
Good Relations with R

David Meyer and Kurt Hornik

2016-07-01

Given k sets of objects X1, . . . , Xk, a k-ary relation R on D(R) = (X1, . . . , Xk) is a subset
G(R) of the Cartesian product X1 × · · · ×Xk. I.e., D(R) is a k-tuple of sets and G(R) is a set of
k-tuples. We refer to D(R) and G(R) as the domain and the graph of the relation R, respectively
(alternative notions are that of ground and figure, respectively).

Relations are a very fundamental mathematical concept: well-known examples include the
linear order defined on the set of integers, the equivalence relation, notions of preference relations
used in economics and political sciences, etc. Package relations provides data structures along
with common basic operations for relations and also relation ensembles (collections of relations
with the same domain), as well as various algorithms for finding suitable consensus relations for
given relation ensembles.

1 Relations and Relation Ensembles

1.1 Relations

For a k-ary relation R with domain D(R) = (X1, . . . , Xk), we refer to s = (s1, . . . , sk), where each
si gives the cardinality of Xi, as the size of the relation. Note that often, relations are identified
with their graph; strictly speaking, the relation is the pair (D(R), G(R)). We say that a k-tuple
t is contained in the relation R iff it is an element of G(R). The incidence (array) I(R) of R is
a k-dimensional 0/1 array of size s whose elements indicate whether the corresponding k-tuples
are contained in R or not.

Package relations implements finite relations as an S3 class which allows for a variety of rep-
resentations (even though currently, typically dense array representations of the incidences are
employed). Other than by the generator relation(), relations can be obtained by coercion via
the generic function as.relation(), which has methods for at least logical and numeric vectors,
unordered and ordered factors, arrays including matrices, and data frames. Unordered factors are
coerced to equivalence relations; ordered factors and numeric vectors are coerced to order rela-
tions. Logical vectors give unary relations (predicates). A (feasible) k-dimensional array is taken
as the incidence of a k-ary relation. Finally, a data frame is taken as a relation table (object by
attribute representation of the relation graph). Note that missing values will be propagated in the
coercion.

> ## A relation created by specifying the graph:

> R <- relation(graph = data.frame(A = c(1, 1:3), B = c(2:4, 4)))

> ## extract domain

> relation_domain(R)

Relation domain:

A pair (A, B) with elements:

{1, 2, 3}

{2, 3, 4}

> ## extract graph

> relation_graph(R)

1

Relation graph:

A set with pairs ("A", "B"):

(1, 2)

(1, 3)

(2, 4)

(3, 4)

> ## both ("a pair of domain and graph" ...)

> as.tuple(R)

(Domain = (A = {1, 2, 3}, B = {2, 3, 4}), Graph = {(1, 2), (1, 3), (2,

4), (3, 4)})

> ## extract incidence

> relation_incidence(R)

Incidences:

B

A 2 3 4

1 1 1 0

2 0 0 1

3 0 0 1

> ## (Almost) the same using the set specification

> ## (the domain labels are missing).

> R <- relation(graph = set(tuple(1,2), tuple(1,3), tuple(2,4), tuple(3,4)))

> ## equivalent to:

> ## relation(graph = list(1:2, c(1,3), c(2,4), c(3,4)))

> relation_incidence(R)

Incidences:

2 3 4

1 1 1 0

2 0 0 1

3 0 0 1

> ## Domains can be composed of arbitrary R objects:

> R <- relation(domain = set(c, "test"),

+ graph = set(tuple(c, c), tuple(c, "test")))

> relation_incidence(R)

Incidences:

test <<function>>

test 0 0

<<function>> 1 1

> as.relation(1:3)

A binary relation of size 3 x 3.

> relation_graph(as.relation(c(TRUE, FALSE, TRUE)))

Relation graph:

A set with singletons:

("1")

("3")

2

> relation_graph(as.relation(factor(c("A", "B", "A"))))

Relation graph:

A set with pairs:

("1", "1")

("1", "3")

("2", "2")

("3", "1")

("3", "3")

Note that while coercion uses the factor values to obtain the graph, it infers the domain from the
factor names if available and unique, or from the values if unique:

> relation_graph(as.relation(factor(c(X = "A", Y = "B", Z = "A"))))

Relation graph:

A set with pairs:

("X", "X")

("X", "Z")

("Y", "Y")

("Z", "X")

("Z", "Z")

> relation_graph(as.relation(factor(c("A", "B", "C"))))

Relation graph:

A set with pairs:

("A", "A")

("B", "B")

("C", "C")

The characteristic function fR (sometimes also referred to as indicator function) of a relation
R is the predicate (Boolean-valued) function on the Cartesian product X1 × · · · × Xk such that
fR(t) is true iff the k-tuple t is in G(R). Characteristic functions can both be recovered from a
relation via relation_charfun(), and be used in the generator for the creation. In the following,
R represents “a divides b”:

> divides <- function(a, b) b %% a == 0

> R <- relation(domain = list(1 : 10, 1 : 10), charfun = divides)

> R

A binary relation of size 10 x 10.

> "%|%" <- relation_charfun(R)

> 2L %|% 6L

[1] TRUE

> 2:4 %|% 6L

[1] TRUE TRUE FALSE

> 2L %|% c(2:3, 6L)

[1] TRUE FALSE TRUE

> "%|%"(2L, 6L)

3

[1] TRUE

Quite a few relation_is_foo () predicate functions are available. For example, rela-
tions with arity 2, 3, and 4 are typically referred to as binary, ternary, and quaternary rela-
tions, respectively—the corresponding functions in package relations are relation_is_binary(),
relation_is_ternary(), etc. For binary relations R, it is customary to write xRy iff (x, y) is
contained in R. For predicates available on binary relations, see Table 1. An endorelation on X
(or binary relation over X) is a binary relation with domain (X,X). Endorelations may or may
not have certain basic properties (such as transitivity, reflexivity, etc.) which can be tested in
relations using the corresponding predicates (see Table 2 for an overview). Some combinations of
these basic properties have special names because of their widespread use (such as linear order or
weak order), and can again be tested using the functions provided (see Table 3).

> R <- as.relation(1:5)

> relation_is(R, "binary")

[1] TRUE

> relation_is(R, "transitive")

[1] TRUE

> relation_is(R, "partial_order")

[1] TRUE

Relations with the same domain can naturally be ordered according to their graphs. I.e.,
R1 ≤ R2 iff G(R1) is a subset of G(R2), or equivalently, if every k-tuple t contained in R1 is
also contained in R2. This induces a lattice structure, with meet (greatest lower bound) and
join (least upper bound) the intersection and union of the graphs, respectively, also known as
the intersection and union of the relations. The least element moves metric on this lattice is
the symmetric difference metric, i.e., the cardinality of the symmetric difference of the graphs
(the number of tuples in exactly one of the relation graphs). This “symdiff” dissimilarity between
(ensembles of) relations can be computed by relation_dissimilarity().

> x <- matrix(0, 3L, 3L)

> R1 <- as.relation(row(x) >= col(x))

> R2 <- as.relation(row(x) <= col(x))

> R3 <- as.relation(row(x) < col(x))

> relation_incidence(max(R1, R2))

Incidences:

1 2 3

1 1 1 1

2 1 1 1

3 1 1 1

> relation_incidence(min(R1, R2))

Incidences:

1 2 3

1 1 0 0

2 0 1 0

3 0 0 1

> R3 < R2

4

left-total for all x there is at least one y such that xRy.
right-total for all y there is at least one x such that xRy.
functional for all x there is at most one y such that xRy.
surjective the same as right-total.
injective for all y there is at most one x such that xRy.
bijective left-total, right-total, functional and injective.

Table 1: Some properties foo of binary relations—the predicates in relations are
relation_is_foo () (with hyphens replaced by underscores).

reflexive xRx for all x.
irreflexive there is no x such that xRx.
coreflexive xRy implies x = y.
symmetric xRy implies yRx.
asymmetric xRy implies that not yRx.
antisymmetric xRy and yRx imply that x = y.
transitive xRy and yRz imply that xRz.
complete for all distinct x and y, xRy or yRx.
strongly complete for all x and y, xRy or yRx.
negatively transitive not xRy and not yRz imply that not xRz.
Ferrers xRy and zRw imply xRw or yRz.
semitransitive xRy and yRz imply xRw or wRz.
quasitransitive xRy and not yRx and yRz and not zRy imply that xRz

and not zRx (i.e., the asymmetric part of R is transitive).
trichotomous exactly one of xRy, yRx, or x = y holds.
Euclidean xRy and xRz imply yRz.

Table 2: Some properties bar of endorelations—the predicates in relations are relation_is_bar ()
(with spaces replaced by underscores).

preorder reflexive and transitive.
quasiorder the same as preorder.
equivalence a symmetric preorder.
weak order complete and transitive.
preference the same as weak order.
partial order an antisymmetric preorder.
strict partial order irreflexive, transitive and antisymmetric.
linear order a complete partial order.
strict linear order a complete strict partial order.
match strongly complete.
tournament complete and antisymmetric.
interval order complete and Ferrers.
semiorder a semitransitive interval order.

Table 3: Some categories baz of endorelations—the predicates in relations are relation_is_baz ()
(with spaces replaced by underscores).

5

[1] TRUE

> relation_dissimilarity(min(R1, R2), max(R1, R2))

[,1]

[1,] 6

The complement (or negation) Rc of a relation R is the relation with domain D(R) whose
graph is the complement of G(R), i.e., which contains exactly the tuples not contained in R. For
binary relations R1 and R2 with domains (X,Y) and (Y, Z), the composition S = R1 ∗ R2 of R1

and R2 is defined by taking xSz iff there is a y such that xR1y and yR2z. The transpose (or
inverse) Rt of the relation R with domain (X,Y) is the relation with domain (Y,X) such that
xRty iff yRx.

> relation_incidence(! R1)

Incidences:

1 2 3

1 0 1 1

2 0 0 1

3 0 0 0

> relation_incidence(R1 * R2)

Incidences:

1 2 3

1 1 1 1

2 1 1 1

3 1 1 1

> relation_incidence(t(R2))

Incidences:

1 2 3

1 1 0 0

2 1 1 0

3 1 1 1

There is a plot() method for certain endorelations (currently, only complete or antisymmetric
transitive relations are supported) provided that package Rgraphviz (Hansen, Gentry, Long, Gen-
tleman, Falcon, Hahne, and Sarkar, 2017) is available, creating a Hasse diagram of the relation.
The following code produces the Hasse diagram corresponding to the inclusion relation on the
power set of {a, b, c} which is a partial order (see Figure 1).

> ps <- 2 ^ set("a", "b", "c")

> inc <- set_outer(ps, "<=")

> if (require("Rgraphviz")) plot(relation(incidence = inc))

1.2 Relation Ensembles

“Relation ensembles” are collections of relations Ri = (D,Gi) with the same domain D and possibly
different graphs Gi. Such ensembles are implemented as suitably classed lists of relation objects
(of class relation_ensemble and inheriting from tuple), making it possible to use lapply() for
computations on the individual relations in the ensemble. Relation ensembles can be created via
relation_ensemble(), or by coercion via the generic function as.relation_ensemble() which
has methods for at least data frames (regarding each variable as a separate relation). Available

6

Partial Order

{a, b, c}

{a, b} {a, c}

{a}

{b, c}

{b} {c}

{}

Figure 1: Hasse Diagram of the inclusion relation on the power set of {a, b, c}.

methods for relation ensembles include those for subscripting, c(), t(), rep(), print(), and
plot(). In addition, there are summary methods defined (min(), max(), and range()). Other
operations work element-wise like on tuples due to the inheritance.

The Cetacea data set (Vescia, 1985) is a data frame with 15 variables relating to morphology,
osteology, or behavior, with both self-explanatory names and levels, and a common zoological
classification (variable CLASS) for 36 types of cetacea. We consider each variable an equivalence
relation on the objects, excluding 2 variables with missing values, giving a relation ensemble of
length 14 (number of complete variables in the data set).

> data("Cetacea")

> ind <- vapply(Cetacea, function(s) all(!is.na(s)), TRUE)

> relations <- as.relation_ensemble(Cetacea[, ind])

> print(relations)

An ensemble of 14 relations of size 36 x 36.

Available methods for relation ensembles allow to determine duplicated (relation) entries, to repli-
cate and combine, and extract unique elements:

> any(duplicated(relations))

[1] FALSE

> thrice <- c(rep(relations, 2L), relations)

> all.equal(unique(thrice), relations)

[1] "names for current but not for target"

Note that unique() does not preserve attributes, and hence names. In case one wants otherwise,
one can subscript by a logical vector indicating the non-duplicated entries:

> all.equal(thrice[!duplicated(thrice)], relations)

[1] TRUE

7

Relation (cross-)dissimilarities can be computed for relations and ensembles thereof:

> relation_dissimilarity(relations[1 : 2], relations["CLASS"])

CLASS

NECK 584

FORM_OF_THE_HEAD 330

To determine which single variable is “closest” to the zoological classification:

> d <- relation_dissimilarity(relations)

> sort(as.matrix(d)[, "CLASS"])[-1L]

BLOW_HOLE DORSAL_FIN

190 240

SET_OF_TEETH FLIPPERS

288 298

FORM_OF_THE_HEAD FEEDING

330 382

HABITAT BEAK

398 456

COLOR LONGITUDINAL_FURROWS_ON_THE_THROAT

494 506

CERVICAL_VERTEBRAE SIZE_OF_THE_HEAD

508 542

NECK

584

There is also an Ops group method for relation ensembles which works elementwise (in essence,
as for tuples):

> complement <- !relations

> complement

An ensemble of 14 relations of size 36 x 36.

2 Relational Algebra

In addition to the basic operations defined on relations, the package provides functionality similar
to the corresponding operations defined in relational algebra theory as introduced by Codd (1970).
Note, however, that domains in database relations, unlike the concept of relations we use here,
are unordered. In fact, a database relation (“table”) is defined as a set of elements called “tuples”,
where the “tuple” components are named, but unordered. Thus, a “tuple” in this Codd sense is a
set of mappings from the attribute names into the union of the attribute domains. The functions
defined in relations, however, preserve and respect the column ordering.

The projection of a relation on a specified margin (i.e., a vector of domain names or indices)
is the relation obtained when all tuples are restricted to this margin. As a consequence, duplicate
tuples are removed. The corresponding function in package relations is relation_projection().

> ## projection

> Person <-

+ data.frame(Name = c("Harry", "Sally", "George", "Helena", "Peter"),

+ Age = c(34, 28, 29, 54, 34),

+ Weight = c(80, 64, 70, 54, 80),

+ stringsAsFactors = FALSE)

> Person <- as.relation(Person)

> relation_table(Person)

8

Name Age Weight

Helena 54 54

Sally 28 64

George 29 70

Harry 34 80

Peter 34 80

> relation_table(relation_projection(Person, c("Age", "Weight")))

Age Weight

54 54

28 64

29 70

34 80

(Note that Harry and Peter have the same age and weight.)
The selection of a relation is the relation obtained by taking a subset of the rela-

tion graph, defined by some logical expression. The corresponding function in relations is
relation_selection().

> ## selection

> relation_table(R1 <- relation_selection(Person, Age < 29))

Name Age Weight

Sally 28 64

> relation_table(R2 <- relation_selection(Person, Age >= 34))

Name Age Weight

Helena 54 54

Harry 34 80

Peter 34 80

> relation_table(R3 <- relation_selection(Person, Age == Weight))

Name Age Weight

Helena 54 54

The union of two relations simply combines the graph elements of both relations; the comple-

ment of two relations R and S removes the tuples of S from R. One can use - as a shortcut for
relation_complement(), and %U% or | for relation_union(). The difference between %U% and
| is that the latter only works for identical domains.

> ## union

> relation_table(R1 %U% R2)

Name Age Weight

Helena 54 54

Sally 28 64

Harry 34 80

Peter 34 80

> ## works only for the same domains:

> relation_table(R2 | R3)

Name Age Weight

Helena 54 54

Harry 34 80

Peter 34 80

9

> ## complement

> relation_table(Person - R2)

Name Age Weight

Sally 28 64

George 29 70

The intersection (symmetric difference) of two relations is the relation with all tuples they
have (do not have) in common. One can use & instead of relation_intersection() in case of
identical domains.

> ## intersection

> relation_table(relation_intersection(R2, R3))

Name Age Weight

Helena 54 54

> ## works only for the same domains:

> relation_table(R2 & R3)

Name Age Weight

Helena 54 54

> ## symmetric difference

> relation_table(relation_symdiff(R2, R3))

Name Age Weight

Harry 34 80

Peter 34 80

The Cartesian product of two relations is obtained by basically building the Cartesian prod-
uct of all graph elements, but combining the resulting pairs into single tuples. A shortcut for
relation_cartesian() is %><%.

> ## cartesian product

> Employee <-

+ data.frame(Name = c("Harry", "Sally", "George", "Harriet", "John"),

+ EmpId = c(3415, 2241, 3401, 2202, 3999),

+ DeptName = c("Finance", "Sales", "Finance", "Sales", "N.N."),

+ stringsAsFactors = FALSE)

> Employee <- as.relation(Employee)

> relation_table(Employee)

Name EmpId DeptName

George 3401 Finance

Harry 3415 Finance

John 3999 N.N.

Harriet 2202 Sales

Sally 2241 Sales

> Dept <- data.frame(DeptName = c("Finance", "Sales", "Production"),

+ Manager = c("George", "Harriet", "Charles"),

+ stringsAsFactors = FALSE)

> Dept <- as.relation(Dept)

> relation_table(Dept)

10

DeptName Manager

Production Charles

Finance George

Sales Harriet

> relation_table(Employee %><% Dept)

Name EmpId DeptName DeptName Manager

George 3401 Finance Production Charles

Harry 3415 Finance Production Charles

John 3999 N.N. Production Charles

Harriet 2202 Sales Production Charles

Sally 2241 Sales Production Charles

George 3401 Finance Finance George

Harry 3415 Finance Finance George

John 3999 N.N. Finance George

Harriet 2202 Sales Finance George

Sally 2241 Sales Finance George

George 3401 Finance Sales Harriet

Harry 3415 Finance Sales Harriet

John 3999 N.N. Sales Harriet

Harriet 2202 Sales Sales Harriet

Sally 2241 Sales Sales Harriet

The division of relation R by relation S is the reversed Cartesian product. The result is
a relation with the domain unique to R and containing the maximum number of tuples which,
multiplied by S, are contained in R. The remainder of this operation is the complement of R and
the division of R by S. Note that for both operations, the domain of S must be contained in the
domain of R. The shortcuts for relation_division() and relation_remainder() are %/% and
%%, respectively.

> ## division

> Completed <-

+ data.frame(Student = c("Fred", "Fred", "Fred", "Eugene",

+ "Eugene", "Sara", "Sara"),

+ Task = c("Database1", "Database2", "Compiler1",

+ "Database1", "Compiler1", "Database1",

+ "Database2"),

+ stringsAsFactors = FALSE)

> Completed <- as.relation(Completed)

> relation_table(Completed)

Student Task

Eugene Compiler1

Fred Compiler1

Eugene Database1

Fred Database1

Sara Database1

Fred Database2

Sara Database2

> DBProject <- data.frame(Task = c("Database1", "Database2"),

+ stringsAsFactors = FALSE)

> DBProject <- as.relation(DBProject)

> relation_table(DBProject)

11

Task

Database1

Database2

> relation_table(Completed %/% DBProject)

Student

Fred

Sara

> ## division remainder

> relation_table(Completed %% DBProject)

Student Task

Eugene Compiler1

Fred Compiler1

Eugene Database1

The (natural) join of two relations is their Cartesian product, restricted to the subset where
the elements of the common attributes do match. The left/right/full outer join of two relations
R and S is the union of R/S/(R and S), and the inner join of R and S. The implementation
of relation_join() uses merge(), and so the left/right/full outer joins are obtained by setting
all.x/all.y/all to TRUE in relation_join(). The domains to be matched are specified using
by. Alternatively, one can use the operators %|><|%, %=><%, %><=%, and %=><=% for the natural
join, left join, right join, and full outer join, respectively.

> ## Natural join

> relation_table(Employee %|><|% Dept)

Name EmpId DeptName Manager

George 3401 Finance George

Harry 3415 Finance George

Harriet 2202 Sales Harriet

Sally 2241 Sales Harriet

> ## left (outer) join

> relation_table(Employee %=><% Dept)

Name EmpId DeptName Manager

George 3401 Finance George

Harry 3415 Finance George

Harriet 2202 Sales Harriet

Sally 2241 Sales Harriet

John 3999 N.N. NA

> ## right (outer) join

> relation_table(Employee %><=% Dept)

Name EmpId DeptName Manager

NA NA Production Charles

George 3401 Finance George

Harry 3415 Finance George

Harriet 2202 Sales Harriet

Sally 2241 Sales Harriet

> ## full outer join

> relation_table(Employee %=><=% Dept)

12

Name EmpId DeptName Manager

NA NA Production Charles

George 3401 Finance George

Harry 3415 Finance George

Harriet 2202 Sales Harriet

Sally 2241 Sales Harriet

John 3999 N.N. NA

The left (right) semijoin of two relations R and S is the join of these, projected to the attributes
of R (S). Thus, it yields all tuples of R (S) participating in the join of R and S. Shortcuts for
relation_semijoin() are %|><% and %><|% for left and right semijoin, respectively.

> ## semijoin

> relation_table(Employee %|><% Dept)

Name EmpId DeptName

George 3401 Finance

Harry 3415 Finance

Harriet 2202 Sales

Sally 2241 Sales

> relation_table(Employee %><|% Dept)

DeptName Manager

Finance George

Sales Harriet

The left (right) antijoin of two relations R and S is the complement of R (S) and the join of
both, projected to the attributes of R (S). Thus, it yields all tuples of R (S) not participating
in the join of R and S. Shortcuts for relation_antijoin() are %|>% and %<|% for left and right
antijoin, respectively.

> ## antijoin

> relation_table(Employee %|>% Dept)

Name EmpId DeptName

John 3999 N.N.

> relation_table(Employee %<|% Dept)

DeptName Manager

Production Charles

3 Consensus Relations

Consensus relations “synthesize” the information in the elements of a relation ensemble into a single
relation, often by minimizing a criterion function measuring how dissimilar consensus candidates
are from the (elements of) the ensemble (the so-called “optimization approach”), typically of the
form Φ(R) =

∑
wbd(Rb, R)e, where d is a suitable dissimilarity measure, wb is the case weight

given to element Rb of the ensemble, and e ≥ 1. Such consensus relations are called “central
relations” in Régnier (1965). For e = 1, we obtain (generalized) medians; e = 2 gives (generalized)
means (least squares consensus relations).

Consensus relations can be computed by relation_consensus(), which has the following
built-in methods. Apart from Condorcet’s and the unrestricted Manhattan and Euclidean con-
sensus methods, these are applicable to ensembles of endorelations only.

13

"Borda" the consensus method proposed by Borda (1781). For each relation Rb and object x, one
determines the Borda/Kendall scores, i.e., the number of objects y such that yRbx (“wins”
in case of orderings). These are then aggregated across relations by weighted averaging.
Finally, objects are ordered according to their aggregated scores.

"Copeland" the consensus method proposed by Copeland (1951) is similar to the Borda method,
except that the Copeland scores are the number of objects y such that yRbx, minus the
number of objects y such that xRby (“defeats” in case of orderings).

"Condorcet" the consensus method proposed by Condorcet (1785), in fact minimizing the crite-
rion function Φ with d as symmetric difference distance over all possible relations. In the case
of endorelations, consensus is obtained by weighting voting, such that xRy if the weighted
number of times that xRby is no less than the weighted number of times that this is not the
case. Even when aggregating linear orders, this can lead to intransitive consensus solutions
(“effet Condorcet”).

"CS" the consensus method of Cook and Seiford (1978) which determines a linear order minimizing
the criterion function Φ with d as generalized Cook-Seiford (ranking) distance and e = 1 via
solving a linear sum assignment problem.

"symdiff/F" an exact solver for determining the consensus relation by minimizing the criterion
function Φ with d as symmetric difference distance (“symdiff”) and e = 1 over a suitable
class (“Family”) of endorelations as indicated by F, with values:

G general (crisp) endorelations.

A antisymmetric relations.

C complete relations.

E equivalence relations: reflexive, symmetric, and transitive.

L linear orders: complete, reflexive, antisymmetric, and transitive.

M matches: complete and reflexive.

O partial orders: reflexive, antisymmetric and transitive.

S symmetric relations.

T tournaments: complete, irreflexive and antisymmetric (i.e., complete and asymmetric).

W weak orders (complete preorders, preferences, “orderings”): complete, reflexive and tran-
sitive.

preorder preorders: reflexive and transitive.

transitive transitive relations.

These consensus relations are determined by reformulating the consensus problem as an in-
teger program (for the relation incidences), see Hornik and Meyer (2007) for details. The
solver employed can be specified via the control argument solver, with currently possible
values "glpk", "lpsolve", "symphony", or "cplex" or a unique abbreviation thereof, spec-
ifying to use the solvers from packages Rglpk (Theussl and Hornik, 2017, default), lpSolve

(Buttrey, 2005), Rsymphony (Harter, Hornik, and Theussl, 2017), or Rcplex (Bravo and
Theussl, 2016), respectively. Unless control option sparse is false, a sparse formulation of
the binary program is used, which is typically more efficient.

For fitting equivalences and weak orders (cases E and W) it is possible to specify the number
of classes k using the control parameter k. For fitting weak orders, one can also specify the
number of elements in the classes via control parameter l.

"CKS/F" an exact solver for determining the consensus relation by minimizing the criterion func-
tion Φ with d as Cook-Kress-Seiford distance (“CKS”) and e = 1 over a suitable class
(“Family”) of endorelations as indicated by F, with available families and control parameters
as for methods "symdiff/F ".

14

"PC/F" an exact solver for determining the consensus relation of an ensemble of crisp endore-
lations by minimizing the criterion function Φ with d as (generalized) paired comparison
(“PC”) distance and e = 1 over a suitable class (“Family”) of crisp endorelations as indi-
cated by F, with available families and control parameters as for methods "symdiff/F ",
and control option delta for specifying the paired comparison discrepancies.

"manhattan" the (unrestricted) median of the ensemble, minimizing Φ with d as Manhattan
(symmetric difference) distance and e = 1 over all (possibly fuzzy) relations.

"euclidean" the (unrestricted) mean of the ensemble, minimizing Φ with d as Euclidean distance
and e = 2 over all (possibly fuzzy) relations.

"majority" a generalized majority method for which the consensus relation contains of all tuples
occurring with a relative frequency of more than 100p percent (of 100 percent if p = 1). The
fraction p can be specified via the control parameter p. By default, p = 1/2 is used.

For the Condorcet, CS, symdiff, CKS and PC methods, one can obtain a relation ensemble with
all consensus relations by setting the control parameter all to TRUE.

In the following, we first show an example of computing a consensus equivalence (i.e., a consen-
sus partition) of 30 felines repeating the classical analysis of Marcotorchino and Michaud (1982).
The data comprises 10 morphological and 4 behavioral variables, taken here as different classifi-
cations of the same 30 animals:

> data("Felines")

> relations <- as.relation_ensemble(Felines)

Now fit an equivalence relation to this, and look at the classes:

> E <- relation_consensus(relations, "symdiff/E")

> ids <- relation_class_ids(E)

> split(rownames(Felines), ids)

$`1`

[1] "LION" "TIGRE" "JAGUAR" "LEOPARD" "ONCE" "GUEPARD"

[7] "PUMA" "NEBUL" "YAGUARUN" "CHAUS" "DORE" "MERGUAY"

[13] "MARGERIT" "CHINE" "BENGALE" "BORNEO" "NIGRIPES" "MANUL"

[19] "TIGRIN" "TEMMINCK" "ANDES"

$`2`

[1] "SERVAL"

$`3`

[1] "OCELOT" "LYNX" "VIVERRIN" "CAFER" "ROUILLEU" "MALAIS"

$`4`

[1] "CARACAL" "MARBRE"

Next, we demonstrate the computation of consensus preferences, using an example from Cook and
Kress (1992, pp. 48ff). The input data is a “preference matrix” of paired comparisons where entry
(i, j) is one iff object xi is preferred to object xj (xi ≻ xj). We set up the corresponding ‘≺’
relation.

> pm <- matrix(c(0, 1, 0, 1, 1,

+ 0, 0, 0, 1, 1,

+ 1, 1, 0, 0, 0,

+ 0, 0, 1, 0, 0,

+ 0, 0, 1, 1, 0),

15

+ nrow = 5L,

+ byrow = TRUE,

+ dimnames = list(letters[1:5], letters[1:5]))

> R <- as.relation(t(pm))

> relation_incidence(R)

Incidences:

a b c d e

a 0 0 1 0 0

b 1 0 1 0 0

c 0 0 0 1 1

d 1 1 0 0 1

e 1 1 0 0 0

> relation_is(R, "tournament")

[1] TRUE

Next, we seek a linear consensus order:

> L <- relation_consensus(R, "symdiff/L")

> relation_incidence(L)

Incidences:

a b c d e

a 1 0 1 0 0

b 1 1 1 0 0

c 0 0 1 0 0

d 1 1 1 1 1

e 1 1 1 0 1

or perhaps more conveniently, the class ids sorted according to increasing preference:

> relation_class_ids(L)

a b c d e

4 3 5 1 2

Note, however, that this linear order is not unique; we can compute all consensus linear orders,
and also produce a comparing plot (see Figure 2):

> L <- relation_consensus(R, "symdiff/L", control = list(all = TRUE))

> print(L)

An ensemble of 2 relations of size 5 x 5.

> if(require("Rgraphviz")) plot(L)

Quite annoyingly, object c comes out first and last, respectively:

> lapply(L, relation_class_ids)

[[1]]

a b c d e

4 3 5 1 2

[[2]]

a b c d e

5 4 1 2 3

16

Finally, we compute the closest weak order with at most 3 indifference classes:

> W3 <- relation_consensus(R, "symdiff/W", control = list(k = 3))

> relation_incidence(W3)

Incidences:

a b c d e

a 1 0 0 0 0

b 1 1 0 0 1

c 1 1 1 1 1

d 1 1 1 1 1

e 1 1 0 0 1

> relation_class_ids(W3)

a b c d e

3 2 1 1 2

(Note again that this is not unique; there are 6 consensus weak orders with k = 3 classes, which
can be computed as above by adding all = TRUE to the control list.)

Linear Order

a

b

c

d

e

Linear Order

a

b

c

d

e

Figure 2: Hasse Diagram of all consensus relations (linear orders) for an example provided by
Cook and Kress.

References

J. C. Borda. Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences, 1781.

H. C. Bravo and S. Theussl. Rcplex: R Interface to CPLEX, 2016. URL https://CRAN.R-project.org/

package=Rcplex. R package version 0.3-3.

S. E. Buttrey. Calling the lp_solve linear program software from R, S-PLUS and Excel. Journal of
Statistical Software, 14(4), 2005. ISSN 1548-7660. doi: 10.18637/jss.v014.i04.

E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6):
377–387, 1970. doi: 10.1145/362384.362685.

17

https://CRAN.R-project.org/package=Rcplex
https://CRAN.R-project.org/package=Rcplex

M. J. A. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité
des voix, 1785. Paris.

W. D. Cook and M. Kress. Ordinal information and preference structures: decision models and applica-
tions. Prentice-Hall, New York, 1992.

W. D. Cook and L. M. Seiford. Priority ranking and consensus formation. Management Science, 24(16):
1721–1732, 1978. doi: 10.1287/mnsc.24.16.1721.

A. Copeland. A reasonable social welfare function. mimeo, 1951. University of Michigan.

K. D. Hansen, J. Gentry, L. Long, R. Gentleman, S. Falcon, F. Hahne, and D. Sarkar. Rgraphviz: Provides
plotting capabilities for R graph objects, 2017. R package version 2.20.0.

R. Harter, K. Hornik, and S. Theussl. Rsymphony: SYMPHONY in R, 2017. URL https://CRAN.

R-project.org/package=Rsymphony. R package version 0.1-26.

K. Hornik and D. Meyer. Deriving consensus rankings from benchmarking experiments. In R. Decker
and H.-J. Lenz, editors, Advances in Data Analysis (Proceedings of the 30th Annual Conference of the
Gesellschaft für Klassifikation e.V., Freie Universität Berlin, March 8–10, 2006, Studies in Classifica-
tion, Data Analysis, and Knowledge Organization, pages 163–170. Springer-Verlag, 2007.

F. Marcotorchino and P. Michaud. Agregation de similarites en classification automatique. Revue de
Statistique Appliquée, 30(2):21–44, 1982. URL https://eudml.org/doc/106132.

S. Régnier. Sur quelques aspects mathématiques des problèmes de classification automatique. ICC Bulletin,
4:175–191, 1965.

S. Theussl and K. Hornik. Rglpk: R/GNU Linear Programming Kit Interface, 2017. URL https://CRAN.

R-project.org/package=Rglpk. R package version 0.6-3.

G. Vescia. Descriptive classification of cetacea: Whales, porpoises, and dolphins. In J. F. Marcotorchino,
J. M. Proth, and J. Janssen, editors, Data analysis in real life environment: ins and outs of solving
problems. Elsevier Science Publishers B.V., 1985.

18

https://CRAN.R-project.org/package=Rsymphony
https://CRAN.R-project.org/package=Rsymphony
https://eudml.org/doc/106132
https://CRAN.R-project.org/package=Rglpk
https://CRAN.R-project.org/package=Rglpk

Index

-, 9
%/%, 11
%=><=%, 12
%=><%, 12
%><=%, 12
%><%, 10
%U%, 9
%%, 11
&, 10
as.relation_ensemble, 6
as.relation, 1
relation_antijoin, 13
relation_cartesian, 10
relation_charfun, 3
relation_complement, 9
relation_consensus, 13
relation_dissimilarity, 4
relation_division, 11
relation_ensemble, 6
relation_intersection, 10
relation_is_binary, 4
relation_is_ternary, 4
relation_join, 12
relation_projection, 8
relation_remainder, 11
relation_selection, 9
relation_semijoin, 13
relation_union, 9
relation, 1

19

	Relations and Relation Ensembles
	Relations
	Relation Ensembles

	Relational Algebra
	Consensus Relations

