_j_bc <- create_log_j_xptr("bc")
x <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = n,

trans = "user", phi_to_theta = ptr_phi_to_theta_bc, log_j = ptr_log_j_bc,
user_args = list(lambda = lambda), init = alpha)

summary(x)

Generalized Pareto posterior distribution ===================

Sample data from a GP(sigma, xi) distribution
gpd_data <- rgpd(m = 100, xi = -0.5, sigma = 1)
Calculate summary statistics for use in the log-likelihood
ss <- gpd_sum_stats(gpd_data)
Calculate an initial estimate
init <- c(mean(gpd_data), 0)

n <- 1000
Mode relocation only ----------------
ptr_gp <- create_xptr("loggp")
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,

lower = c(0, -Inf)), ss, rotate = FALSE)

ru_rcpp 41

x1 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x1, xlab = "sigma", ylab = "xi")
Parameter constraint line xi > -sigma/max(data)
[This may not appear if the sample is far from the constraint.]
abline(a = 0, b = -1 / ss$xm)
summary(x1)

Rotation of axes plus mode relocation ----------------
for_ru_rcpp <- c(list(logf = ptr_gp, init = init, d = 2, n = n,

lower = c(0, -Inf)), ss)
x2 <- do.call(ru_rcpp, for_ru_rcpp)
plot(x2, xlab = "sigma", ylab = "xi")
abline(a = 0, b = -1 / ss$xm)
summary(x2)

Cauchy ========================

ptr_c <- create_xptr("logcauchy")

The bounding box cannot be constructed if r < 1. For r = 1 the
bounding box parameters b1-(r) and b1+(r) are attained in the limits
as x decreases/increases to infinity respectively. This is fine in
theory but using r > 1 avoids this problem and the largest probability
of acceptance is obtained for r approximately equal to 1.26.

res <- ru_rcpp(logf = ptr_c, log = TRUE, init = 0, r = 1.26, n = 1000)

Half-Cauchy ===================

ptr_hc <- create_xptr("loghalfcauchy")

Like the Cauchy case the bounding box cannot be constructed if r < 1.
We could use r > 1 but the mode is on the edge of the support of the
density so as an alternative we use a log transformation.

x <- ru_rcpp(logf = ptr_hc, init = 0, trans = "BC", lambda = 0, n = 1000)
x$pa
plot(x, ru_scale = TRUE)

Example 4 from Wakefield et al. (1991) ===================
Bivariate normal x bivariate student-t

ptr_normt <- create_xptr("lognormt")
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
y <- c(0, 0)

Case in the top right corner of Table 3
x <- ru_rcpp(logf = ptr_normt, mean = y, sigma1 = covmat, sigma2 = covmat,

d = 2, n = 10000, init = y, rotate = FALSE)
x$pa

Rotation increases the probability of acceptance

42 summary.ru

x <- ru_rcpp(logf = ptr_normt, mean = y, sigma1 = covmat, sigma2 = covmat,
d = 2, n = 10000, init = y, rotate = TRUE)

x$pa

summary.ru Summarizing ratio-of-uniforms samples

Description

summary method for class "ru".

print method for an object object of class "summary.ru".

Usage

S3 method for class 'ru'
summary(object, ...)

S3 method for class 'summary.ru'
print(x, ...)

Arguments

object an object of class "ru", a result of a call to ru.

... For summary.lm: additional arguments passed to summary. For print.lm: ad-
ditional optional arguments passed to print.

x an object of class "summary.ru", a result of a call to summary.ru.

Value

For summary.lm: a list of the following components from object:

• information about the ratio-of-uniforms bounding box, i.e., object$box

• an estimate of the probability of acceptance, i.e., object$pa

• a summary of the simulated values, via summary(object$sim_vals)

For print.summary.ru: the argument x, invisibly.

See Also

ru for descriptions of object$sim_vals and object$box.

plot.ru for a diagnostic plot.

summary.ru 43

Examples

one-dimensional standard normal ----------------
x <- ru(logf = function(x) -x ^ 2 / 2, d = 1, n = 1000, init = 0)
summary(x)

two-dimensional normal with positive association ----------------
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
log_dmvnorm <- function(x, mean = rep(0, d), sigma = diag(d)) {

x <- matrix(x, ncol = length(x))
d <- ncol(x)
- 0.5 * (x - mean) %*% solve(sigma) %*% t(x - mean)

}
x <- ru(logf = log_dmvnorm, sigma = covmat, d = 2, n = 1000, init = c(0, 0))
summary(x)

Index

chol, 29, 30, 37, 38
create_log_j_xptr, 3
create_phi_to_theta_xptr, 4
create_xptr, 4

find_lambda, 2, 3, 5, 7, 10, 20, 28, 30
find_lambda_one_d, 2, 3, 7, 9, 10, 28, 30
find_lambda_one_d_rcpp, 3, 7, 10, 11, 17,

36, 38
find_lambda_rcpp, 3, 7, 10, 14, 15, 36, 38

gpd_init, 19
gpd_logpost, 21
gpd_sum_stats, 20, 21, 22

nlminb, 28, 30, 36, 38

optim, 28, 30, 36, 38
optimHess, 29, 30, 37, 38

plot.ru, 3, 23, 25, 29, 30, 38, 42
points, 24
print, 42
print.ru, 24
print.summary.ru (summary.ru), 42

rgpd, 20–22, 25
ru, 2, 3, 7, 10, 24, 25, 26, 30, 38, 42
ru_rcpp, 2–5, 7, 10, 14, 17, 24, 25, 30, 34, 38
rust (rust-package), 2
rust-package, 2

summary, 42
summary.ru, 3, 24, 25, 30, 38, 42, 42

44

	rust-package
	create_log_j_xptr
	create_phi_to_theta_xptr
	create_xptr
	find_lambda
	find_lambda_one_d
	find_lambda_one_d_rcpp
	find_lambda_rcpp
	gpd_init
	gpd_logpost
	gpd_sum_stats
	plot.ru
	print.ru
	rgpd
	ru
	ru_rcpp
	summary.ru
	Index

