
Package ‘ranger’
November 8, 2024

Type Package

Title A Fast Implementation of Random Forests

Version 0.17.0

Date 2024-11-08

Description A fast implementation of Random Forests, particularly suited for high
dimensional data. Ensembles of classification, regression, survival and
probability prediction trees are supported. Data from genome-wide association
studies can be analyzed efficiently. In addition to data frames, datasets of
class 'gwaa.data' (R package 'GenABEL') and 'dgCMatrix' (R package 'Matrix')
can be directly analyzed.

License GPL-3

Imports Rcpp (>= 0.11.2), Matrix

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.1)

Suggests survival, testthat

Encoding UTF-8

RoxygenNote 7.3.2

URL https://imbs-hl.github.io/ranger/,

https://github.com/imbs-hl/ranger

BugReports https://github.com/imbs-hl/ranger/issues

NeedsCompilation yes

Author Marvin N. Wright [aut, cre],
Stefan Wager [ctb],
Philipp Probst [ctb]

Maintainer Marvin N. Wright <cran@wrig.de>

Repository CRAN

Date/Publication 2024-11-08 07:40:02 UTC

1

https://imbs-hl.github.io/ranger/
https://github.com/imbs-hl/ranger
https://github.com/imbs-hl/ranger/issues

2 csrf

Contents

csrf . 2
deforest . 4
getTerminalNodeIDs . 5
holdoutRF . 6
hshrink . 7
importance.ranger . 8
importance_pvalues . 8
parse.formula . 10
predict.ranger . 11
predict.ranger.forest . 13
predictions.ranger . 15
predictions.ranger.prediction . 16
print.deforest.ranger . 17
print.ranger . 17
print.ranger.forest . 18
print.ranger.prediction . 18
ranger . 19
timepoints.ranger . 27
timepoints.ranger.prediction . 28
treeInfo . 29

Index 31

csrf Case-specific random forests.

Description

In case-specific random forests (CSRF), random forests are built specific to the cases of interest.
Instead of using equal probabilities, the cases are weighted according to their difference to the case
of interest.

Usage

csrf(
formula,
training_data,
test_data,
params1 = list(),
params2 = list(),
verbose = FALSE

)

csrf 3

Arguments

formula Object of class formula or character describing the model to fit.

training_data Training data of class data.frame.

test_data Test data of class data.frame.

params1 Parameters for the proximity random forest grown in the first step.

params2 Parameters for the prediction random forests grown in the second step.

verbose Logical indicating whether or not to print computation progress.

Details

The algorithm consists of 3 steps:

1. Grow a random forest on the training data

2. For each observation of interest (test data), the weights of all training observations are com-
puted by counting the number of trees in which both observations are in the same terminal
node.

3. For each test observation, grow a weighted random forest on the training data, using the
weights obtained in step 2. Predict the outcome of the test observation as usual.

In total, n+1 random forests are grown, where n is the number observations in the test dataset. For
details, see Xu et al. (2014).

Value

Predictions for the test dataset.

Author(s)

Marvin N. Wright

References

Xu, R., Nettleton, D. & Nordman, D.J. (2014). Case-specific random forests. J Comp Graph Stat
25:49-65. doi:10.1080/10618600.2014.983641.

Examples

Split in training and test data
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx,]
iris.test <- iris[-train.idx,]

Run case-specific RF
csrf(Species ~ ., training_data = iris.train, test_data = iris.test,

params1 = list(num.trees = 50, mtry = 4),
params2 = list(num.trees = 5))

https://doi.org/10.1080/10618600.2014.983641

4 deforest

deforest Deforesting a random forest

Description

The main purpose of this function is to allow for post-processing of ensembles via L2 regularized
regression (i.e., the LASSO), as described in Friedman and Popescu (2003). The basic idea is to
use the LASSO to post-process the predictions from the individual base learners in an ensemble
(i.e., decision trees) in the hopes of producing a much smaller model without sacrificing much
in the way of accuracy, and in some cases, improving it. Friedman and Popescu (2003) describe
conditions under which tree-based ensembles, like random forest, can potentially benefit from such
post-processing (e.g., using shallower trees trained on much smaller samples of the training data
without replacement). However, the computational benefits of such post-processing can only be
realized if the base learners "zeroed out" by the LASSO can actually be removed from the original
ensemble, hence the purpose of this function. A complete example using ranger can be found at
https://github.com/imbs-hl/ranger/issues/568.

Usage

deforest(object, which.trees = NULL, ...)

S3 method for class 'ranger'
deforest(object, which.trees = NULL, warn = TRUE, ...)

Arguments

object A fitted random forest (e.g., a ranger object).

which.trees Vector giving the indices of the trees to remove.

... Additional (optional) arguments. (Currently ignored.)

warn Logical indicating whether or not to warn users that some of the standard output
of a typical ranger object or no longer available after deforestation. Default is
TRUE.

Value

An object of class "deforest.ranger"; essentially, a ranger object with certain components re-
placed with NAs (e.g., out-of-bag (OOB) predictions, variable importance scores (if requested), and
OOB-based error metrics).

Note

This function is a generic and can be extended by other packages.

Author(s)

Brandon M. Greenwell

https://github.com/imbs-hl/ranger/issues/568

getTerminalNodeIDs 5

References

Friedman, J. and Popescu, B. (2003). Importance sampled learning ensembles, Technical report,
Stanford University, Department of Statistics. https://jerryfriedman.su.domains/ftp/isle.
pdf.

Examples

Example of deforesting a random forest
rfo <- ranger(Species ~ ., data = iris, probability = TRUE, num.trees = 100)
dfo <- deforest(rfo, which.trees = c(1, 3, 5))
dfo # same as `rfo` but with trees 1, 3, and 5 removed

Sanity check
preds.rfo <- predict(rfo, data = iris, predict.all = TRUE)$predictions
preds.dfo <- predict(dfo, data = iris, predict.all = TRUE)$predictions
identical(preds.rfo[, , -c(1, 3, 5)], y = preds.dfo)

getTerminalNodeIDs Get terminal node IDs (deprecated)

Description

This function is deprecated. Please use predict() with type = "terminalNodes" instead. This
function calls predict() now.

Usage

getTerminalNodeIDs(rf, dat)

Arguments

rf ranger object.

dat New dataset. Terminal node IDs for this dataset are obtained.

Value

Matrix with terminal nodeIDs for all observations in dataset and trees.

Examples

rf <- ranger(Species ~ ., data = iris, num.trees = 5, write.forest = TRUE)
getTerminalNodeIDs(rf, iris)

https://jerryfriedman.su.domains/ftp/isle.pdf
https://jerryfriedman.su.domains/ftp/isle.pdf

6 holdoutRF

holdoutRF Hold-out random forests

Description

Grow two random forests on two cross-validation folds. Instead of out-of-bag data, the other fold
is used to compute permutation importance. Related to the novel permutation variable importance
by Janitza et al. (2015).

Usage

holdoutRF(...)

Arguments

... All arguments are passed to ranger() (except importance, case.weights,
replace and holdout.).

Value

Hold-out random forests with variable importance.

Author(s)

Marvin N. Wright

References

Janitza, S., Celik, E. & Boulesteix, A.-L., (2015). A computationally fast variable importance test
for random forests for high-dimensional data. Adv Data Anal Classif doi:10.1007/s116340160276-
4.

See Also

ranger

https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/10.1007/s11634-016-0276-4

hshrink 7

hshrink Hierarchical shrinkage

Description

Apply hierarchical shrinkage to a ranger object. Hierarchical shrinkage is a regularization technique
that recursively shrinks node predictions towards parent node predictions. For details see Agarwal
et al. (2022).

Usage

hshrink(rf, lambda)

Arguments

rf ranger object, created with node.stats = TRUE.

lambda Non-negative shrinkage parameter.

Value

The ranger object is modified in-place.

Author(s)

Marvin N. Wright

References

• Agarwal, A., Tan, Y.S., Ronen, O., Singh, C. & Yu, B. (2022). Hierarchical Shrinkage: Im-
proving the accuracy and interpretability of tree-based models. Proceedings of the 39th Inter-
national Conference on Machine Learning, PMLR 162:111-135.

Examples

Hierarchical shrinkage for a probablity forest
rf <- ranger(Species ~ ., iris, node.stats = TRUE, probability = TRUE)
hshrink(rf, lambda = 5)

8 importance_pvalues

importance.ranger ranger variable importance

Description

Extract variable importance of ranger object.

Usage

S3 method for class 'ranger'
importance(x, ...)

Arguments

x ranger object.
... Further arguments passed to or from other methods.

Value

Variable importance measures.

Author(s)

Marvin N. Wright

See Also

ranger

importance_pvalues ranger variable importance p-values

Description

Compute variable importance with p-values. For high dimensional data, the fast method of Janitza
et al. (2016) can be used. The permutation approach of Altmann et al. (2010) is computationally
intensive but can be used with all kinds of data. See below for details.

Usage

importance_pvalues(
x,
method = c("janitza", "altmann"),
num.permutations = 100,
formula = NULL,
data = NULL,
...

)

importance_pvalues 9

Arguments

x ranger or holdoutRF object.

method Method to compute p-values. Use "janitza" for the method by Janitza et al.
(2016) or "altmann" for the non-parametric method by Altmann et al. (2010).

num.permutations

Number of permutations. Used in the "altmann" method only.

formula Object of class formula or character describing the model to fit. Used in the
"altmann" method only.

data Training data of class data.frame or matrix. Used in the "altmann" method only.

... Further arguments passed to ranger(). Used in the "altmann" method only.

Details

The method of Janitza et al. (2016) uses a clever trick: With an unbiased variable importance
measure, the importance values of non-associated variables vary randomly around zero. Thus,
all non-positive importance values are assumed to correspond to these non-associated variables and
they are used to construct a distribution of the importance under the null hypothesis of no association
to the response. Since only the non-positive values of this distribution can be observed, the positive
values are created by mirroring the negative distribution. See Janitza et al. (2016) for details.

The method of Altmann et al. (2010) uses a simple permutation test: The distribution of the impor-
tance under the null hypothesis of no association to the response is created by several replications
of permuting the response, growing an RF and computing the variable importance. The authors
recommend 50-100 permutations. However, much larger numbers have to be used to estimate more
precise p-values. We add 1 to the numerator and denominator to avoid zero p-values.

Value

Variable importance and p-value for each variable.

Author(s)

Marvin N. Wright

References

Janitza, S., Celik, E. & Boulesteix, A.-L., (2016). A computationally fast variable importance test
for random forests for high-dimensional data. Adv Data Anal Classif doi:10.1007/s116340160276-
4.
Altmann, A., Tolosi, L., Sander, O. & Lengauer, T. (2010). Permutation importance: a corrected
feature importance measure, Bioinformatics 26:1340-1347.

See Also

ranger

https://doi.org/10.1007/s11634-016-0276-4
https://doi.org/10.1007/s11634-016-0276-4

10 parse.formula

Examples

Janitza's p-values with corrected Gini importance
n <- 50
p <- 400
dat <- data.frame(y = factor(rbinom(n, 1, .5)), replicate(p, runif(n)))
rf.sim <- ranger(y ~ ., dat, importance = "impurity_corrected")
importance_pvalues(rf.sim, method = "janitza")

Permutation p-values
Not run:
rf.iris <- ranger(Species ~ ., data = iris, importance = 'permutation')
importance_pvalues(rf.iris, method = "altmann", formula = Species ~ ., data = iris)

End(Not run)

parse.formula Parse formula

Description

Parse formula and return dataset containing selected columns. Interactions are supported for nu-
merical columns only. An interaction column is the product of all interacting columns.

Usage

parse.formula(formula, data, env = parent.frame())

Arguments

formula Object of class formula or character describing the model to fit.

data Training data of class data.frame.

env The environment in which the left hand side of formula is evaluated.

Value

Dataset including selected columns and interactions.

predict.ranger 11

predict.ranger Ranger prediction

Description

Prediction with new data and a saved forest from Ranger.

Usage

S3 method for class 'ranger'
predict(
object,
data = NULL,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
se.method = "infjack",
quantiles = c(0.1, 0.5, 0.9),
what = NULL,
seed = NULL,
num.threads = NULL,
verbose = TRUE,
...

)

Arguments

object Ranger ranger object.

data New test data of class data.frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default ’response’. See below for details.

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

quantiles Vector of quantiles for quantile prediction. Set type = 'quantiles' to use.

what User specified function for quantile prediction used instead of quantile. Must
return numeric vector, see examples.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Use 0 for all available cores. Default is 2 if not set by
options/environment variables (see below).

12 predict.ranger

verbose Verbose output on or off.

... further arguments passed to or from other methods.

Details

For type = 'response' (the default), the predicted classes (classification), predicted numeric val-
ues (regression), predicted probabilities (probability estimation) or survival probabilities (survival)
are returned. For type = 'se', the standard error of the predictions are returned (regression only).
The jackknife-after-bootstrap or infinitesimal jackknife for bagging is used to estimate the stan-
dard errors based on out-of-bag predictions. See Wager et al. (2014) for details. For type =
'terminalNodes', the IDs of the terminal node in each tree for each observation in the given
dataset are returned. For type = 'quantiles', the selected quantiles for each observation are esti-
mated. See Meinshausen (2006) for details.

If type = 'se' is selected, the method to estimate the variances can be chosen with se.method. Set
se.method = 'jack' for jackknife-after-bootstrap and se.method = 'infjack' for the infinitesi-
mal jackknife for bagging.

For classification and predict.all = TRUE, a factor levels are returned as numerics. To retrieve the
corresponding factor levels, use rf$forest$levels, if rf is the ranger object.

By default, ranger uses 2 threads. The default can be changed with: (1) num.threads in ranger/predict
call, (2) environment variable R_RANGER_NUM_THREADS, (3) options(ranger.num.threads
= N), (4) options(Ncpus = N), with precedence in that order.

Value

Object of class ranger.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).
chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

Author(s)

Marvin N. Wright

References

• Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. J Mach Learn Res 15:1625-1651. https://jmlr.
org/papers/v15/wager14a.html.

• Meinshausen (2006). Quantile Regression Forests. J Mach Learn Res 7:983-999. https:
//www.jmlr.org/papers/v7/meinshausen06a.html.

https://doi.org/10.18637/jss.v077.i01
https://jmlr.org/papers/v15/wager14a.html
https://jmlr.org/papers/v15/wager14a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html

predict.ranger.forest 13

See Also

ranger

Examples

Classification forest
ranger(Species ~ ., data = iris)
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx,]
iris.test <- iris[-train.idx,]
rg.iris <- ranger(Species ~ ., data = iris.train)
pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)

Quantile regression forest
rf <- ranger(mpg ~ ., mtcars[1:26,], quantreg = TRUE)
pred <- predict(rf, mtcars[27:32,], type = "quantiles", quantiles = c(0.1, 0.5, 0.9))
pred$predictions

Quantile regression forest with user-specified function
rf <- ranger(mpg ~ ., mtcars[1:26,], quantreg = TRUE)
pred <- predict(rf, mtcars[27:32,], type = "quantiles",

what = function(x) sample(x, 10, replace = TRUE))
pred$predictions

predict.ranger.forest Ranger prediction

Description

Prediction with new data and a saved forest from Ranger.

Usage

S3 method for class 'ranger.forest'
predict(
object,
data,
predict.all = FALSE,
num.trees = object$num.trees,
type = "response",
se.method = "infjack",
seed = NULL,
num.threads = NULL,
verbose = TRUE,
inbag.counts = NULL,
...

)

14 predict.ranger.forest

Arguments

object Ranger ranger.forest object.

data New test data of class data.frame or gwaa.data (GenABEL).

predict.all Return individual predictions for each tree instead of aggregated predictions for
all trees. Return a matrix (sample x tree) for classification and regression, a 3d
array for probability estimation (sample x class x tree) and survival (sample x
time x tree).

num.trees Number of trees used for prediction. The first num.trees in the forest are used.

type Type of prediction. One of ’response’, ’se’, ’terminalNodes’, ’quantiles’ with
default ’response’. See below for details.

se.method Method to compute standard errors. One of ’jack’, ’infjack’ with default ’inf-
jack’. Only applicable if type = ’se’. See below for details.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed. The seed is used in case of ties in classification mode.

num.threads Number of threads. Use 0 for all available cores. Default is 2 if not set by
options/environment variables (see below).

verbose Verbose output on or off.

inbag.counts Number of times the observations are in-bag in the trees.

... further arguments passed to or from other methods.

Details

For type = 'response' (the default), the predicted classes (classification), predicted numeric val-
ues (regression), predicted probabilities (probability estimation) or survival probabilities (survival)
are returned. For type = 'se', the standard error of the predictions are returned (regression only).
The jackknife-after-bootstrap or infinitesimal jackknife for bagging is used to estimate the stan-
dard errors based on out-of-bag predictions. See Wager et al. (2014) for details. For type =
'terminalNodes', the IDs of the terminal node in each tree for each observation in the given
dataset are returned.

If type = 'se' is selected, the method to estimate the variances can be chosen with se.method. Set
se.method = 'jack' for jackknife after bootstrap and se.method = 'infjack' for the infinitesimal
jackknife for bagging.

For classification and predict.all = TRUE, a factor levels are returned as numerics. To retrieve the
corresponding factor levels, use rf$forest$levels, if rf is the ranger object.

By default, ranger uses 2 threads. The default can be changed with: (1) num.threads in ranger/predict
call, (2) environment variable R_RANGER_NUM_THREADS, (3) options(ranger.num.threads
= N), (4) options(Ncpus = N), with precedence in that order.

Value

Object of class ranger.prediction with elements

predictions Predicted classes/values (only for classification and regression)
unique.death.times Unique death times (only for survival).

predictions.ranger 15

chf Estimated cumulative hazard function for each sample (only for survival).
survival Estimated survival function for each sample (only for survival).
num.trees Number of trees.
num.independent.variables Number of independent variables.
treetype Type of forest/tree. Classification, regression or survival.
num.samples Number of samples.

Author(s)

Marvin N. Wright

References

• Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

• Wager, S., Hastie T., & Efron, B. (2014). Confidence Intervals for Random Forests: The
Jackknife and the Infinitesimal Jackknife. J Mach Learn Res 15:1625-1651. https://jmlr.
org/papers/v15/wager14a.html.

See Also

ranger

predictions.ranger Ranger predictions

Description

Extract training data predictions of Ranger object.

Usage

S3 method for class 'ranger'
predictions(x, ...)

Arguments

x Ranger object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

https://doi.org/10.18637/jss.v077.i01
https://jmlr.org/papers/v15/wager14a.html
https://jmlr.org/papers/v15/wager14a.html

16 predictions.ranger.prediction

See Also

ranger

predictions.ranger.prediction

Ranger predictions

Description

Extract predictions of Ranger prediction object.

Usage

S3 method for class 'ranger.prediction'
predictions(x, ...)

Arguments

x Ranger prediction object.

... Further arguments passed to or from other methods.

Value

Predictions: Classes for Classification forests, Numerical values for Regressions forests and the
estimated survival functions for all individuals for Survival forests.

Author(s)

Marvin N. Wright

See Also

ranger

print.deforest.ranger 17

print.deforest.ranger Print deforested ranger summary

Description

Print basic information about a deforested ranger object.

Usage

S3 method for class 'deforest.ranger'
print(x, ...)

Arguments

x A deforest object (i.e., an object that inherits from class "deforest.ranger").

... Further arguments passed to or from other methods.

Note

Many of the components of a typical ranger object are not available after deforestation and are
instead replaced with NA (e.g., out-of-bag (OOB) predictions, variable importance scores (if re-
quested), and OOB-based error metrics).

Author(s)

Brandon M. Greenwell

See Also

deforest.

print.ranger Print Ranger

Description

Print contents of Ranger object.

Usage

S3 method for class 'ranger'
print(x, ...)

Arguments

x Object of class ’ranger’.

... Further arguments passed to or from other methods.

18 print.ranger.prediction

Author(s)

Marvin N. Wright

See Also

ranger

print.ranger.forest Print Ranger forest

Description

Print contents of Ranger forest object.

Usage

S3 method for class 'ranger.forest'
print(x, ...)

Arguments

x Object of class ’ranger.forest’.

... further arguments passed to or from other methods.

Author(s)

Marvin N. Wright

print.ranger.prediction

Print Ranger prediction

Description

Print contents of Ranger prediction object.

Usage

S3 method for class 'ranger.prediction'
print(x, ...)

Arguments

x Object of class ’ranger.prediction’.

... further arguments passed to or from other methods.

ranger 19

Author(s)

Marvin N. Wright

ranger Ranger

Description

Ranger is a fast implementation of random forests (Breiman 2001) or recursive partitioning, par-
ticularly suited for high dimensional data. Classification, regression, and survival forests are sup-
ported. Classification and regression forests are implemented as in the original Random Forest
(Breiman 2001), survival forests as in Random Survival Forests (Ishwaran et al. 2008). Includes
implementations of extremely randomized trees (Geurts et al. 2006) and quantile regression forests
(Meinshausen 2006).

Usage

ranger(
formula = NULL,
data = NULL,
num.trees = 500,
mtry = NULL,
importance = "none",
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
min.bucket = NULL,
max.depth = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
poisson.tau = 1,
split.select.weights = NULL,
always.split.variables = NULL,
respect.unordered.factors = NULL,
scale.permutation.importance = FALSE,
local.importance = FALSE,
regularization.factor = 1,
regularization.usedepth = FALSE,
keep.inbag = FALSE,
inbag = NULL,

20 ranger

holdout = FALSE,
quantreg = FALSE,
time.interest = NULL,
oob.error = TRUE,
num.threads = NULL,
save.memory = FALSE,
verbose = TRUE,
node.stats = FALSE,
seed = NULL,
na.action = "na.learn",
dependent.variable.name = NULL,
status.variable.name = NULL,
classification = NULL,
x = NULL,
y = NULL,
...

)

Arguments

formula Object of class formula or character describing the model to fit. Interaction
terms supported only for numerical variables.

data Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data
(GenABEL).

num.trees Number of trees.

mtry Number of variables to possibly split at in each node. Default is the (rounded
down) square root of the number variables. Alternatively, a single argument
function returning an integer, given the number of independent variables.

importance Variable importance mode, one of ’none’, ’impurity’, ’impurity_corrected’, ’per-
mutation’. The ’impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival.

write.forest Save ranger.forest object, required for prediction. Set to FALSE to reduce
memory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size to split at. Default 1 for classification, 5 for regression, 3
for survival, and 10 for probability. For classification, this can be a vector of
class-specific values.

min.bucket Minimal terminal node size. No nodes smaller than this value can occur. Default
3 for survival and 1 for all other tree types. For classification, this can be a vector
of class-specific values.

max.depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

replace Sample with replacement.

ranger 21

sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement. For classification, this can be a
vector of class-specific values.

case.weights Weights for sampling of training observations. Observations with larger weights
will be selected with higher probability in the bootstrap (or subsampled) samples
for the trees.

class.weights Weights for the outcome classes (in order of the factor levels) in the splitting
rule (cost sensitive learning). Classification and probability prediction only. For
classification the weights are also applied in the majority vote in terminal nodes.

splitrule Splitting rule. For classification and probability estimation "gini", "extratrees"
or "hellinger" with default "gini". For regression "variance", "extratrees", "max-
stat", "beta" or "poisson" with default "variance". For survival "logrank", "ex-
tratrees", "C" or "maxstat" with default "logrank".

num.random.splits

For "extratrees" splitrule.: Number of random splits to consider for each candi-
date splitting variable.

alpha For "maxstat" splitrule: Significance threshold to allow splitting.

minprop For "maxstat" splitrule: Lower quantile of covariate distribution to be considered
for splitting.

poisson.tau For "poisson" splitrule: The coefficient of variation of the (expected) frequency
is 1/τ . If a terminal node has only 0 responses, the estimate is set to α0 + (1−
α)mean(parent) with α = samples(child)mean(parent)/(τ+samples(child)mean(parent)).

split.select.weights

Numeric vector with weights between 0 and 1, used to calculate the probability
to select variables for splitting. Alternatively, a list of size num.trees, containing
split select weight vectors for each tree can be used.

always.split.variables

Character vector with variable names to be always selected in addition to the
mtry variables tried for splitting.

respect.unordered.factors

Handling of unordered factor covariates. One of ’ignore’, ’order’ and ’partition’.
For the "extratrees" splitrule the default is "partition" for all other splitrules ’ig-
nore’. Alternatively TRUE (=’order’) or FALSE (=’ignore’) can be used. See
below for details.

scale.permutation.importance

Scale permutation importance by standard error as in (Breiman 2001). Only
applicable if permutation variable importance mode selected.

local.importance

Calculate and return local importance values as in (Breiman 2001). Only appli-
cable if importance is set to ’permutation’.

regularization.factor

Regularization factor (gain penalization), either a vector of length p or one value
for all variables.

regularization.usedepth

Consider the depth in regularization.

22 ranger

keep.inbag Save how often observations are in-bag in each tree.

inbag Manually set observations per tree. List of size num.trees, containing inbag
counts for each observation. Can be used for stratified sampling.

holdout Hold-out mode. Hold-out all samples with case weight 0 and use these for
variable importance and prediction error.

quantreg Prepare quantile prediction as in quantile regression forests (Meinshausen 2006).
Regression only. Set keep.inbag = TRUE to prepare out-of-bag quantile predic-
tion.

time.interest Time points of interest (survival only). Can be NULL (default, use all observed
time points), a vector of time points or a single number to use as many time
points (grid over observed time points).

oob.error Compute OOB prediction error. Set to FALSE to save computation time, e.g. for
large survival forests.

num.threads Number of threads. Use 0 for all available cores. Default is 2 if not set by
options/environment variables (see below).

save.memory Use memory saving (but slower) splitting mode. No effect for survival and
GWAS data. Warning: This option slows down the tree growing, use only if you
encounter memory problems.

verbose Show computation status and estimated runtime.

node.stats Save node statistics. Set to TRUE to save prediction, number of observations and
split statistics for each node.

seed Random seed. Default is NULL, which generates the seed from R. Set to 0 to
ignore the R seed.

na.action Handling of missing values. Set to "na.learn" to internally handle missing values
(default, see below), to "na.omit" to omit observations with missing values and
to "na.fail" to stop if missing values are found.

dependent.variable.name

Name of dependent variable, needed if no formula given. For survival forests
this is the time variable.

status.variable.name

Name of status variable, only applicable to survival data and needed if no for-
mula given. Use 1 for event and 0 for censoring.

classification Set to TRUE to grow a classification forest. Only needed if the data is a matrix or
the response numeric.

x Predictor data (independent variables), alternative interface to data with formula
or dependent.variable.name.

y Response vector (dependent variable), alternative interface to data with formula
or dependent.variable.name. For survival use a Surv() object or a matrix with
time and status.

... Further arguments passed to or from other methods (currently ignored).

ranger 23

Details

The tree type is determined by the type of the dependent variable. For factors classification trees are
grown, for numeric values regression trees and for survival objects survival trees. The Gini index is
used as default splitting rule for classification. For regression, the estimated response variances or
maximally selected rank statistics (Wright et al. 2016) can be used. For Survival the log-rank test,
a C-index based splitting rule (Schmid et al. 2015) and maximally selected rank statistics (Wright
et al. 2016) are available. For all tree types, forests of extremely randomized trees (Geurts et al.
2006) can be grown.

With the probability option and factor dependent variable a probability forest is grown. Here,
the node impurity is used for splitting, as in classification forests. Predictions are class probabilities
for each sample. In contrast to other implementations, each tree returns a probability estimate and
these estimates are averaged for the forest probability estimate. For details see Malley et al. (2012).

Note that nodes with size smaller than min.node.size can occur because min.node.size is the
minimal node size to split at, as in original Random Forests. To restrict the size of terminal nodes,
set min.bucket. Variables selected with always.split.variables are tried additionally to the
mtry variables randomly selected. In split.select.weights, weights do not need to sum up to 1,
they will be normalized later. The weights are assigned to the variables in the order they appear in
the formula or in the data if no formula is used. Names of the split.select.weights vector are
ignored. Weights assigned by split.select.weights to variables in always.split.variables
are ignored. The usage of split.select.weights can increase the computation times for large
forests.

Unordered factor covariates can be handled in 3 different ways by using respect.unordered.factors:
For ’ignore’ all factors are regarded ordered, for ’partition’ all possible 2-partitions are considered
for splitting. For ’order’ and 2-class classification the factor levels are ordered by their propor-
tion falling in the second class, for regression by their mean response, as described in Hastie et al.
(2009), chapter 9.2.4. For multiclass classification the factor levels are ordered by the first principal
component of the weighted covariance matrix of the contingency table (Coppersmith et al. 1999),
for survival by the median survival (or the largest available quantile if the median is not available).
The use of ’order’ is recommended, as it computationally fast and can handle an unlimited number
of factor levels. Note that the factors are only reordered once and not again in each split.

The ’impurity_corrected’ importance measure is unbiased in terms of the number of categories and
category frequencies and is almost as fast as the standard impurity importance. It is a modified
version of the method by Sandri & Zuccolotto (2008), which is faster and more memory efficient.
See Nembrini et al. (2018) for details. This importance measure can be combined with the methods
to estimate p-values in importance_pvalues. We recommend not to use the ’impurity_corrected’
importance when making predictions since the feature permutation step might reduce predictive
performance (a warning is raised when predicting on new data).

Note that ranger has different default values than other packages. For example, our default for
mtry is the square root of the number of variables for all tree types, whereas other packages use
different values for regression. Also, changing one hyperparameter does not change other hyper-
parameters (where possible). For example, splitrule="extratrees" uses randomized splitting
but does not disable bagging as in Geurts et al. (2006). To disable bagging, use replace = FALSE,
sample.fraction = 1. This can also be used to grow a single decision tree without bagging and fea-
ture subsetting: ranger(..., num.trees = 1, mtry = p, replace = FALSE, sample.fraction =
1), where p is the number of independent variables.

While random forests are known for their robustness, default hyperparameters not always work

24 ranger

well. For example, for high dimensional data, increasing the mtry value and the number of trees
num.trees is recommended. For more details and recommendations, see Probst et al. (2019).
To find the best hyperparameters, consider hyperparameter tuning with the tuneRanger or mlr3
packages.

Out-of-bag prediction error is calculated as accuracy (proportion of misclassified observations) for
classification, as Brier score for probability estimation, as mean squared error (MSE) for regression
and as one minus Harrell’s C-index for survival. Harrell’s C-index is calculated based on the sum
of the cumulative hazard function (CHF) over all timepoints, i.e., rowSums(chf), where chf is the
the out-of-bag CHF; for details, see Ishwaran et al. (2008). Calculation of the out-of-bag prediction
error can be turned off with oob.error = FALSE.

Regularization works by penalizing new variables by multiplying the splitting criterion by a factor,
see Deng & Runger (2012) for details. If regularization.usedepth=TRUE, fd is used, where f
is the regularization factor and d the depth of the node. If regularization is used, multithreading
is deactivated because all trees need access to the list of variables that are already included in the
model.

Missing values can be internally handled by setting na.action = "na.learn" (default), by omitting
observations with missing values with na.action = "na.omit" or by stopping if missing values are
found with na.action = "na.fail". With na.action = "na.learn", missing values are ignored
for calculating an initial split criterion value (i.e., decrease of impurity). Then for the best split, all
missings are tried in both child nodes and the choice is made based again on the split criterion value.
For prediction, this direction is saved as the "default" direction. If a missing occurs in prediction at
a node where there is no default direction, it goes left.

For a large number of variables and data frames as input data the formula interface can be slow
or impossible to use. Alternatively dependent.variable.name (and status.variable.name for
survival) or x and y can be used. Use x and y with a matrix for x to avoid conversions and save
memory. Consider setting save.memory = TRUE if you encounter memory problems for very large
datasets, but be aware that this option slows down the tree growing.

For GWAS data consider combining ranger with the GenABEL package. See the Examples section
below for a demonstration using Plink data. All SNPs in the GenABEL object will be used for
splitting. To use only the SNPs without sex or other covariates from the phenotype file, use 0 on
the right hand side of the formula. Note that missing values are treated as an extra category while
splitting.

By default, ranger uses 2 threads. The default can be changed with: (1) num.threads in ranger/predict
call, (2) environment variable R_RANGER_NUM_THREADS, (3) options(ranger.num.threads
= N), (4) options(Ncpus = N), with precedence in that order.

See https://github.com/imbs-hl/ranger for the development version.

Value

Object of class ranger with elements

forest Saved forest (If write.forest set to TRUE). Note that the variable IDs in the
split.varIDs object do not necessarily represent the column number in R.

predictions Predicted classes/values, based on out-of-bag samples (classification and regres-
sion only).

variable.importance

Variable importance for each independent variable.

https://github.com/imbs-hl/ranger

ranger 25

variable.importance.local

Variable importance for each independent variable and each sample, if local.importance
is set to TRUE and importance is set to ’permutation’.

prediction.error

Overall out-of-bag prediction error. For classification this is accuracy (propor-
tion of misclassified observations), for probability estimation the Brier score, for
regression the mean squared error and for survival one minus Harrell’s C-index.

r.squared R squared. Also called explained variance or coefficient of determination (re-
gression only). Computed on out-of-bag data.

confusion.matrix

Contingency table for classes and predictions based on out-of-bag samples (clas-
sification only).

unique.death.times

Unique death times (survival only).

chf Estimated cumulative hazard function for each sample (survival only).

survival Estimated survival function for each sample (survival only).

call Function call.

num.trees Number of trees.
num.independent.variables

Number of independent variables.

mtry Value of mtry used.

min.node.size Value of minimal node size used.

treetype Type of forest/tree. classification, regression or survival.
importance.mode

Importance mode used.

num.samples Number of samples.

inbag.counts Number of times the observations are in-bag in the trees.
dependent.variable.name

Name of the dependent variable. This is NULL when x/y interface is used.
status.variable.name

Name of the status variable (survival only). This is NULL when x/y interface is
used.

Author(s)

Marvin N. Wright

References

• Wright, M. N. & Ziegler, A. (2017). ranger: A fast implementation of random forests for high
dimensional data in C++ and R. J Stat Softw 77:1-17. doi:10.18637/jss.v077.i01.

• Schmid, M., Wright, M. N. & Ziegler, A. (2016). On the use of Harrell’s C for clinical
risk prediction via random survival forests. Expert Syst Appl 63:450-459. doi:10.1016/
j.eswa.2016.07.018.

https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1016/j.eswa.2016.07.018
https://doi.org/10.1016/j.eswa.2016.07.018

26 ranger

• Wright, M. N., Dankowski, T. & Ziegler, A. (2017). Unbiased split variable selection for
random survival forests using maximally selected rank statistics. Stat Med 36:1272-1284.
doi:10.1002/sim.7212.

• Nembrini, S., Koenig, I. R. & Wright, M. N. (2018). The revival of the Gini Importance?
Bioinformatics. doi:10.1093/bioinformatics/bty373.

• Breiman, L. (2001). Random forests. Mach Learn, 45:5-32. doi:10.1023/A:1010933404324.

• Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival
forests. Ann Appl Stat 2:841-860. doi:10.1097/JTO.0b013e318233d835.

• Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability
machines: consistent probability estimation using nonparametric learning machines. Methods
Inf Med 51:74-81. doi:10.3414/ME00010052.

• Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical Learning. Springer,
New York. 2nd edition.

• Geurts, P., Ernst, D., Wehenkel, L. (2006). Extremely randomized trees. Mach Learn 63:3-42.
doi:10.1007/s1099400662261.

• Meinshausen (2006). Quantile Regression Forests. J Mach Learn Res 7:983-999. https:
//www.jmlr.org/papers/v7/meinshausen06a.html.

• Sandri, M. & Zuccolotto, P. (2008). A bias correction algorithm for the Gini variable im-
portance measure in classification trees. J Comput Graph Stat, 17:611-628. doi:10.1198/
106186008X344522.

• Coppersmith D., Hong S. J., Hosking J. R. (1999). Partitioning nominal attributes in decision
trees. Data Min Knowl Discov 3:197-217. doi:10.1023/A:1009869804967.

• Deng & Runger (2012). Feature selection via regularized trees. The 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia. doi:10.1109/IJCNN.2012.6252640.

• Probst, P., Wright, M. N. & Boulesteix, A-L. (2019). Hyperparameters and tuning strategies
for random forest. WIREs Data Mining Knowl Discov 9:e1301.doi:10.1002/widm.1301.

See Also

predict.ranger

Examples

Classification forest with default settings
ranger(Species ~ ., data = iris)

Prediction
train.idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris.train <- iris[train.idx,]
iris.test <- iris[-train.idx,]
rg.iris <- ranger(Species ~ ., data = iris.train)
pred.iris <- predict(rg.iris, data = iris.test)
table(iris.test$Species, pred.iris$predictions)

Quantile regression forest
rf <- ranger(mpg ~ ., mtcars[1:26,], quantreg = TRUE)
pred <- predict(rf, mtcars[27:32,], type = "quantiles")

https://doi.org/10.1002/sim.7212
https://doi.org/10.1093/bioinformatics/bty373
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1097/JTO.0b013e318233d835
https://doi.org/10.3414/ME00-01-0052
https://doi.org/10.1007/s10994-006-6226-1
https://www.jmlr.org/papers/v7/meinshausen06a.html
https://www.jmlr.org/papers/v7/meinshausen06a.html
https://doi.org/10.1198/106186008X344522
https://doi.org/10.1198/106186008X344522
https://doi.org/10.1023/A%3A1009869804967
https://doi.org/10.1109/IJCNN.2012.6252640
https://doi.org/10.1002/widm.1301

timepoints.ranger 27

pred$predictions

Variable importance
rg.iris <- ranger(Species ~ ., data = iris, importance = "impurity")
rg.iris$variable.importance

Survival forest
require(survival)
rg.veteran <- ranger(Surv(time, status) ~ ., data = veteran)
plot(rg.veteran$unique.death.times, rg.veteran$survival[1,])

Alternative interfaces (same results)
ranger(dependent.variable.name = "Species", data = iris)
ranger(y = iris[, 5], x = iris[, -5])

Not run:
Use GenABEL interface to read Plink data into R and grow a classification forest
The ped and map files are not included
library(GenABEL)
convert.snp.ped("data.ped", "data.map", "data.raw")
dat.gwaa <- load.gwaa.data("data.pheno", "data.raw")
phdata(dat.gwaa)$trait <- factor(phdata(dat.gwaa)$trait)
ranger(trait ~ ., data = dat.gwaa)

End(Not run)

timepoints.ranger Ranger timepoints

Description

Extract unique death times of Ranger Survival forest

Usage

S3 method for class 'ranger'
timepoints(x, ...)

Arguments

x Ranger Survival forest object.

... Further arguments passed to or from other methods.

Value

Unique death times

28 timepoints.ranger.prediction

Author(s)

Marvin N. Wright

See Also

ranger

timepoints.ranger.prediction

Ranger timepoints

Description

Extract unique death times of Ranger Survival prediction object.

Usage

S3 method for class 'ranger.prediction'
timepoints(x, ...)

Arguments

x Ranger Survival prediction object.

... Further arguments passed to or from other methods.

Value

Unique death times

Author(s)

Marvin N. Wright

See Also

ranger

treeInfo 29

treeInfo Tree information in human readable format

Description

Extract tree information of a ranger object.

Usage

treeInfo(object, tree = 1)

Arguments

object ranger object.
tree Number of the tree of interest.

Details

Node and variable ID’s are 0-indexed, i.e., node 0 is the root node. If the formula interface is used
in the ranger call, the variable ID’s are usually different to the original data used to grow the tree.
Refer to the variable name instead to be sure.

Splitting at unordered factors (nominal variables) depends on the option respect.unordered.factors
in the ranger call. For the "ignore" and "order" approaches, all values smaller or equal the
splitval value go to the left and all values larger go to the right, as usual. However, with "order"
the values correspond to the order in object$forest$covariate.levels instead of the original
order (usually alphabetical). In the "partition" mode, the splitval values for unordered factor are
comma separated lists of values, representing the factor levels (in the original order) going to the
right.

Value

A data.frame with the columns

nodeID The nodeID, 0-indexed.
leftChild ID of the left child node, 0-indexed.
rightChild ID of the right child node, 0-indexed.
splitvarID ID of the splitting variable, 0-indexed. Caution, the variable order changes if the formula interface is used.
splitvarName Name of the splitting variable.
splitval The splitting value. For numeric or ordinal variables, all values smaller or equal go to the left, larger values to the right. For unordered factor variables see above.
terminal Logical, TRUE for terminal nodes.
prediction One column with the predicted class (factor) for classification and the predicted numerical value for regression. One probability per class for probability estimation in several columns. Nothing for survival, refer to object$forest$chf for the CHF node predictions.
numSamples Number of samples in the node (only if ranger called with node.stats = TRUE).
splitStat Split statistics, i.e., value of the splitting criterion (only if ranger called with node.stats = TRUE).

Author(s)

Marvin N. Wright

30 treeInfo

See Also

ranger

Examples

rf <- ranger(Species ~ ., data = iris)
treeInfo(rf, 1)

Index

csrf, 2

deforest, 4, 17

getTerminalNodeIDs, 5

holdoutRF, 6
hshrink, 7

importance (importance.ranger), 8
importance.ranger, 8
importance_pvalues, 8, 23

parse.formula, 10
predict.ranger, 11, 26
predict.ranger.forest, 13
predictions

(predictions.ranger.prediction),
16

predictions.ranger, 15
predictions.ranger.prediction, 16
print.deforest.ranger, 17
print.ranger, 17
print.ranger.forest, 18
print.ranger.prediction, 18

ranger, 4, 6, 8, 9, 13, 15–18, 19, 28, 30

timepoints (timepoints.ranger), 27
timepoints.ranger, 27
timepoints.ranger.prediction, 28
treeInfo, 29

31

	csrf
	deforest
	getTerminalNodeIDs
	holdoutRF
	hshrink
	importance.ranger
	importance_pvalues
	parse.formula
	predict.ranger
	predict.ranger.forest
	predictions.ranger
	predictions.ranger.prediction
	print.deforest.ranger
	print.ranger
	print.ranger.forest
	print.ranger.prediction
	ranger
	timepoints.ranger
	timepoints.ranger.prediction
	treeInfo
	Index

