
Package ‘rsconnect’
June 26, 2025

Type Package

Title Deploy Docs, Apps, and APIs to 'Posit Connect', 'shinyapps.io',
and 'RPubs'

Version 1.5.0

Description Programmatic deployment interface for 'RPubs',
'shinyapps.io', and 'Posit Connect'. Supported content types include R
Markdown documents, Shiny applications, Plumber APIs, plots, and
static web content.

License GPL-2

URL https://rstudio.github.io/rsconnect/,

https://github.com/rstudio/rsconnect

BugReports https://github.com/rstudio/rsconnect/issues

Depends R (>= 3.5.0)

Imports cli, curl, digest, jsonlite, lifecycle, openssl (>= 2.0.0),
PKI, packrat (>= 0.6), renv (>= 1.0.0), rlang (>= 1.0.0),
rstudioapi (>= 0.5), snowflakeauth, tools, yaml (>= 2.1.5),
utils

Suggests Biobase, BiocManager, foreign, knitr, MASS, plumber (>=
0.3.2), quarto, RCurl, reticulate, rmarkdown (>= 1.1), shiny,
testthat (>= 3.1.9), webfakes, withr

VignetteBuilder knitr, rmarkdown

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Aron Atkins [aut, cre],
Toph Allen [aut],
Hadley Wickham [aut],

1

https://rstudio.github.io/rsconnect/
https://github.com/rstudio/rsconnect
https://github.com/rstudio/rsconnect/issues

2 Contents

Jonathan McPherson [aut],
JJ Allaire [aut],
Posit Software, PBC [cph, fnd]

Maintainer Aron Atkins <aron@posit.co>

Repository CRAN

Date/Publication 2025-06-26 15:50:02 UTC

Contents
accounts . 3
accountUsage . 4
addAuthorizedUser . 4
addLinter . 5
addServer . 6
appDependencies . 8
applications . 10
authorizedUsers . 11
configureApp . 12
connectApiUser . 13
connectSPCSUser . 14
deployAPI . 14
deployApp . 15
deployDoc . 20
deployments . 21
deploySite . 22
deployTFModel . 23
forgetDeployment . 24
lint . 25
linter . 25
listAccountEnvVars . 26
listDeploymentFiles . 27
makeLinterMessage . 28
purgeApp . 29
removeAuthorizedUser . 30
resendInvitation . 30
restartApp . 31
rpubsUpload . 32
rsconnectOptions . 33
servers . 35
setAccountInfo . 36
setProperty . 37
showInvited . 38
showLogs . 38
showMetrics . 39
showProperties . 40
showUsage . 41
showUsers . 42

accounts 3

syncAppMetadata . 42
taskLog . 43
tasks . 44
terminateApp . 45
unsetProperty . 46
writeManifest . 47

Index 49

accounts Account Management Functions

Description

Functions to enumerate and remove accounts on the local system. Prior to deploying applications
you need to register your account on the local system.

Usage

accounts(server = NULL)

accountInfo(name = NULL, server = NULL)

removeAccount(name = NULL, server = NULL)

Arguments

server Name of the server on which the account is registered (optional; see servers())

name Name of account

Details

You register an account using the setAccountInfo() function (for ShinyApps) or connectUser()
function (for other servers). You can subsequently remove the account using the removeAccount
function.

The accounts and accountInfo functions are provided for viewing previously registered accounts.

Value

accounts returns a data frame with the names of all accounts registered on the system and the
servers on which they reside. accountInfo returns a list with account details.

See Also

Other Account functions: connectApiUser(), setAccountInfo()

4 addAuthorizedUser

accountUsage Show Account Usage

Description

Show account usage

Usage

accountUsage(
account = NULL,
server = NULL,
usageType = "hours",
from = NULL,
until = NULL,
interval = NULL

)

Arguments

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

usageType Use metric to retreive (for example: "hours")

from Date range starting timestamp (Unix timestamp or relative time delta such as
"2d" or "3w").

until Date range ending timestamp (Unix timestamp or relative time delta such as
"2d" or "3w").

interval Summarization interval. Data points at intervals less then this will be grouped.
(Number of seconds or relative time delta e.g. "1h").

Note

This function only works for ShinyApps servers.

addAuthorizedUser Add authorized user to application

Description

Add authorized user to application

addLinter 5

Usage

addAuthorizedUser(
email,
appDir = getwd(),
appName = NULL,
account = NULL,
server = NULL,
sendEmail = NULL,
emailMessage = NULL

)

Arguments

email Email address of user to add.

appDir Directory containing application. Defaults to current working directory.

appName Name of application.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

sendEmail Send an email letting the user know the application has been shared with them.

emailMessage Optional character vector of length 1 containing a custom message to send in
email invitation. Defaults to NULL, which will use default invitation message.

Note

This function works only for ShinyApps servers.

See Also

removeAuthorizedUser() and showUsers()

addLinter Add a Linter

Description

Add a linter, to be used in subsequent calls to lint().

Add a linter, to be used in subsequent calls to lint().

Usage

addLinter(name, linter)

addLinter(name, linter)

6 addServer

Arguments

name The name of the linter, as a string.

linter A linter().

Examples

addLinter("no.capitals", linter(

Identify lines containing capital letters -- either by name or by index
apply = function(content, ...) {
grep("[A-Z]", content)

},

Only use this linter on R files (paths ending with .r or .R)
takes = function(paths) {

grep("[rR]$", paths)
},

Use the default message constructor
message = function(content, lines, ...) {

makeLinterMessage("Capital letters found on the following lines", content, lines)
},

Give a suggested prescription
suggest = "Do not use capital letters in these documents."

))
addLinter("no.capitals", linter(

Identify lines containing capital letters -- either by name or by index
apply = function(content, ...) {

grep("[A-Z]", content)
},

Only use this linter on R files (paths ending with .r or .R)
takes = function(paths) {

grep("[rR]$", paths)
},

Use the default message constructor
message = function(content, lines, ...) {

makeLinterMessage("Capital letters found on the following lines", content, lines)
},

Give a suggested prescription
suggest = "Do not use capital letters in these documents."

))

addServer Server management

addServer 7

Description

These functions manage the list of known servers:

• addServer() registers a Posit connect server. Once it has been registered, you can connect to
an account on the server using connectUser().

• removeServer() removes a server from the registry.
• addServerCertificate() adds a certificate to a server.

Usage

addServer(
url,
name = NULL,
certificate = NULL,
validate = TRUE,
snowflakeConnectionName = NULL,
quiet = FALSE

)

removeServer(name = NULL)

addServerCertificate(name, certificate, quiet = FALSE)

Arguments

url URL for the server. Can be a bare hostname like connect.mycompany.com or a
url like http://posit.mycompany.com/connect.

name Server name. If omitted, the server hostname is used.
certificate Optional. Either a path to certificate file or a character vector containing the

certificate’s contents.
validate Validate that url actually points to a Posit Connect server?
snowflakeConnectionName

Name for the Snowflake connection parameters stored in connections.toml.
quiet Suppress output and prompts where possible.

Examples

Not run:
register a local server
addServer("http://myrsconnect/", "myserver")

list servers
servers(local = TRUE)

connect to an account on the server
connectUser(server = "myserver")

End(Not run)

8 appDependencies

appDependencies Detect application dependencies

Description

appDependencies() recursively detects all R package dependencies for an application by parsing
all .R and .Rmd files and looking for calls to library(), require(), requireNamespace(), ::,
and so on. It then adds implicit dependencies (i.e. an .Rmd requires Rmarkdown) and adds all
recursive dependencies to create a complete manifest of package packages need to be installed to
run the app.

Usage

appDependencies(
appDir = getwd(),
appFiles = NULL,
appFileManifest = NULL,
appMode = NULL

)

Arguments

appDir A directory containing an application (e.g. a Shiny app or plumber API). De-
faults to the current directory.

appFiles, appFileManifest
Use appFiles to specify a character vector of files to bundle in the app or
appFileManifest to provide a path to a file containing a list of such files. If
neither are supplied, will bundle all files in appDir, apart from standard exclu-
sions and files listed in a .rscignore file. See listDeploymentFiles() for
more details.

appMode Optional; the type of content being deployed. Provide this option when the in-
ferred type of content is incorrect. This can happen, for example, when static
HTML content includes a downloadable Shiny application app.R. Accepted val-
ues include "shiny", "api", "rmd-static", "rmd-shiny", "quarto-static",
"quarto-shiny", and "static". The Posit Connect API Reference contains a
full set of available values. Not all servers support all types of content.

Value

A data frame with one row for each dependency (direct, indirect, and inferred), and 4 columns:

• Package: package name.

• Version: local version.

• Source: a short string describing the source of the package install, as described above.

• Repository: for CRAN and CRAN-like repositories, the URL to the repository. This will
be ignored by the server if it has been configured with its own repository name -> repository
URL mapping.

appDependencies 9

Dependency discovery

rsconnect use one of three mechanisms to find which packages your application uses:

1. If renv.lock is present, it will use the versions and sources defined in that file. If you’re using
the lockfile for some other purpose and don’t want it to affect deployment, add renv.lock to
.rscignore.

2. Otherwise, rsconnect will call renv::snapshot() to find all packages used by your code. If
you’d instead prefer to only use the packages declared in a DESCRIPTION file, run renv::settings$snapshot.type("explicit")
to activate renv’s "explicit" mode.

3. Dependency resolution using renv is a new feature in rsconnect 1.0.0, and while we have done
our best to test it, it still might fail for your app. If this happens, please file an issue then set
options(rsconnect.packrat = TRUE) to revert to the old dependency discovery mechanism.

Remote installation

When deployed, the app must first install all of these packages, and rsconnect ensures the versions
used on the server will match the versions you used locally. It knows how to install packages from
the following sources:

• CRAN and BioConductor (Source: CRAN or Source: Bioconductor). The remote server
will ignore the specific CRAN or Bioconductor mirror that you use locally, always using the
CRAN/BioC mirror that has been configured on the server.

• Other CRAN like and CRAN-like repositories. These packages will have a Source determined
by the value of getOptions("repos"). For example, if you’ve set the following options:

options(
repos = c(
CRAN = "https://cran.rstudio.com/",
CORPORATE = "https://corporate-packages.development.company.com"

)
)

Then packages installed from your corporate package repository will have source CORPORATE.
Posit Connect can be configured to override their repository url so that (e.g.) you can use
different packages versions on staging and production servers.

• Packages installed from GitHub, GitLab, or BitBucket, have Source github, gitlab, and
bitbucket respectively. When deployed, the bundle contains the additional metadata needed
to precisely recreated the installed version.

It’s not possible to recreate the packages that you have built and installed from a directory on your
local computer. This will have Source: NA and will cause the deployment to error. To resolve this
issue, you’ll need to install from one of the known sources described above.

Suggested packages

The Suggests field is not included when determining recursive dependencies, so it’s possible that
not every package required to run your application will be detected.

https://github.com/rstudio/rsconnect/issues
https://docs.posit.co/connect/admin/appendix/configuration/#RPackageRepository

10 applications

For example, ggplot2’s geom_hex() requires the hexbin package to be installed, but it is only sug-
gested by ggplot2. So if your app uses geom_hex() it will fail, reporting that the hexbin package is
not installed.

You can overcome this problem with (e.g.) requireNamespace(hexbin). This will tell rsconnect
that your app needs the hexbin package, without otherwise affecting your code.

See Also

rsconnectPackages(Using Packages with rsconnect)

Examples

Not run:

dependencies for the app in the current working dir
appDependencies()

dependencies for an app in another directory
appDependencies("~/projects/shiny/app1")

End(Not run)

applications List Deployed Applications

Description

List all applications currently deployed for a given account.

Usage

applications(account = NULL, server = NULL)

Arguments

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Value

Returns a data frame with the following columns:

id Application unique id
name Name of application
title Application title
url URL where application can be accessed

authorizedUsers 11

status Current status of application. Valid values are pending, deploying, running, terminating, and terminated
size Instance size (small, medium, large, etc.) (on ShinyApps.io)
instances Number of instances (on ShinyApps.io)
config_url URL where application can be configured

Note

To register an account you call the setAccountInfo() function.

See Also

deployApp(), terminateApp()

Other Deployment functions: deployAPI(), deployApp(), deployDoc(), deploySite(), deployTFModel()

Examples

Not run:

list all applications for the default account
applications()

list all applications for a specific account
applications("myaccount")

view the list of applications in the data viewer
View(applications())

End(Not run)

authorizedUsers (Deprecated) List authorized users for an application

Description

(Deprecated) List authorized users for an application

Usage

authorizedUsers(appDir = getwd())

Arguments

appDir Directory containing application. Defaults to current working directory.

12 configureApp

configureApp Configure an Application

Description

Configure an application running on a remote server.

Usage

configureApp(
appName,
appDir = getwd(),
account = NULL,
server = NULL,
redeploy = TRUE,
size = NULL,
instances = NULL,
logLevel = c("normal", "quiet", "verbose")

)

Arguments

appName Name of application to configure

appDir Directory containing application. Defaults to current working directory.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

redeploy Re-deploy application after its been configured.

size Configure application instance size

instances Configure number of application instances

logLevel One of "quiet", "normal" or "verbose"; indicates how much logging to the
console is to be performed. At "quiet" reports no information; at "verbose",
a full diagnostic log is captured.

Note

This function works only for ShinyApps servers.

See Also

applications(), deployApp()

connectApiUser 13

Examples

Not run:

set instance size for an application
configureApp("myapp", size="xlarge")

End(Not run)

connectApiUser Register account on Posit Connect

Description

connectUser() and connectApiUser() connect your Posit Connect account to the rsconnect pack-
age so that it can deploy and manage applications on your behalf.

connectUser() is the easiest place to start because it allows you to authenticate in-browser to your
Posit Connect server. connectApiUser() is appropriate for non-interactive settings; you’ll need to
copy-and-paste the API key from your account settings.

Usage

connectApiUser(account = NULL, server = NULL, apiKey, quiet = FALSE)

connectUser(
account = NULL,
server = NULL,
quiet = FALSE,
launch.browser = getOption("rsconnect.launch.browser", interactive())

)

Arguments

account A name for the account to connect.

server The server to connect to.

apiKey The API key used to authenticate the user

quiet Whether or not to show messages and prompts while connecting the account.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to TRUE in interactive sessions only. If a function is
passed, it will be called after the app is started, with the app URL as a parameter.

See Also

Other Account functions: accounts(), setAccountInfo()

14 deployAPI

connectSPCSUser Register account on Posit Connect in Snowpark Container Services

Description

connectSPCSUser() connects your Posit Connect account to the rsconnect package so it can deploy
and manage applications on your behalf. Configure a connections.toml file in the appropriate
location.

Usage

connectSPCSUser(
account = NULL,
server = NULL,
snowflakeConnectionName,
quiet = FALSE

)

Arguments

account A name for the account to connect.

server The server to connect to.
snowflakeConnectionName

Name for the Snowflake connection parameters stored in connections.toml.

quiet Whether or not to show messages and prompts while connecting the account.

deployAPI Deploy a Plumber API

Description

Deploys an application consisting of plumber API routes. The given directory must contain a script
returning a plumb object or a plumber API definition.

Usage

deployAPI(api, ...)

Arguments

api Path to the API project directory. Must contain either entrypoint.R or plumber.R
(for plumber APIs) or _server.yml (for plumber2 APIs)

... Additional arguments to deployApp().

https://docs.snowflake.com/en/developer-guide/snowflake-cli/connecting/configure-cli#location-of-the-toml-configuration-fil

deployApp 15

Details

Deploy a plumber API definition by either supplying a directory containing plumber.R (an API
definition) or entrypoint.R that returns a plumb object created by plumber::plumb(). See the
plumber documentation for more information. Alternatively, deploy a plumber2 API by supplying
a directory containing _server.yml.

See Also

Other Deployment functions: applications(), deployApp(), deployDoc(), deploySite(), deployTFModel()

deployApp Deploy an Application

Description

Deploy a shiny application, an RMarkdown document, a plumber API, or HTML content to a server.

Usage

deployApp(
appDir = getwd(),
appFiles = NULL,
appFileManifest = NULL,
appPrimaryDoc = NULL,
appSourceDoc = NULL,
appName = NULL,
appTitle = NULL,
envVars = NULL,
appId = NULL,
appMode = NULL,
contentCategory = NULL,
account = NULL,
server = NULL,
upload = TRUE,
recordDir = NULL,
launch.browser = getOption("rsconnect.launch.browser", is_interactive()),
on.failure = NULL,
logLevel = c("normal", "quiet", "verbose"),
lint = TRUE,
metadata = list(),
forceUpdate = NULL,
python = NULL,
forceGeneratePythonEnvironment = FALSE,
quarto = NA,
appVisibility = NULL,
image = NULL,
envManagement = NULL,

16 deployApp

envManagementR = NULL,
envManagementPy = NULL,
space = NULL

)

Arguments

appDir A directory containing an application (e.g. a Shiny app or plumber API). De-
faults to the current directory.

appFiles, appFileManifest
Use appFiles to specify a character vector of files to bundle in the app or
appFileManifest to provide a path to a file containing a list of such files. If
neither are supplied, will bundle all files in appDir, apart from standard exclu-
sions and files listed in a .rscignore file. See listDeploymentFiles() for
more details.

appPrimaryDoc If the application contains more than one document, this parameter indicates
the primary one, as a path relative to appDir. Can be NULL, in which case the
primary document is inferred from the contents being deployed.

appSourceDoc [Deprecated] Please use recordDir instead.
appName Application name, a string consisting of letters, numbers, _ and -. The applica-

tion name is used to identify applications on a server, so must be unique.
If not specified, the first deployment will be automatically it from the appDir
for directory and website, and from the appPrimaryDoc for document. On sub-
sequent deploys, it will use the previously stored value.

appTitle Free-form descriptive title of application. Optional; if supplied, will often be
displayed in favor of the name. If ommitted, on second and subsequent deploys,
the title will be unchanged.

envVars A character vector giving the names of environment variables whose values
should be synchronised with the server (currently supported by Connect only).
The values of the environment variables are sent over an encrypted connection
and are not stored in the bundle, making this a safe way to send private data to
Connect.
The names (not values) are stored in the deployment record so that future de-
ployments will automatically update their values. Other environment variables
on the server will not be affected. This means that removing an environment
variable from envVars will leave it unchanged on the server. To remove it, either
delete it using the Connect UI, or temporarily unset it (with Sys.unsetenv() or
similar) then re-deploy.
Environment variables are set prior to deployment so that your code can use
them and the first deployment can still succeed. Note that means that if the
deployment fails, the values will still be updated.

appId Use this to deploy to an exact known application, ignoring all existing deploy-
ment records and appName.
You can use this to update an existing application that is missing a deployment
record. If you’re re-deploying an application that you created it’s generally eas-
ier to use appName; appId is best reserved for re-deploying apps created by
someone else.

deployApp 17

You can find the appId in the following places:

• On shinyapps.io, it’s the id listed on the applications page.
• For Posit Connect, it’s guid from the info tab on the content page.

appMode Optional; the type of content being deployed. Provide this option when the in-
ferred type of content is incorrect. This can happen, for example, when static
HTML content includes a downloadable Shiny application app.R. Accepted val-
ues include "shiny", "api", "rmd-static", "rmd-shiny", "quarto-static",
"quarto-shiny", and "static". The Posit Connect API Reference contains a
full set of available values. Not all servers support all types of content.

contentCategory

Optional; classifies the kind of content being deployed (e.g. "plot" or "site").

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

upload If TRUE (the default) then the application is uploaded from the local system prior
to deployment. If FALSE then it is re-deployed using the last version that was
uploaded. FALSE is only supported on shinyapps.io; TRUE is required on Posit
Connect.

recordDir Directory where deployment record is written. The default, NULL, uses appDir,
since this is usually where you want the deployment data to be stored. This
argument is typically only needed when deploying a directory of static files since
you want to store the record with the code that generated those files, not the files
themselves.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to TRUE in interactive sessions only. If a function is
passed, it will be called after the app is started, with the app URL as a paramter.

on.failure Function to be called if the deployment fails. If a deployment log URL is avail-
able, it’s passed as a parameter.

logLevel One of "quiet", "normal" or "verbose"; indicates how much logging to the
console is to be performed. At "quiet" reports no information; at "verbose",
a full diagnostic log is captured.

lint Lint the project before initiating deployment, to identify potentially problematic
code?

metadata Additional metadata fields to save with the deployment record. These fields will
be returned on subsequent calls to deployments().
Multi-value fields are recorded as comma-separated values and returned in that
form. Custom value serialization is the responsibility of the caller.

forceUpdate What should happen if there’s no deployment record for the app, but there’s
an app with the same name on the server? If TRUE, will always update the
previously-deployed app. If FALSE, will ask the user what to do, or fail if not in
an interactive context.
Defaults to TRUE when called automatically by the IDE, and FALSE otherwise.
You can override the default by setting option rsconnect.force.update.apps.

18 deployApp

python Full path to a python binary for use by reticulate. Required if reticulate
is a dependency of the app being deployed. If python = NULL, and RETICU-
LATE_PYTHON or RETICULATE_PYTHON_FALLBACK is set in the envi-
ronment, its value will be used. The specified python binary will be invoked to
determine its version and to list the python packages installed in the environ-
ment.

forceGeneratePythonEnvironment

Optional. If an existing requirements.txt file is found, it will be overwritten
when this argument is TRUE.

quarto Should the deployed content be built by quarto? (TRUE, FALSE, or NA). The
default, NA, will use quarto if there are .qmd files in the bundle, or if there is a
_quarto.yml and .Rmd files.
(This option is ignored and quarto will always be used if the metadata contains
quarto_version and quarto_engines fields.)

appVisibility One of NULL, "private", or "public"; the visibility of the deployment. When
NULL, no change to visibility is made. Currently has an effect only on deploy-
ments to shinyapps.io.

image Optional. The name of the image to use when building and executing this con-
tent. If none is provided, Posit Connect will attempt to choose an image based
on the content requirements. You can override the default by setting the envi-
ronment variable RSCONNECT_IMAGE.

envManagement Optional. Should Posit Connect install R and Python packages for this content?
(TRUE, FALSE, or NULL). The default, NULL, will not write any values to the bun-
dle manifest, and Connect will fall back to the application default environment
management strategy, or the server default if no application default is defined.
(This option is a shorthand flag which overwrites the values of both envManagementR
and envManagementPy.)

envManagementR Optional. Should Posit Connect install R packages for this content? (TRUE,
FALSE, or NULL). The default, NULL, will not write any values to the bundle
manifest, and Connect will fall back to the application default R environment
management strategy, or the server default if no application default is defined.
(This option is ignored when envManagement is non-NULL.)

envManagementPy

Optional. Should Posit Connect install Python packages for this content? (TRUE,
FALSE, or NULL). The default, NULL, will not write any values to the bundle man-
ifest, and Connect will fall back to the application default Python environment
management strategy, or the server default if no application default is defined.
(This option is ignored when envManagement is non-NULL.)

space Optional. For Posit Cloud, the id of the space where the content should be
deployed. If none is provided, content will be deployed to the deploying user’s
workspace or deployed to the same space in case of redeploy.

Details

Deployment records:

deployApp 19

When deploying an app, deployApp() will save a deployment record that makes it easy to update
the app on server from your local source code. This generally means that you need to only need to
supply important arguments (e.g. appName, appTitle, server/account) on the first deploy, and
rsconnect will reuse the same settings on subsequent deploys.
The metadata needs to make this work is stored in {appDir}/rsconnect/. You should generally
check these files into version control to ensure that future you and other collaborators will publish
to the same location.
If you have lost this directory, all is not lost, as deployApp() will attempt to rediscover existing
deployments. This is easiest if you are updating an app that you created, as you can just supply
the appName (and server/account if you have multiple accounts) and deployApp() will find the
existing application account. If you need to update an app that was created by someone else (that
you have write permission) for, you’ll instead need to supply the appId.

See Also

applications(), terminateApp(), and restartApp()

Other Deployment functions: applications(), deployAPI(), deployDoc(), deploySite(), deployTFModel()

Examples

Not run:

deploy the application in the current working dir
deployApp()

deploy an application in another directory
deployApp("~/projects/shiny/app1")

deploy using an alternative application name and title
deployApp("~/projects/shiny/app1", appName = "myapp",

appTitle = "My Application")

deploy specifying an explicit account name, then
redeploy with no arguments (will automatically use
the previously specified account)
deployApp(account = "jsmith")
deployApp()

deploy but don't launch a browser when completed
deployApp(launch.browser = FALSE)

deploy a Quarto website, using the quarto package to
find the Quarto binary
deployApp("~/projects/quarto/site1")

deploy application with environment variables
(e.g., `SECRET_PASSWORD=XYZ` is set via an ~/.Renviron file)
rsconnect::deployApp(envVars = c("SECRET_PASSWORD"))

End(Not run)

20 deployDoc

deployDoc Deploy a single document

Description

Deploys a single R Markdown, Quarto document, or other file (e.g. .html or .pdf).

When deploying an .Rmd, .Qmd, or .html, deployDoc() will attempt to automatically discover de-
pendencies using rmarkdown::find_external_resources(), and include an .Rprofile if present.
If you find that the document is missing dependencies, either specify the dependencies explicitly in
the document (see rmarkdown::find_external_resources() for details), or call deployApp()
directly and specify your own file list in appFiles.

Usage

deployDoc(doc, ..., logLevel = c("normal", "quiet", "verbose"))

Arguments

doc Path to the document to deploy.

... Additional arguments to deployApp(). Do not supply appDir, appFiles, or
appPrimaryDoc; these three parameters are automatically generated by deployDoc
from the document.

logLevel One of "quiet", "normal" or "verbose"; indicates how much logging to the
console is to be performed. At "quiet" reports no information; at "verbose",
a full diagnostic log is captured.

See Also

Other Deployment functions: applications(), deployAPI(), deployApp(), deploySite(), deployTFModel()

Examples

Not run:
deployDoc("my-report.Rmd")
deployDoc("static-file.html")

End(Not run)

deployments 21

deployments List Application Deployments

Description

List deployment records for a given application.

Usage

deployments(
appPath = ".",
nameFilter = NULL,
accountFilter = NULL,
serverFilter = NULL,
excludeOrphaned = TRUE

)

Arguments

appPath The path to the content that was deployed, either a directory or an individual
document.

nameFilter Return only deployments matching the given name (optional)

accountFilter Return only deployments matching the given account (optional)

serverFilter Return only deployments matching the given server (optional)
excludeOrphaned

If TRUE (the default), return only deployments made by a currently registered
account. Deployments made from accounts that are no longer registered (via
e.g.removeAccount()) will not be returned.

Value

Returns a data frame with at least following columns:

name Name of deployed application
account Account owning deployed application
bundleId Identifier of deployed application’s bundle
url URL of deployed application
deploymentFile Name of configuration file

If additional metadata has been saved with the deployment record using the metadata argument to
deployApp(), the frame will include additional columns.

See Also

applications() to get a list of deployments from the server, and deployApp() to create a new
deployment.

22 deploySite

Examples

Not run:

Return all deployments of the ~/r/myapp directory made with the 'abc'
account
deployments("~/r/myapp", accountFilter="abc")

End(Not run)

deploySite Deploy a website

Description

Deploy an R Markdown or quarto website to a server.

Usage

deploySite(
siteDir = getwd(),
siteName = NULL,
siteTitle = NULL,
account = NULL,
server = NULL,
render = c("none", "local", "server"),
launch.browser = getOption("rsconnect.launch.browser", interactive()),
logLevel = c("normal", "quiet", "verbose"),
lint = FALSE,
metadata = list(),
python = NULL,
recordDir = NULL,
...

)

Arguments

siteDir Directory containing website. Defaults to current directory.

siteName Name for the site (names must be unique within an account). Defaults to the
base name of the specified siteDir or to the name provided by a custom site
generation function.

siteTitle Title for the site. For quarto sites only, if not supplied uses the title recorded in
_quarto.yml.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

deployTFModel 23

render Rendering behavior for site:

• "none" uploads a static version of the current contents of the site directory.
• "local" renders the site locally then uploads it.
• "server" uploads the source of the site to render on the server.

Note that for "none" and "local" source files (e.g. .R, .Rmd and .md) will not
be uploaded to the server.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to TRUE in interactive sessions only. If a function is
passed, it will be called after the app is started, with the app URL as a paramter.

logLevel One of "quiet", "normal" or "verbose"; indicates how much logging to the
console is to be performed. At "quiet" reports no information; at "verbose",
a full diagnostic log is captured.

lint Lint the project before initiating deployment, to identify potentially problematic
code?

metadata Additional metadata fields to save with the deployment record. These fields will
be returned on subsequent calls to deployments().
Multi-value fields are recorded as comma-separated values and returned in that
form. Custom value serialization is the responsibility of the caller.

python Full path to a python binary for use by reticulate. Required if reticulate
is a dependency of the app being deployed. If python = NULL, and RETICU-
LATE_PYTHON or RETICULATE_PYTHON_FALLBACK is set in the envi-
ronment, its value will be used. The specified python binary will be invoked to
determine its version and to list the python packages installed in the environ-
ment.

recordDir The default, NULL, uses siteDir.

... Additional arguments to deployApp(). Do not supply appDir or appFiles;
these parameters are automatically generated by deploySite().

See Also

Other Deployment functions: applications(), deployAPI(), deployApp(), deployDoc(), deployTFModel()

deployTFModel Deploy a TensorFlow saved model

Description

Deploys a directory containing a TensorFlow saved model.

Usage

deployTFModel(...)

24 forgetDeployment

Arguments

... Additional arguments to deployApp().

See Also

Other Deployment functions: applications(), deployAPI(), deployApp(), deployDoc(), deploySite()

forgetDeployment Forget Application Deployment

Description

Forgets about an application deployment. This is useful if the application has been deleted on the
server, or the local deployment information needs to be reset.

Usage

forgetDeployment(
appPath = getwd(),
name = NULL,
account = NULL,
server = NULL,
dryRun = FALSE,
force = !interactive()

)

Arguments

appPath The path to the content that was deployed, either a directory or an individual
document.

name The name of the content that was deployed (optional)
account The name of the account to which the content was deployed (optional)
server The name of the server to which the content was deployed (optional)
dryRun Set to TRUE to preview the files/directories to be removed instead of actually

removing them. Defaults to FALSE.
force Set to TRUE to remove files and directories without prompting. Defaults to

FALSE in interactive sessions.

Details

This method removes from disk the file containing deployment metadata. If "name", "account", and
"server" are all NULL, then all of the deployments for the application are forgotten; otherwise, only
the specified deployment is forgotten.

Value

NULL, invisibly.

lint 25

lint Lint a Project

Description

Takes the set of active linters (see addLinter()), and applies them to all files within a project.

Usage

lint(project, files = NULL, appPrimaryDoc = NULL)

Arguments

project Path to a project directory.

files Specific files to lint. Can be NULL, in which case all the files in the directory
will be linted.

appPrimaryDoc The primary file in the project directory. Can be NULL, in which case it’s in-
ferred (if possible) from the directory contents.

linter Create a Linter

Description

Generate a linter, which can identify errors or problematic regions in a project.

Generate a linter, which can identify errors or problematic regions in a project.

Usage

linter(apply, takes, message, suggestion)

linter(apply, takes, message, suggestion)

Arguments

apply Function that, given the content of a file, returns the indices at which problems
were found.

takes Function that, given a set of paths, returns the subset of paths that this linter
uses.

message Function that, given content and lines, returns an informative message for the
user. Typically generated with makeLinterMessage().

suggestion String giving a prescribed fix for the linted problem.

26 listAccountEnvVars

Examples

addLinter("no.capitals", linter(

Identify lines containing capital letters -- either by name or by index
apply = function(content, ...) {
grep("[A-Z]", content)

},

Only use this linter on R files (paths ending with .r or .R)
takes = function(paths) {

grep("[rR]$", paths)
},

Use the default message constructor
message = function(content, lines, ...) {

makeLinterMessage("Capital letters found on the following lines", content, lines)
},

Give a suggested prescription
suggest = "Do not use capital letters in these documents."

))
addLinter("no.capitals", linter(

Identify lines containing capital letters -- either by name or by index
apply = function(content, ...) {

grep("[A-Z]", content)
},

Only use this linter on R files (paths ending with .r or .R)
takes = function(paths) {

grep("[rR]$", paths)
},

Use the default message constructor
message = function(content, lines, ...) {

makeLinterMessage("Capital letters found on the following lines", content, lines)
},

Give a suggested prescription
suggest = "Do not use capital letters in these documents."

))

listAccountEnvVars Maintain environment variables across multiple applications

Description

• listAccountEnvVars() lists the environment variables used by every application published
to the specified account.

listDeploymentFiles 27

• updateAccountEnvVars() updates the specified environment variables with their current val-
ues for every app that uses them.

Secure environment variable are currently only supported by Posit Connect so other server types
will generate an error.

Usage

listAccountEnvVars(server = NULL, account = NULL)

updateAccountEnvVars(envVars, server = NULL, account = NULL)

Arguments

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

envVars Names of environment variables to update. Their values will be automatically
retrieved from the current process.
If you specify multiple environment variables, any application that uses any of
them will be updated with all of them.

Value

listAccountEnvVars() returns a data frame with one row for each data frame. It has variables id,
guid, name, and envVars. envVars is a list-column.

listDeploymentFiles Gather files to be bundled with an app

Description

Given an app directory, and optional appFiles and appFileManifest arguments, returns vector of
paths to bundle in the app. (Note that documents follow a different strategy; see deployDoc() for
details.)

When neither appFiles nor appFileManifest is supplied, listDeploymentFiles() will include
all files under appDir, apart from the following:

• Certain files and folders that don’t need to be bundled, such as version control directories,
internal config files, and RStudio state, are automatically excluded.

• You can exclude additional files by listing them in in a .rscignore file. This file must have
one file or directory per line (with path relative to the current directory). It doesn’t support
wildcards, or ignoring files in subdirectories.

listDeploymentFiles() will throw an error if the total file size exceeds the maximum bundle
size (as controlled by option rsconnect.max.bundle.size), or the number of files exceeds the
maximum file limit (as controlled by option rsconnect.max.bundle.files). This prevents you
from accidentally bundling a very large direcfory (i.e. you home directory).

28 makeLinterMessage

Usage

listDeploymentFiles(
appDir,
appFiles = NULL,
appFileManifest = NULL,
error_call = caller_env()

)

Arguments

appDir A directory containing an application (e.g. a Shiny app or plumber API). De-
faults to the current directory.

appFiles, appFileManifest
Use appFiles to specify a character vector of files to bundle in the app or
appFileManifest to provide a path to a file containing a list of such files. If
neither are supplied, will bundle all files in appDir, apart from standard exclu-
sions and files listed in a .rscignore file. See listDeploymentFiles() for
more details.

error_call The call or environment for error reporting; expert use only.

Value

Character of paths to bundle, relative to appDir.

makeLinterMessage Construct a Linter Message

Description

Pretty-prints a linter message. Primarily used as a helper for constructing linter messages with
linter().

Usage

makeLinterMessage(header, content, lines)

Arguments

header A header message describing the linter.

content The content of the file that was linted.

lines The line numbers from content that contain lint.

purgeApp 29

purgeApp Purge an Application

Description

Purge a currently archived ShinyApps application.

Usage

purgeApp(appName, account = NULL, server = NULL, quiet = FALSE)

Arguments

appName Name of application to purge

account Account name. If a single account is registered on the system then this parameter
can be omitted.

server Server name. Required only if you use the same account name on multiple
servers (see servers())

quiet Request that no status information be printed to the console during the termina-
tion.

Note

This function only works for ShinyApps servers.

See Also

applications(), deployApp(), and restartApp()

Examples

Not run:

purge an application
purgeApp("myapp")

End(Not run)

30 resendInvitation

removeAuthorizedUser Remove authorized user from an application

Description

Remove authorized user from an application

Usage

removeAuthorizedUser(
user,
appDir = getwd(),
appName = NULL,
account = NULL,
server = NULL

)

Arguments

user The user to remove. Can be id or email address.

appDir Directory containing application. Defaults to current working directory.

appName Name of application.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Note

This function works only for ShinyApps servers.

See Also

addAuthorizedUser() and showUsers()

resendInvitation Resend invitation for invited users of an application

Description

Resend invitation for invited users of an application

restartApp 31

Usage

resendInvitation(
invite,
regenerate = FALSE,
appDir = getwd(),
appName = NULL,
account = NULL,
server = NULL

)

Arguments

invite The invitation to resend. Can be id or email address.
regenerate Regenerate the invite code. Can be helpful is the invitation has expired.
appDir Directory containing application. Defaults to current working directory.
appName Name of application.
account, server Uniquely identify a remote server with either your user account, the server

name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Note

This function works only for ShinyApps servers.

See Also

showInvited()

restartApp Restart an Application

Description

Restart an application currently running on a remote server.

Usage

restartApp(appName, account = NULL, server = NULL, quiet = FALSE)

Arguments

appName Name of application to restart
account Account name. If a single account is registered on the system then this parameter

can be omitted.
server Server name. Required only if you use the same account name on multiple

servers (see servers())
quiet Request that no status information be printed to the console during the operation.

32 rpubsUpload

Note

This function works only for ShinyApps servers.

See Also

applications(), deployApp(), and terminateApp()

Examples

Not run:

restart an application
restartApp("myapp")

End(Not run)

rpubsUpload Upload a file to RPubs

Description

This function publishes a file to rpubs.com. If the upload succeeds a list that includes an id and
continueUrl is returned. A browser should be opened to the continueUrl to complete publishing
of the document. If an error occurs then a diagnostic message is returned in the error element of
the list.

Usage

rpubsUpload(title, contentFile, originalDoc, id = NULL, properties = list())

Arguments

title The title of the document.
contentFile The path to the content file to upload.
originalDoc The document that was rendered to produce the contentFile. May be NULL if

the document is not known.
id If this upload is an update of an existing document then the id parameter should

specify the document id to update. Note that the id is provided as an element of
the list returned by successful calls to rpubsUpload.

properties A named list containing additional document properties (RPubs doesn’t cur-
rently expect any additional properties, this parameter is reserved for future use).

Value

A named list. If the upload was successful then the list contains a id element that can be used to
subsequently update the document as well as a continueUrl element that provides a URL that a
browser should be opened to in order to complete publishing of the document. If the upload fails
then the list contains an error element which contains an explanation of the error that occurred.

rsconnectOptions 33

Examples

Not run:
upload a document
result <- rpubsUpload("My document title", "Document.html")
if (!is.null(result$continueUrl))

browseURL(result$continueUrl)
else

stop(result$error)

update the same document with a new title
updateResult <- rpubsUpload("My updated title", "Document.html",

id = result$id)

End(Not run)

rsconnectOptions Package Options

Description

The rsconnect package supports several options that control the method used for http communi-
cations, the printing of diagnostic information for http requests, and the launching of an external
browser after deployment.

Details

Supported global options include:

rsconnect.ca.bundle Path to a custom bundle of Certificate Authority root certificates to use
when connecting to servers via SSL. This option can also be specied in the environment vari-
able RSCONNECT_CA_BUNDLE. Leave undefined to use your system’s default certificate store.

rsconnect.check.certificate Whether to check the SSL certificate when connecting to a re-
mote host; defaults to TRUE. Setting to FALSE is insecure, but will allow you to connect to hosts
using invalid certificates as a last resort.

rsconnect.http Http implementation used for connections to the back-end service:

libcurl Secure https using the curl R package
rcurl Secure https using the Rcurl R package (deprecated)
curl Secure https using the curl system utility
internal Insecure http using raw sockets

If no option is specified then libcurl is used by default.

rsconnect.http.trace When TRUE, trace http calls (prints the method, path, and total millisec-
onds for each http request)

rsconnect.http.trace.json When TRUE, trace JSON content (shows JSON payloads sent to and
received from the server))

34 rsconnectOptions

rsconnect.http.verbose When TRUE, print verbose output for http connections (useful only for
debugging SSL certificate or http connection problems)

rsconnect.tar By default, rsconnect uses R’s internal tar implementation to compress content
bundles. This may cause invalid bundles in some environments. In those cases, use this option
to specify a path to an alternate tar executable. This option can also be specified in the envi-
ronment variable RSCONNECT_TAR. Leave undefined to use the default tar implementation.

rsconnect.rcurl.options A named list of additional cURL options to use when using the RCurl
HTTP implementation in R. Run RCurl::curlOptions() to see available options.

rsconnect.libcurl.options A named list of additional cURL options to use when using the curl
HTTP implementation in R. Run curl::curl_options() to see available options.

rsconnect.error.trace When TRUE, print detailed stack traces for errors occurring during de-
ployment.

rsconnect.launch.browser When TRUE, automatically launch a browser to view applications
after they are deployed

rsconnect.locale.cache When FALSE, disable the detected locale cache (Windows only).

rsconnect.locale Override the detected locale.

rsconnect.max.bundle.size The maximum size, in bytes, for deployed content. If not set, de-
faults to 3 GB.

rsconnect.max.bundle.files The maximum number of files to deploy. If not set, defaults to
10,000.

rsconnect.force.update.apps When TRUE, bypasses the prompt to confirm whether you wish
to update previously-deployed content

rsconnect.pre.deploy A function to run prior to deploying content; it receives as an argument
the directory containing the content about to be deployed.

rsconnect.post.deploy A function to run after successfully deploying content; it receives as an
argument the directory containing the content about to be deployed.

rsconnect.python.enabled When TRUE, use the python executable specified by the RETICULATE_PYTHON
environment variable and add a python section to the deployment manifest. By default, python
is enabled when deploying to Posit Connect and disabled when deploying to shinyapps.io.

When deploying content from the RStudio IDE, the rsconnect package’s deployment methods are
executed in a vanilla R session that doesn’t execute startup scripts. This can make it challenging
to ensure options are set properly prior to push-button deployment, so the rsconnect package has a
parallel set of “startup” scripts it runs prior to deploying. The follow are run in order, if they exist,
prior to deployment:

$R_HOME/etc/rsconnect.site Like Rprofile.site; for site-wide pre-flight and options.

~/.rsconnect_profile Like .Rprofile; for user-specific content.

$PROJECT/.rsconnect_profile Like .Rprofile for projects; $PROJECT here refers to the root
directory of the content being deployed.

Note that, unlike .Rprofile, these files don’t replace each other; all three will be run if they exist.

servers 35

Examples

Not run:

use curl for http connections
options(rsconnect.http = "curl")

trace http requests
options(rsconnect.http.trace = TRUE)

print verbose output for http requests
options(rsconnect.http.verbose = TRUE)

print JSON content
options(rsconnect.http.trace.json = TRUE)

don't automatically launch a browser after deployment
options(rsconnect.launch.browser = FALSE)

End(Not run)

servers Server metadata

Description

servers() lists all known servers; serverInfo() gets metadata about a specific server. Cloud
servers shinyapps.io and posit.cloud are always automatically registered and available.

Usage

servers(local = FALSE)

serverInfo(name = NULL)

Arguments

local Return only local servers? (i.e. not automatically registered cloud servers)

name Server name. If omitted, you’ll be prompted to pick a server.

Value

servers() returns a data frame with registered server names and URLs. serverInfo() returns a
list with details for a particular server.

36 setAccountInfo

Examples

List all registered servers
servers()

Get information about a server
serverInfo("posit.cloud")

setAccountInfo Register account on shinyapps.io or posit.cloud

Description

Configure a ShinyApps or Posit Cloud account for publishing from this system.

Usage

setAccountInfo(name, token, secret, server = "shinyapps.io")

Arguments

name Name of account to save or remove

token User token for the account

secret User secret for the account

server Server to associate account with.

See Also

Other Account functions: accounts(), connectApiUser()

Examples

Not run:

register an account
setAccountInfo("user", "token", "secret")

remove the same account
removeAccount("user")

End(Not run)

setProperty 37

setProperty Set Application property

Description

Set a property on currently deployed ShinyApps application.

Usage

setProperty(
propertyName,
propertyValue,
appPath = getwd(),
appName = NULL,
account = NULL,
server = NULL,
force = FALSE

)

Arguments

propertyName Name of property
propertyValue Property value
appPath Directory or file that was deployed. Defaults to current working directory.
appName Name of application
account, server Uniquely identify a remote server with either your user account, the server

name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

force Forcibly set the property

Note

This function only works for ShinyApps servers.

Examples

Not run:

set instance size for an application
setProperty("application.instances.count", 1)

disable application package cache
setProperty("application.package.cache", FALSE)

End(Not run)

38 showLogs

showInvited List invited users for an application

Description

List invited users for an application

Usage

showInvited(appDir = getwd(), appName = NULL, account = NULL, server = NULL)

Arguments

appDir Directory containing application. Defaults to current working directory.

appName Name of application.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Note

This function works only for ShinyApps servers.

See Also

addAuthorizedUser() and showUsers()

showLogs Show Application Logs

Description

Show the logs for a deployed ShinyApps application.

Usage

showLogs(
appPath = getwd(),
appFile = NULL,
appName = NULL,
account = NULL,
server = NULL,
entries = 50,
streaming = FALSE

)

showMetrics 39

Arguments

appPath The path to the directory or file that was deployed.

appFile The path to the R source file that contains the application (for single file appli-
cations).

appName The name of the application to show logs for. May be omitted if only one appli-
cation deployment was made from appPath.

account The account under which the application was deployed. May be omitted if only
one account is registered on the system.

server Server name. Required only if you use the same account name on multiple
servers.

entries The number of log entries to show. Defaults to 50 entries.

streaming Whether to stream the logs. If TRUE, then the function does not return; instead,
log entries are written to the console as they are made, until R is interrupted.
Defaults to FALSE.

Note

This function only uses the libcurl transport, and works only for ShinyApps servers.

showMetrics Show Application Metrics

Description

Show application metrics of a currently deployed application. This function only works for ShinyApps
servers.

Usage

showMetrics(
metricSeries,
metricNames,
appDir = getwd(),
appName = NULL,
account = NULL,
server = "shinyapps.io",
from = NULL,
until = NULL,
interval = NULL

)

40 showProperties

Arguments

metricSeries Metric series to query. Refer to the shinyapps.io documentation for available
series.

metricNames Metric names in the series to query. Refer to the shinyapps.io documentation for
available metrics.

appDir A directory containing an application (e.g. a Shiny app or plumber API). De-
faults to the current directory.

appName Application name, a string consisting of letters, numbers, _ and -. The applica-
tion name is used to identify applications on a server, so must be unique.

If not specified, the first deployment will be automatically it from the appDir
for directory and website, and from the appPrimaryDoc for document. On sub-
sequent deploys, it will use the previously stored value.

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.

Use accounts() to see the full list of available options.

from Date range starting timestamp (Unix timestamp or relative time delta such as
"2d" or "3w").

until Date range ending timestamp (Unix timestamp or relative time delta such as
"2d" or "3w").

interval Summarization interval. Data points at intervals less then this will be grouped.
(Relative time delta e.g. "120s" or "1h" or "30d").

showProperties Show Application property

Description

Show properties of an application deployed to ShinyApps.

Usage

showProperties(
appPath = getwd(),
appName = NULL,
account = NULL,
server = NULL

)

https://docs.posit.co/shinyapps.io/metrics.html#ApplicationMetrics
https://docs.posit.co/shinyapps.io/metrics.html#ApplicationMetrics

showUsage 41

Arguments

appPath Directory or file that was deployed. Defaults to current working directory.
appName Name of application
account, server Uniquely identify a remote server with either your user account, the server

name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Note

This function works only for ShinyApps servers.

showUsage Show Application Usage

Description

Show application usage of a currently deployed application

Usage

showUsage(
appDir = getwd(),
appName = NULL,
account = NULL,
server = NULL,
usageType = "hours",
from = NULL,
until = NULL,
interval = NULL

)

Arguments

appDir Directory containing application. Defaults to current working directory.
appName Name of application
account, server Uniquely identify a remote server with either your user account, the server

name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

usageType Use metric to retreive (for example: "hours")
from Date range starting timestamp (Unix timestamp or relative time delta such as

"2d" or "3w").
until Date range ending timestamp (Unix timestamp or relative time delta such as

"2d" or "3w").
interval Summarization interval. Data points at intervals less then this will be grouped.

(Relative time delta e.g. "120s" or "1h" or "30d").

42 syncAppMetadata

Note

This function only works for ShinyApps servers.

showUsers List authorized users for an application

Description

List authorized users for an application

Usage

showUsers(appDir = getwd(), appName = NULL, account = NULL, server = NULL)

Arguments

appDir Directory containing application. Defaults to current working directory.
appName Name of application.
account, server Uniquely identify a remote server with either your user account, the server

name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Note

This function works only for ShinyApps servers.

See Also

addAuthorizedUser() and showInvited()

syncAppMetadata Update deployment records

Description

Update the deployment records for applications published to Posit Connect. This updates applica-
tion title and URL, and deletes records for deployments where the application has been deleted on
the server.

Usage

syncAppMetadata(appPath = ".")

Arguments

appPath The path to the directory or file that was deployed.

taskLog 43

taskLog Show task log

Description

Writes the task log for the given task

Usage

taskLog(taskId, account = NULL, server = NULL, output = NULL)

Arguments

taskId Task Id

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.

Use accounts() to see the full list of available options.

output Where to write output. Valid values are NULL or stderr

Note

This function works only with shinyapps.io and posit.cloud.

See Also

tasks()

Examples

Not run:

write task log to stdout
taskLog(12345)

write task log to stderr
taskLog(12345, output="stderr")

End(Not run)

44 tasks

tasks List Tasks

Description

List Tasks

Usage

tasks(account = NULL, server = NULL)

Arguments

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

Value

Returns a data frame with the following columns:

id Task id
action Task action
status Current task status
created_time Task creation time
finished_time Task finished time

Note

This function works only with shinyapps.io and posit.cloud.

See Also

taskLog()

Examples

Not run:

list tasks for the default account
tasks()

End(Not run)

terminateApp 45

terminateApp Terminate an Application

Description

Terminate and archive a currently deployed ShinyApps application.

Usage

terminateApp(appName, account = NULL, server = NULL, quiet = FALSE)

Arguments

appName Name of application to terminate

account Account name. If a single account is registered on the system then this parameter
can be omitted.

server Server name. Required only if you use the same account name on multiple
servers (see servers())

quiet Request that no status information be printed to the console during the termina-
tion.

Note

This function only works for ShinyApps servers.

See Also

applications(), deployApp(), and restartApp()

Examples

Not run:

terminate an application
terminateApp("myapp")

End(Not run)

46 unsetProperty

unsetProperty Unset Application property

Description

Unset a property on currently deployed ShinyApps application (restoring to its default value)

Usage

unsetProperty(
propertyName,
appPath = getwd(),
appName = NULL,
account = NULL,
server = NULL,
force = FALSE

)

Arguments

propertyName Name of property

appPath Directory or file that was deployed. Defaults to current working directory.

appName Name of application

account, server Uniquely identify a remote server with either your user account, the server
name, or both. If neither are supplied, and there are multiple options, you’ll be
prompted to pick one.
Use accounts() to see the full list of available options.

force Forcibly unset the property

Note

This function only works for ShinyApps servers.

Examples

Not run:

unset application package cache property to revert to default
unsetProperty("application.package.cache")

End(Not run)

writeManifest 47

writeManifest Create a manifest.json

Description

Use writeManifest() to generate a manifest.json. Among other things, you can commit this
file to git to activate Git-Backed content for Posit Connect.

manifest.json contains a list of all files in the app along with their dependencies, so you will need
to re-run writeManifest() when either of these change.

Usage

writeManifest(
appDir = getwd(),
appFiles = NULL,
appFileManifest = NULL,
appPrimaryDoc = NULL,
appMode = NULL,
contentCategory = NULL,
python = NULL,
forceGeneratePythonEnvironment = FALSE,
quarto = NA,
image = NULL,
envManagement = NULL,
envManagementR = NULL,
envManagementPy = NULL,
verbose = FALSE,
quiet = FALSE

)

Arguments

appDir A directory containing an application (e.g. a Shiny app or plumber API). De-
faults to the current directory.

appFiles, appFileManifest
Use appFiles to specify a character vector of files to bundle in the app or
appFileManifest to provide a path to a file containing a list of such files. If
neither are supplied, will bundle all files in appDir, apart from standard exclu-
sions and files listed in a .rscignore file. See listDeploymentFiles() for
more details.

appPrimaryDoc If the application contains more than one document, this parameter indicates
the primary one, as a path relative to appDir. Can be NULL, in which case the
primary document is inferred from the contents being deployed.

appMode Optional; the type of content being deployed. Provide this option when the in-
ferred type of content is incorrect. This can happen, for example, when static

https://docs.posit.co/connect/user/git-backed/

48 writeManifest

HTML content includes a downloadable Shiny application app.R. Accepted val-
ues include "shiny", "api", "rmd-static", "rmd-shiny", "quarto-static",
"quarto-shiny", and "static". The Posit Connect API Reference contains a
full set of available values. Not all servers support all types of content.

contentCategory

Set this to "site" if you’d deploy with deploySite(); otherwise leave as is.

python Full path to a python binary for use by reticulate. Required if reticulate
is a dependency of the app being deployed. If python = NULL, and RETICU-
LATE_PYTHON or RETICULATE_PYTHON_FALLBACK is set in the envi-
ronment, its value will be used. The specified python binary will be invoked to
determine its version and to list the python packages installed in the environ-
ment.

forceGeneratePythonEnvironment

Optional. If an existing requirements.txt file is found, it will be overwritten
when this argument is TRUE.

quarto Should the deployed content be built by quarto? (TRUE, FALSE, or NA). The
default, NA, will use quarto if there are .qmd files in the bundle, or if there is a
_quarto.yml and .Rmd files.
(This option is ignored and quarto will always be used if the metadata contains
quarto_version and quarto_engines fields.)

image Optional. The name of the image to use when building and executing this con-
tent. If none is provided, Posit Connect will attempt to choose an image based
on the content requirements. You can override the default by setting the envi-
ronment variable RSCONNECT_IMAGE.

envManagement Optional. Should Posit Connect install R and Python packages for this content?
(TRUE, FALSE, or NULL). The default, NULL, will not write any values to the bun-
dle manifest, and Connect will fall back to the application default environment
management strategy, or the server default if no application default is defined.
(This option is a shorthand flag which overwrites the values of both envManagementR
and envManagementPy.)

envManagementR Optional. Should Posit Connect install R packages for this content? (TRUE,
FALSE, or NULL). The default, NULL, will not write any values to the bundle
manifest, and Connect will fall back to the application default R environment
management strategy, or the server default if no application default is defined.
(This option is ignored when envManagement is non-NULL.)

envManagementPy

Optional. Should Posit Connect install Python packages for this content? (TRUE,
FALSE, or NULL). The default, NULL, will not write any values to the bundle man-
ifest, and Connect will fall back to the application default Python environment
management strategy, or the server default if no application default is defined.
(This option is ignored when envManagement is non-NULL.)

verbose If TRUE, prints detailed progress messages.

quiet If FALSE, prints progress messages.

Index

∗ Account functions
accounts, 3
connectApiUser, 13
setAccountInfo, 36

∗ Deployment functions
applications, 10
deployAPI, 14
deployApp, 15
deployDoc, 20
deploySite, 22
deployTFModel, 23

accountInfo (accounts), 3
accounts, 3, 13, 36
accounts(), 4, 5, 10, 12, 17, 22, 27, 30, 31,

37, 38, 40–44, 46
accountUsage, 4
addAuthorizedUser, 4
addAuthorizedUser(), 30, 38, 42
addLinter, 5
addLinter(), 25
addServer, 6
addServerCertificate (addServer), 6
appDependencies, 8
applications, 10, 15, 19, 20, 23, 24
applications(), 12, 19, 21, 29, 32, 45
authorizedUsers, 11

configureApp, 12
connectApiUser, 3, 13, 36
connectSPCSUser, 14
connectUser (connectApiUser), 13
connectUser(), 3, 7

deployAPI, 11, 14, 19, 20, 23, 24
deployApp, 11, 15, 15, 20, 23, 24
deployApp(), 11, 12, 14, 20, 21, 23, 24, 29,

32, 45
deployDoc, 11, 15, 19, 20, 23, 24
deployDoc(), 27

deployments, 21
deployments(), 17, 23
deploySite, 11, 15, 19, 20, 22, 24
deploySite(), 48
deployTFModel, 11, 15, 19, 20, 23, 23

forgetDeployment, 24

lint, 25
lint(), 5
linter, 25
linter(), 6, 28
listAccountEnvVars, 26
listDeploymentFiles, 27
listDeploymentFiles(), 8, 16, 28, 47

makeLinterMessage, 28
makeLinterMessage(), 25

purgeApp, 29

removeAccount (accounts), 3
removeAccount(), 21
removeAuthorizedUser, 30
removeAuthorizedUser(), 5
removeServer (addServer), 6
resendInvitation, 30
restartApp, 31
restartApp(), 19, 29, 45
RMarkdown, 15
rmarkdown::find_external_resources(),

20
rpubsUpload, 32
rsconnectOptions, 33
rsconnectPackages, 10

serverInfo (servers), 35
servers, 35
servers(), 3, 29, 31, 45
setAccountInfo, 3, 13, 36
setAccountInfo(), 3, 11

49

50 INDEX

setProperty, 37
shiny, 15
showInvited, 38
showInvited(), 31, 42
showLogs, 38
showMetrics, 39
showProperties, 40
showUsage, 41
showUsers, 42
showUsers(), 5, 30, 38
syncAppMetadata, 42

taskLog, 43
taskLog(), 44
tasks, 44
tasks(), 43
terminateApp, 45
terminateApp(), 11, 19, 32

unsetProperty, 46
updateAccountEnvVars

(listAccountEnvVars), 26

writeManifest, 47

	accounts
	accountUsage
	addAuthorizedUser
	addLinter
	addServer
	appDependencies
	applications
	authorizedUsers
	configureApp
	connectApiUser
	connectSPCSUser
	deployAPI
	deployApp
	deployDoc
	deployments
	deploySite
	deployTFModel
	forgetDeployment
	lint
	linter
	listAccountEnvVars
	listDeploymentFiles
	makeLinterMessage
	purgeApp
	removeAuthorizedUser
	resendInvitation
	restartApp
	rpubsUpload
	rsconnectOptions
	servers
	setAccountInfo
	setProperty
	showInvited
	showLogs
	showMetrics
	showProperties
	showUsage
	showUsers
	syncAppMetadata
	taskLog
	tasks
	terminateApp
	unsetProperty
	writeManifest
	Index

