## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.height = 4, fig.width = 7 ) library(rsurvstat) library(sf) ## ----------------------------------------------------------------------------- entero = get_timeseries( diseases$Enterovirus, "Count", age_group = age_groups$zero_fifteen) ggplot2::ggplot( entero, ggplot2::aes(x=date, y=count, colour = age_name) ) + ggplot2::geom_line() ## ----------------------------------------------------------------------------- entero2 = entero %>% fit_population() %>% dplyr::mutate(weekly_incidence_per_100K = count/population*100000) ggplot2::ggplot( entero2, ggplot2::aes(x=date, y=weekly_incidence_per_100K, colour=age_name) ) + ggplot2::geom_line() ## ----------------------------------------------------------------------------- covid_by_nuts = get_timeseries( disease = diseases$`COVID-19`, measure="Incidence", years = 2020:2022, geography = "nuts" ) ggplot2::ggplot( covid_by_nuts, ggplot2::aes(x=date, y=incidence, colour=geo_name) ) + ggplot2::geom_line() + ggplot2::guides(colour = ggplot2::guide_none()) ## ----------------------------------------------------------------------------- # Pick a set of dates around the peak: peak_date = covid_by_nuts$date[covid_by_nuts$incidence == max(covid_by_nuts$incidence)] peak_date = peak_date+c(-14,-7, 0) peak = covid_by_nuts %>% dplyr::filter(date %in% peak_date) ggplot2::ggplot( NutsKey71Map %>% dplyr::inner_join(peak, by=c("Id" = "geo_code")), ggplot2::aes(fill = incidence) )+ ggplot2::geom_sf()+ ggplot2::facet_wrap(~date,nrow = 1)+ ggplot2::scale_fill_viridis_c() ## ----------------------------------------------------------------------------- pneumo_by_serotype = get_snapshot( disease = diseases$`Pneumococcus (IfSG`, disease_subtype = TRUE, season = 2024, season_start = 27 ) pneumo_by_serotype = pneumo_by_serotype %>% # remove non typed and unknowns: dplyr::filter(startsWith(disease_subtype_name,"Sero")) %>% # removed serotypes with no detected cases: dplyr::filter(!is.na(count)) ggplot2::ggplot( pneumo_by_serotype, ggplot2::aes(x=disease_subtype_name, y=count) )+ ggplot2::geom_bar(stat="identity")+ ggplot2::theme(axis.text.x = ggplot2::element_text(size = 8, angle = 90,hjust=1,vjust=0.5))