Package 'ra4bayesmeta'

October 6, 2023

Type Package

Title Reference Analysis for Bayesian Meta-Analysis

Version 1.0-8

Date 2023-10-06

Author Manuela Ott [aut, cre], Malgorzata Roos [aut]

Maintainer Manuela Ott <manuela.c.ott@gmail.com>

Description Functionality for performing a principled reference analysis in the Bayesian normalnormal hierarchical model used for Bayesian meta-analysis, as described in Ott, Plummer and Roos (2021) <doi:10.1002/sim.9076>. Computes a reference posterior, induced by a minimally informative improper reference prior for the between-study (heterogeneity) standard deviation. Determines additional proper anti-conservative (and conservative) prior benchmarks. Includes functions for reference analyses at both the posterior and the prior level, which, given the data, quantify the informativeness of a heterogeneity prior of interest relative to the minimally informative reference prior and the proper prior benchmarks. The functions operate on data sets which are compatible with the 'bayesmeta' package.

Depends bayesmeta, R (>= 3.5.0)

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2023-10-06 20:40:02 UTC

R topics documented:

ra4bayesmeta-package	. :	•		•	•					•		•	•	•					•	•	•	2
aa		•						•		•	•	•	•	•	•		•		•	•	•	4
aom		•						•		•	•	•	•	•	•		•		•	•	•	5
$cal_h_dist \ . \ . \ . \ .$		•						•		•	•	•	•	•	•		•		•	•	•	7
dsgc		•																				8
dsigc		•																				9
fit_models_RA													•		•							10

fit_models_RA_5bm
Н 15
H_fits
H_normal
m_inf_sgc
M_inf_sigc 19
m_j_sgc
M_j_sigc 22
plot_RA
plot_RA_5bm
plot_RA_fits
post_mu_fe
post_RA
post_RA_3bm
post_RA_fits
pri_RA_5bm
pri_RA_fits
rti
sigma_ref
47

Index

ra4bayesmeta-package Reference Analysis for Bayesian Meta-Analysis

Description

Functionality for performing a principled reference analysis in the Bayesian normal-normal hierarchical model (NNHM) used for Bayesian meta-analysis. Focuses on the choice of the prior for the between-study (heterogeneity) standard deviation τ . Implements the methodology proposed in Ott et al. (2021).

The posterior reference analysis applies the Hellinger distance to quantify the informativeness of an actual heterogeneity prior of interest by comparing the corresponding marginal posteriors (for different parameters in the NNHM) with posterior benchmarks. The prior reference analysis quantifies the informativeness of an actual heterogeneity prior given the data by computing its Hellinger distance to prior benchmarks.

The main posterior benchmark used is Jeffreys reference posterior induced by a minimally informative improper reference prior (denoted by J) for the heterogeneity. Two alternative proposals for additional posterior benchmarks are implemented. The first, simpler proposal is described in Ott et al. (2021) and uses a benchmark induced by an anti-conservative half-normal heterogeneity prior (denoted by HN0). This benchmark allows us to discriminate between anti-conservative and conservative heterogeneity priors with respect to the reference prior. The second, more involved proposal is introduced in the Supplementary Material of Ott et al. (2021) and uses up to four additional benchmarks induced by proper priors. These benchmarks allow us to discriminate between strongly anti-conservative, reference affine, and strongly conservative heterogeneity priors. All four benchmark priors belong to two closely related parametric families, the so-called "square-root

ra4bayesmeta-package

generalized conventional" (SGC) and "inverse square-root generalized conventional" (SIGC) distributions, which are derived from prior distributions for variance components described in Berger & Deely (1988). Note that most of these prior benchmarks also depend on the data set considered.

Functions which implement this second proposal use 3 benchmarks for the posterior reference analysis (Jeffreys reference posterior and two additional benchmarks induced by a highly anticonservative heterogeneity prior SGC(m_{inf}) and a highly conservative heterogeneity prior SIGC(M_{inf}), respectively) and 5 benchmarks for the prior reference analysis (Jeffreys reference prior and 4 proper priors) and have a corresponding suffix _3bm or _5bm. The corresponding functions without such a suffix implement the first proposal based on 2 heterogeneity benchmark priors (the half-normal and Jeffreys reference prior).

The main functions post_RA and post_RA_3bm perform the reference analysis at the posterior level based on a data frame as input. The functions fit_models_RA and fit_models_RA_5bm compute the benchmark heterogeneity priors and corresponding (marginal) posteriors for a given data frame. The more flexible functions post_RA_fits and pri_RA_fits perform the reference analysis at the posterior level and prior level based on the provided benchmark and actual model fits (of class bayesmeta), so that alternative benchmarks heterogeneity priors can also be used. Functions for plotting the densities of the heterogeneity priors and marginal posteriors for different parameters are also provided. The functions operate on data frames which are compatible with the bayesmeta R package on CRAN.

Details

Package: ra4bayesmeta

Type: Package Title: Reference Analysis for Bayesian Meta-Analysis Version: 1.0-8 Date: 2023-10-06 Author: Manuela Ott [aut, cre], Malgorzata Roos [aut] Maintainer: Manuela Ott <manuela.c.ott@gmail.com> Depends: bayesmeta License: GPL (>=2)

Author(s)

Manuela Ott, Malgorzata Roos

Maintainer: Manuela Ott <manuela.c.ott@gmail.com>

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

Berger, J. O., Deely, J. (1988). A Bayesian approach to ranking and selection of related means with alternatives to analysis-of-variance methodology. *Journal of the American Statistical Association* **83(402)**, 364–373.

Examples

```
# auricular acupuncture (AA) data set
data(aa)
# it takes several seconds to run each of the following functions
# posterior reference analysis
# for standard HN and HC heterogeneity priors
# using the HN0 and J benchmarks
post_RA(df=aa, tau.prior=
               list(function(t)dhalfnormal(t, scale=1),
                    function(t)dhalfcauchy(t, scale=1)))
# posterior reference analysis
# for standard HN and HC heterogeneity priors
# using 3 benchmarks (SGC(m_inf), J and SIGC(M_inf) priors)
post_RA_3bm(df=aa, tau.prior=
                   list(function(t)dhalfnormal(t, scale=1),
                        function(t)dhalfcauchy(t, scale=1)))
# plot the marginal posteriors for the effect mu
# using the HN0 and J benchmarks
plot_RA(df=aa, tau.prior=
               list(function(t)dhalfnormal(t, scale=1),
                    function(t)dhalfcauchy(t, scale=1)),
        type="post.mu", xlim=c(-1,1.5), ylim=c(0,2.5),
       legend=TRUE, legend.tau.prior=c("HN(1)", "HC(1)"))
```

aa

Auricular acupuncture data

Description

Meta-analysis data set including 4 randomized, controlled trials comparing treatment completion among cocaine dependents treated with auricular acupuncture versus sham acupuncture.

Usage

data(aa)

aom

Format

A data frame with 4 observations on the following 7 variables:

study character string, label of the study

- f.t integer, number of persons who did not complete treatment among those treated with auricular acupuncture
- n.t integer, number of persons treated with auricular acupuncture
- f.c integer, number of persons who did not complete treatment among those treated with sham acupuncture
- n.c integer, number of persons treated with sham acupuncture (control group)
- y numeric, log odds ratio estimates for the individual trials

sigma numeric, standard error of the log odds ratio estimate for the individual trials

Details

This data set was originally analyzed by Gates et al. (2006) and reanalyzed by Bodnar et al. (2017).

The log odds ratio estimates and standard errors were computed using the escalc function in the package metafor.

Source

Bodnar, O., Link, A., Arendacka, B., Possolo, A., Elster, C. (2017). Bayesian estimation in random effects meta-analysis using a non-informative prior. *Statistics in Medicine* **36**, 378–399.

References

Gates S, Smith LA, Foxcroft D. Auricular acupuncture for cocaine dependence. *Cochrane Database of Systematic Reviews 2006*, Issue 1. Art. No.: CD005192. doi:10.1002/14651858.CD005192.pub2

Examples

```
data(aa)
str(aa)
# forest plot
forest(x=aa$y, sei=aa$sigma, xlab="log odds ratio")
```

aom

Acute otitis media data

Description

Meta-analysis data set including 5 studies on treatment failure of short course (less than 7 days) versus long course (> 7 days) antibiotics for acute otitis media in children. The outcome considered is treatment failure at 8-19 days.

Usage

data(aom)

Format

A data frame with 5 observations on the following 7 variables:

study character string, label of the study

f.t integer, number of patients for whom the short course antibiotics treatment failed

n.t integer, number of patients receiving short course antibiotics

f.c integer, number of patients for whom the long course antibiotics treatment failed

n.c integer, number of patients receiving long course antibiotics

y numeric, log odds ratio estimates for the individual studies

sigma numeric, standard error of the log odds ratio estimate for the individual studies

Details

This data set has been analyzed in Kozyrskyj et al. (2000) and reanalyzed by Lambert et al. (2005). Senn (2007, Section 2) discusses problems in this data set. In particular, one arm of one study has been included twice in the data set.

The counts f.t, n.t, f.c and n.c and the names of the studies are taken from Senn (2007), who reproduces the data set given in Kozyrskyj et al. (2000, Analysis 2.2). The log odds ratio estimates and standard errors were computed using the escalc function in the package metafor and are identical to the estimates used in Lambert et al. (2005).

Source

Senn, S. (2007). Trying to be precise about vagueness. *Statistics in Medicine*, **26**, 1417–1430. doi:10.1002/sim.2639

References

Kozyrskyj, A., Klassen, T. P., Moffatt, M., Harvey K. (2000). Short-course antibiotics for acute otitis media. *Cochrane Database of Systematic Reviews*, Issue 2, Art. No.: CD001095. doi:10.1002/ 14651858.CD001095

Lambert, P., Sutton, A., Burton, P., Abrams, K., Jones, D. (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. *Statistics in Medicine* **24**(**15**), 2401–2428. doi:10.1002/sim.2112

Examples

```
data(aom)
str(aom)
# forest plot
forest(x=aom$y, sei=aom$sigma, xlab="log odds ratio")
```

cal_h_dist

Description

By default (if output="shift"), this function returns the mean of a unit-variance normal distribution, such that the Hellinger distance between this distribution and the standard normal distribution equals the given value. Offers the option to return the area of overlap (if output="ao") between these two unit-variance normal distributions instead. Gives an intuitive interpretation of Hellinger distance values.

Usage

cal_h_dist(h, output="shift")

Arguments

h	vector of Hellinger distances, consisting of real numbers in [0,1]
output	either "shift" or "ao". Specifies if the output should be given as the shift
	between two unit-varaince normal distributions or as the area of overlap (AO)
	between these unit-varaince normal distributions

Details

For a given Hellinger distance h, there is a mean $\mu(h)$, such that

 $H(N(\mu(h), 1), N(0, 1)) = h,$

where H denotes the Hellinger distance. See Roos et al. (2015), Sect. 2.2 for details.

If output="shift", the function returns the shift $\mu(h)$ between the two unit-variance normal distributions. If output="ao", the function returns the area of overlap between the $N(\mu(h), 1)$ and N(0, 1) distributions. This area of overlap is given by

$$AO(\mu(h)) = \Phi(\mu(h)/2; \mu(h), 1) + 1 - \Phi(\mu(h)/2; 0, 1),$$

where $\Phi(.; \mu, \sigma^2)$ denotes the cumulative distribution function of the normal distribution with mean μ and variance σ^2 . See Ott et al. (2021, Section 3.5) for more information on this area of overlap calibration.

Value

A vector of means (if output="shift") or areas of overlap (if output="ao"), respectively.

References

Roos, M., Martins, T., Held, L., Rue, H. (2015). Sensitivity analysis for Bayesian hierarchical models. *Bayesian Analysis* **10(2)**, 321–349. https://projecteuclid.org/euclid.ba/1422884977

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

Examples

```
# calibration in terms of shifts
cal_h_dist(h=c(0.1, 0.5, 0.9))
# calibration in terms of areas of overlap
cal_h_dist(h=c(0.1, 0.5, 0.9), output="ao")
```

dsgc

Density function of the square-root generalized conventional (SGC) benchmark prior

Description

Density function of the SGC distribution described in the Supplementary Material of Ott et al. (2021).

Usage

dsgc(x, m, C)

Arguments

х	vector of quantiles.
m	real number in $(1,\infty)$.
С	non-negative real number.

Details

The density function with domain $[0,\infty)$ is given by

$$\pi(x) = 2(m-1)Cx(1+Cx^2)^{-m}$$

for $x \ge 0$. This is the transformation of the density function for variance components given in equation (2.15) in Berger & Deely (1988) to the standard deviation scale. See the Supplementary Material of Ott et al. (2021), Section 2.2, for more information.

For meta-analysis data sets, Ott et al. (2021) choose $C = \sigma_{ref}^{-2}$, where σ_{ref} is the reference standard deviation (see function sigma_ref) of the data set, which is defined as the geometric mean of the standard deviations of the individual studies.

Value

Value of the density function at locations x, where $x \ge 0$. Vector of non-negative real numbers.

8

dsigc

References

Berger, J. O., Deely, J. (1988). A Bayesian approach to ranking and selection of related means with alternatives to analysis-of-variance methodology. *Journal of the American Statistical Association* **83(402)**, 364–373.

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

dsigc

Examples

dsgc(x=c(0.1,0.5,1), m=1.2, C=10)

dsigc	Density function of the square-root inverse generalized conventional
	(SIGC) benchmark prior

Description

Density function of the SIGC distribution described in the Supplementary Material of Ott et al. (2021).

Usage

dsigc(x, M, C)

Arguments

х	vector of quantiles.
Μ	real number in $(1,\infty)$.
С	non-negative real number.

Details

The density function with domain $[0,\infty)$ is given by

$$\pi(x) = 4(M-1)Cx^{-5}(1+Cx^{-4})^{-M}$$

for $x \ge 0$. This density is obtained if the density function for variance components given in equation (2.15) in Berger & Deely (1988) is assigned to the precision (i.e. the inverse of the variance) and then transformed to the standard deviation scale. See the Supplementary Material of Ott et al. (2021), Section 2.2, for more information.

For meta-analysis data sets, Ott et al. (2021) choose $C = \sigma_{ref}^{-2}$, where σ_{ref} is the reference standard deviation (see function sigma_ref) of the data set, which is defined as the geometric mean of the standard deviations of the individual studies.

Value

Value of the density function at locations x, where $x \ge 0$. Vector of non-negative real numbers.

References

Berger, J. O., Deely, J. (1988). A Bayesian approach to ranking and selection of related means with alternatives to analysis-of-variance methodology. *Journal of the American Statistical Association* **83(402)**, 364–373.

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

dsgc

Examples

dsigc(x=c(0.1,0.5,1), M=1.2, C=10)

fit_models_RA	Model fitting for reference analysis using 2 benchmarks: Posterior
	inference for benchmark and actual heterogeneity priors

Description

Computes the posterior distribution of the parameters in a random-effects meta-analysis (expressed as a normal-normal hierarchical model) for two benchmark heterogeneity priors and the actual heterogeneity prior(s) specified. Applies the function bayesmeta from the package bayesmeta.

Usage

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list of prior specifications, which are <i>either</i> functions returning the probability densities of the actual priors of interest for the heterogeneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
scale.hn0	scale parameter of the half-normal benchmark prior (usually small, so that the benchmark is anti-conservative).

mu.mean	mean of the normal prior for the effect mu.
mu.sd	standard deviation of the normal prior for the effect mu.
interval.type	the type of (credible, prediction, shrinkage) interval to be returned by default. Either "central" for equal-tailed intervals or "shortest" for shortest intervals. De- faults to "central". See also the corresponding argument in the bayesmeta func- tion.

Details

The two heterogeneity benchmark priors used are introduced in Ott et al. (2021, Section 3.4), where they are denoted by HN0 and J. Note that "J" refers to Jeffreys reference prior, which is improper, but leads to a proper posterior if there are at least two studies in the meta-analysis data set. HN0 is a half-normal prior with scale parameter scale.hn0.

Decreasing the scale parameter scale.hn0 of the half-normal benchmarks leads to a more anticonservative (i.e. its mass is more concentrated near 0) HN0 benchmark prior. However, scale.hn0 cannot be chosen arbitrarily small since too small values lead to numerical problems in the bayesmeta function used to fit the models. To verify how anti-conservative the HN0 benchmark is, one can compare the marginal posterior for the overall mean parameter mu with the corresponding posterior for the fixed effects model, e.g. by using the function plot_RA. The better the match between these two marginal posteriors, the more anti-conservative the HN0 benchmark is.

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

Value

A list containing the model fits, namely a list of lists of class bayesmeta. This list has length 2 + length(tau.prior) and contains one element for each heterogeneity prior considered (2 benchmark priors and the actual priors specified), in the following order:

fit.hn0	for the half-normal HN0 benchmark prior with scale parameter $scale.hn0$
fit.j	for Jeffreys (improper) reference prior
fit.actual_1	for the first prior in the list tau.prior (if specified)
fit.actual_2	for the second prior in the list tau.prior (if specified)
fit.actual_n	for the nth prior in the list tau.prior (if specified)

See bayesmeta in the package bayesmeta for information on the structure of the lists of class bayesmeta.

Warning

If fit_models_RA ends with an error or warning, we recommend to increase the value of the parameter scale.hn0 for the anti-conservative benchmark prior.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

bayesmeta in the package bayesmeta, plot_RA, fit_models_RA_5bm

Examples

fit_models_RA_5bm	Model fitting for reference analysis using 5 benchmarks: Posterior
	inference for benchmark and actual heterogeneity priors

Description

Computes the posterior distribution of the parameters in a random-effects meta-analysis (expressed as a normal-normal hierarchical model) for each of five benchmark heterogeneity priors and the actual heterogeneity prior(s) specified. Applies the function bayesmeta from the package bayesmeta.

Usage

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list of prior specifications, which are <i>either</i> functions returning the probability densities of the actual priors of interest for the heterogeneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
compute.J.bm	logical. Specifies if the parameter values of the two benchmarks priors $SGC(m_J)$ and $SIGC(M_J)$ and the corresponding marginal posteriors should be computed. Defaults to TRUE.
m_J	parameter value $m = m_J$ of the SGC(m) prior, which induces a marignal pos- terior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parame- ter is computed using the function m_j_sgc and the arguments df, upper.J, digits.J, mu.mean and mu.sd.

M_J	parameter value $M = M_J$ of the SIGC(M) prior, which induces a marignal posterior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parameter is computed using the function M_j_sigc and the arguments df, upper.J, digits.J, mu.mean and mu.sd.
upper.J	upper bound for the parameters M_J and m_J. Real number in $(1, \infty)$. Is required only if M_J=NA or m_J=NA.
digits.J	specifies the desired precision of the parameter values M_J and m_J , i.e. to how many digits these two values should be determined. Possible values are 1,2,3. Defaults to 2. Is required only if M_J=NA or m_J=NA.
m_inf	parameter value $m = m_{inf}$ of the SGC(m) prior, such that the median relative latent model complexity (RLMC) is close to 0. If set to NA (the default), this pa- rameter is computed using the function m_inf_sgc, such that the median RLMC is approximately equal to rlmc0.
M_inf	parameter value $M = M_{inf}$ of the SIGC(M) prior, such that the median relative latent model complexity (RLMC) is close to 1. If set to NA (the default), this parameter is computed using the function M_inf_sigc, such that the median RLMC is approximately equal to rlmc1.
rlmc0	RLMC target value for the SGC(m_{inf}) benchmark prior (typically close to 0). Is required only if m_inf=NA.
rlmc1	RLMC target value for the SIGC(M_{inf}) benchmark prior (typically close to 1). Is required only if M_inf=NA.
mu.mean	mean of the normal prior for the effect mu.
mu.sd	standard deviation of the normal prior for the effect mu.

Details

The five heterogeneity benchmark priors used are introduced in the Supplementary Material of Ott et al. (2021, Sections 2.2.1, 2.5 and 2.6, see also Section 3.4 of Ott et al. (2021) for Jeffreys reference prior), where they are denoted by $SGC(m_{inf})$, $SIGC(M_J)$, $SGC(m_J)$, $SIGC(M_{inf})$ and Jeffreys. Note that "Jeffreys" refers to Jeffreys reference prior, which is improper, but leads to a proper posterior if there are at least two studies in the meta-analysis data set.

If the fits induced by the SIGC(M_J) and SGC(m_J) benchmarks are not needed for the analysis (such as for the posterior reference analysis proposed in the Supplementary Material of Ott et al. (2021), see for example Table 8 for illustration), specifying compute.J.bm=FALSE may reduce the computation time by several minutes.

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

Value

A list with two elements: The first element named "fits" is a list containing the model fits and the second element called "par" is a named vector giving the parameter values of the benchmark priors. The vector "par" has the following five components: m_inf, M_J, m_J, M_inf and C.

The element "fits" is a list of lists of class bayesmeta. This list has length 5 + length(tau.prior) and contains one element for each heterogeneity prior considered (5 benchmark priors and the actual priors specified), in the following order:

fit.SGC.m_inf	for SGC(m_inf) benchmark prior	
fit.SIGC.M_J	for SIGC(M_J) benchmark prior	
fit.SGC.m_J	for SGC(m_J) benchmark prior	
fit.SIGC.M_inf		
	for SIGC(M_inf) benchmark prior	
fit.j	for Jeffreys (improper) reference prior	
fit.actual_1	for the first prior in the list tau.prior (if specified)	
fit.actual_2	for the second prior in the list tau.prior (if specified)	
fit.actual_n	for the nth prior in the list tau.prior (if specified)	

See bayesmeta in the package bayesmeta for information on the structure of the lists of class bayesmeta.

Warning

This function may take several minutes to run if the parameter m_J and/or M_J is not specified, especially if the desired precision is digits. J=2 or even digits. J=3.

If fit_models_RA ends with an error or warning, we recommend to check the values of the parameters M_J, m_J and M_inf for the benchmark priors. The choice of these parameters can be studied by using the functions M_j_sigc, m_j_sgc and M_inf_sigc. If one of the parameters m_inf, M_J, m_J or M_inf has a value larger than 5*10^6, a warning message will be displayed, since such large parameter values may lead to numerical problems in the bayesmeta function.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

bayesmeta in the package bayesmeta, m_j_sgc, M_j_sigc, m_inf_sgc, M_inf_sigc

Examples

computation is much faster if m_J and M_J are specified

Н

Hellinger distance between two probability densities

Description

Computes the Hellinger distance between the two probability density functions specified using numerical integration.

Usage

H(dens1, dens2, lower=-Inf)

Arguments

dens1	function returning the first probability density.
dens2	function returning the second probability density.
lower	lower end of the common domain of two density functions. Usually equal to $-\infty \mbox{ or } 0.$

Details

The Hellinger distance is defined in Le Cam (1986) and also given in Roos et al. (2015, Sect. 2.1).

Value

A real number in [0,1].

References

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer.

Roos, M., Martins, T., Held, L., Rue, H. (2015). Sensitivity analysis for Bayesian hierarchical models. *Bayesian Analysis* **10(2)**, 321–349. https://projecteuclid.org/euclid.ba/1422884977

See Also

H_normal

Examples

```
H(dens1=function(x) dhalfnormal(x, scale=0.5),
  dens2=function(x) dhalfnormal(x, scale=1), lower=0)
H(dens1=function(x) dhalfnormal(x, scale=0.5),
  dens2=function(x) dhalfcauchy(x, scale=1), lower=0)
```

H_fits

Description

Computes the Hellinger distance between the marginal posterior densities extracted from two bayesmeta fits, for the selected parameter of interest. Offers the option to select between integral-based and approximate moment-based computation of Hellinger distances.

Usage

Arguments

fit1	first model fit of class bayesmeta, computed with the bayesmeta function in the package bayesmeta.
fit2	second model fit of class bayesmeta, computed with the bayesmeta function in the package bayesmeta.
parameter	parameter for which the the marginal posterior densities should be compared. Possible values are "mu", "tau", "theta_new" and "theta" ("theta" refers to the random effects and is used in combination with the individual argment).
individual	integer $\langle = k$, where k is the number of studies in the meta-analysis data set. Specifies which random effect parameter to consider (according to the order of the studies in the data set). Is used only if parameter = "theta".
method	method for Hellinger distance computation. Either "integral" for integral- based computation or "moment" for approximate moment-based calculation us- ing a normal approximation. Defaults to "integral".

Details

In the random effects model for meta-analysis, the parameter mu is the overall mean parameter, tau is the between-study (heterogeneity) standard deviation, theta_new is the predicted effect for a new study and theta_i is the random effect parameter for study i.

If integral-based computation (method = "integral") of Hellinger distances is selected (the default), numerical integration is applied to obtain the Hellinger distance between the two marginal posterior densities (by using the function H). If moment-based computation (method = "moment") is selected, the marginal densities are first approximated by normal densities with the same means and standard deviations and then the Hellinger distance between these normal densities can be obtained by an analytical formula (implemented in the function H_normal).

Value

A real number in [0,1].

H_normal

Warning

If the integral-based method is used to compute Hellinger distances (method = "integral"), numerical problems may occur in some cases, which may lead to implausible outputs. Therefore, we generally recommend to double-check the results of the integral-based method using the momentbased method (method = "moment") - especially if the former results are implausibe. If large differences between the two methods are observed, we recommend to rely on the moment-based method unless a normal approximation of the involved densities is inappropriate.

See Also

H, H_normal

Examples

```
data(aa)
 # fit under Jeffreys reference heterogeneity prior
fit1 <- bayesmeta(y = aa[ , "y"], sigma = aa[, "sigma"],</pre>
                  mu.prior.mean = 0, mu.prior.sd = 4,
                  tau.prior = "Jeffreys")
# fit under standard half-normal heterogeneity prior
fit2 <- bayesmeta(y = aa[ , "y"], sigma = aa[, "sigma"],</pre>
                  mu.prior.mean = 0, mu.prior.sd = 4,
                  tau.prior = function(t) dhalfnormal(t, scale = 1))
# Hellinger distance between the marginal posteriors for mu
H_fits(fit1, fit2)
# moment-based calculation
H_fits(fit1, fit2, method = "moment")
# Hellinger distance between the marginal posteriors for theta_2
# (random effect parameter)
H_fits(fit1, fit2, parameter = "theta", individual = 2)
```

H_normal

Approximate moment-based Hellinger distance computation between two probability densities

Description

Computes the Hellinger distance between the two probability densities with the given means and standard deviations using a normal approximation and moment-matching. Applies a moment-based analytical formula, which is exact for normal densities.

Usage

```
H_normal(mean1, sd1, mean2, sd2)
```

Arguments

mean1	mean of the first density.
sd1	standard deviation of the first density.
mean2	mean of the second density.
sd2	standard deviation of the second density.

Details

The Hellinger distance between two normal densities can be computed analytically and it only depends on the means and the standard deviations of these two densities. Any density can be approximated to the first order by a normal distribution. Thus, this moment-based formula can also be applied to non-normal densities to obtain an approximate estimate of the Hellinger distance. This approximation relies on moment-matching, i.e. the non-normal densities are approximated by normal densities with the same means and standard deviations. See Roos et al. (2021), Section 3.3, for the formula and for additional information.

Note that the Hellinger distance is invariant with respect to one-to-one transformations of both densities. For the between-study standard deviation τ , the density of $log(\tau)$ can be approximated by a normal density.

Value

A real number in [0,1].

References

Roos, M., Hunanyan, S., Bakka, H., & Rue, H. (2021). Sensitivity and identification quantification by a relative latent model complexity perturbation in Bayesian meta-analysis. *Biometrical Journal* **63**, 1555–1574. doi:10.1002/bimj.202000193

See Also

Н

Examples

H_normal(mean1 = 0, sd1 = 1, mean2 = 1, sd2 = 2)

m_inf_sgc	<i>Optimization function for the SGC(m) prior: Adjust the prior to a tar-</i>
	get relative latent model complexity (RLMC)

Description

Computes the parameter value $m = m_{inf}$ of the SGC(m) prior, such that the relative latent model complexity (RLMC) with respect to the reference threshold is approximately rlmc. The reference threshold is chosen as the (1-alpha)-quantile of the SGC(m_{inf}) prior.

M_inf_sigc

Usage

m_inf_sgc(rlmc, alpha=0.5)

Arguments

rlmc	target RLMC value. Real number in $(0, 1)$.
alpha	determines the $(1-alpha)$ -quantile of the SGC (m) prior, which is used as reference threshold. Defaults to 0.5 (i.e. the median).

Details

See the Supplementary Material of Ott et al. (2021), Section 2.3.1, for the formulas and explanations. Note that the parameter value m_{inf} does not depend on the data set considered.

Value

Parameter value $m = m_{inf}$ of the SGC(m) prior. Real number > 1.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

M_inf_sigc

Examples

```
# extreme RLMC target value close to 0 used in Ott et al. (2021)
m_inf_sgc(rlmc=0.0001)
```

25% quantile instead of the median as ref. threshold m_inf_sgc(rlmc=0.0001, alpha=0.75)

Μ.	_ir	nf_	si	gc
----	-----	-----	----	----

Optimization function for the SIGC(M) prior: Adjust the prior to a target relative latent model complexity (RLMC)

Description

Computes the parameter value $M = M_{inf}$ of the SIGC(M) prior, such that the relative latent model complexity (RLMC) with respect to the reference threshold is approximately rlmc. The reference threshold is chosen as the (1-alpha)-quantile of the SIGC(M_{inf}) prior.

Usage

M_inf_sigc(rlmc, df, alpha=0.5, truncation=5*10^6)

Arguments

rlmc	target RLMC value. Real number in $(0, 1)$.	
df	data frame with one column "sigma" containing the standard errors of the esti- mates for the individual studies.	
alpha	determines the $(1-alpha)$ -quantile of the SIGC(M) prior, which is used as reference threshold. Defaults to 0.5 (i.e. the median).	
truncation	upper bound for the parameter value M . Defaults to the empirically determined value $5*10^{6}$.	

Details

See the Supplementary Material of Ott et al. (2021), Section 2.3.2, for the formulas and explanations. Note that the parameter value M_{inf} does depend on the data set considered.

Value

Parameter value $M = M_{inf}$ of the SIGC(M) prior. Real number > 1.

Warning

Occasionally, the formula for M_{inf} given in the Supplementary Material of Ott et al. (2021, Section 2.3.2) yields values larger than 5*10^6. This can cause numerical problems in the bayesmeta function. Therefore, we truncate the parameter value at the empirically determined threshold 5*10^6 by default.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

m_inf_sgc

Examples

```
# extreme RLMC target value close to 1 used in Ott et al. (2021)
# for the aurigular acupuncture (AA) data set
data(aa)
M_inf_sigc(df=aa, rlmc=0.9999)
# for the respiratory tract infections (RTI) data set
data(rti)
M_inf_sigc(df=rti, rlmc=0.9999)
```

m_j_sgc

75% quantile instead of the median as ref. threshold M_inf_sigc(df=rti, rlmc=0.9999, alpha=0.25)

m_j_sgc

Optimization function for the SGC(m) prior: Approximate Jeffreys reference posterior

Description

Numerically determines the parameter value $m = m_J$ of the SGC(m) prior, such that the Hellinger distance between the marginal posteriors for the heterogeneity standard deviation τ induced by the SGC(m_J) and Jeffreys (improper) reference prior is minimal.

Usage

m_j_sgc(df, upper=3, digits=2, mu.mean=0, mu.sd=4)

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.	
upper	upper bound for parameter m . Real number in $(1, \infty)$.	
digits	specifies the desired precision of the parameter value $m = m_J$, i.e. to how many digits this value should be determined. Possible values are 1,2,3. Defaults to 2.	
mu.mean	mean of the normal prior for the effect mu.	
mu.sd	standard deviation of the normal prior for the effect mu.	

Details

See the Supplementary Material of Ott et al. (2021, Section 2.6) for details.

Value

Parameter value $m = m_J$ of the SGC(m) prior. Real number > 1.

Warning

This function takes several minutes to run if the desired precision is digits=2 and even longer for higher precision.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

 M_j_sigc

Examples

```
# for aurigular acupuncture (AA) data set
data(aa)
# warning: it takes ca. 2 min. to run this function
m_j_sgc(df=aa, digits=1)
```

M_j_sigc

Optimization function for the SIGC(m) prior: Approximate Jeffreys reference posterior

Description

Numerically determines the parameter value $M = M_J$ of the SIGC(M) prior, such that the Hellinger distance between the marginal posteriors for the heterogeneity standard deviation τ induced by the SIGC(M_J) prior and Jeffreys (improper) reference prior is minimal.

Usage

M_j_sigc(df, upper=3, digits=2, mu.mean=0, mu.sd=4)

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.	
upper	upper bound for parameter M . Real number in $(1, \infty)$.	
digits	specifies the desired precision of the parameter value $M = M_J$, i.e. to how many digits this value should be determined. Possible values are 1,2,3. Defaults to 2.	
mu.mean	mean of the normal prior for the effect mu.	
mu.sd	standard deviation of the normal prior for the effect mu.	

Details

See the Supplementary Material of Ott et al. (2021, Section 2.6) for details.

Value

Parameter value $M = M_J$ of the SIGC(M) prior. Real number > 1.

22

plot_RA

Warning

This function takes several minutes to run if the desired precision is digits=2 and even longer for higher precision.

For some data sets, the optimal parameter value $M = M_J$ is very large (e.g. of order 9*10^5). If this function returns M_J =upper, then the optimal parameter value may be larger than upper.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

m_j_sgc

Examples

```
# for aurigular acupuncture (AA) data set
data(aa)
# warning: it takes ca. 2 min. to run this function
M_j_sigc(df=aa, digits=1)
```

p]	lot.	_RA
ч	LUL.	_INA

Reference analysis plot based on a data frame using 2 benchmarks: Plot heterogeneity benchmark priors and the corresponding marginal posteriors

Description

Plots the proper half-normal benchmark heterogeneity prior proposed in Ott et al. (2021) and the corresponding marginal benchmark posteriors for different parameters in the NNHM. Also displays the marginal Jeffreys reference posterior, which is induced by an improper reference prior. Displays the specified actual heterogeneity priors in tau.prior and the corresponding marginal posteriors as well.

Usage

```
plot_RA(df, tau.prior = list(),
    type = "pri.tau", improper.prior = NULL, show.sigma.i = FALSE,
    xlim, ylim, legend = FALSE,
    pos.legend = "topright", legend.tau.prior = c(),
    xlab = NULL, bty = "o",
    scale.hn0 = 1/500, mu.mean = 0, mu.sd = 4)
```

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list (maximum length 5) of prior specifications, which are <i>either</i> functions re- turning the probability densities of the actual priors of interest for the hetero- geneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
type	specifies if heterogeneity priors or marginal posterior densities for a given pa- rameter should be plotted. Options are "pri.tau" for heterogeneity priors, "post.mu" for the marg. posterior of the main effect mu, "post.tau" for the marg. posterior of the heterogeneity tau and "post.theta.new" for the marg. posterior of the predicted effect theta_new in a new study.
improper.prior	vector of integers specifying the positions of the improper priors in the list tau.prior or NULL (the default). Determines which prior densities should not be plotted. Applies only to type = "pri.tau".
show.sigma.i	logical. Specifies if the standard errors of the estimates for the individual studies (the entries of the column "sigma" in the data frame df) should be added to the density plot as dots. Defaults to FALSE. Applies only to type = "pri.tau".
xlim	a vector of two real numbers. Limits of the x-axis. (First number ≥ 0 for densities for tau.)
ylim	a vector of two real non-negative numbers. Limits of the y-axis.
legend	logical. Specifies if a legend should be added to the plot. Defaults to FALSE.
pos.legend	a character string specifing the position of the legend in the plot. Options are
	all the keywords accepted by the legend function in the graphics package, i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
legend.tau.pri	<pre>i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". or</pre>
legend.tau.pri	<pre>i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".</pre>
legend.tau.pri xlab	i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".ora vector of character strings or expressions of the same length as the list tau.prior. Determines the legend entries corresponding to the actual heterogeneity priors
	i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".ora vector of character strings or expressions of the same length as the list tau.prior. Determines the legend entries corresponding to the actual heterogeneity priors specified in tau.prior, in the same order as the priors in that list.x-axis label. If unspecified or set to NULL (the default), a default label specify-
xlab	 i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". or a vector of character strings or expressions of the same length as the list tau.prior. Determines the legend entries corresponding to the actual heterogeneity priors specified in tau.prior, in the same order as the priors in that list. x-axis label. If unspecified or set to NULL (the default), a default label specifying the paramter of interest is used. the type of box to be drawn around the legend. The allowed values are "o" (the
xlab bty	 i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". or a vector of character strings or expressions of the same length as the list tau.prior. Determines the legend entries corresponding to the actual heterogeneity priors specified in tau.prior, in the same order as the priors in that list. x-axis label. If unspecified or set to NULL (the default), a default label specifying the paramter of interest is used. the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n". scale parameter of the half-normal benchmark prior (usually a small number to obtain an anti-conservative benchmark which has most of its probability mass

plot_RA

Details

The two heterogeneity benchmark priors used are introduced in Ott et al. (2021, Section 3.4) and they are denoted by HNO and J. Note that the latter Jeffreys reference prior J is improper, but leads to a proper posterior if there are at least two studies in the meta-analysis data set.

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

If you wish to adapt the colors, line types or line widths of the plotted densities, we suggest to compute the models fits first by using the function fit_models_RA and then to apply the more flexible function plot_RA_fits operating on model fits of class bayesmeta.

Value

No return value, produces graphical output only.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

plot_RA_fits, plot_RA_5bm, fit_models_RA

Examples

plot_RA_5bm

Reference analysis plot based on a data frame using 5 benchmarks: Plot heterogeneity benchmark priors and the corresponding marginal posteriors

Description

Plots the four proper benchmark heterogeneity priors proposed in the Supplementary Material of Ott et al. (2021) and the corresponding marginal benchmark posteriors for different parameters in the NNHM. Also displays the marginal Jeffreys reference posterior, which is induced by an improper reference prior. Displays the specified actual heterogeneity priors in tau.prior and the corresponding marginal posteriors as well.

Usage

```
plot_RA_5bm(df, tau.prior=list(), type="pri.tau",
    improper.prior = NULL, show.sigma.i = FALSE,
    xlim, ylim,
    m_J=NA, M_J=NA, upper.J=3, digits.J=2,
    m_inf=NA, M_inf=NA, rlmc0=0.0001, rlmc1=0.9999,
    legend=FALSE, pos.legend="topright", legend.tau.prior=c(),
    xlab = NULL, bty = "o",
    mu.mean=0, mu.sd=4)
```

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list (maximum length 5) of prior specifications, which are <i>either</i> functions re- turning the probability densities of the actual priors of interest for the hetero- geneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
type	<pre>specifies if heterogeneity priors or marginal posterior densities for a given pa- rameter should be plotted. Options are "pri.tau" for heterogeneity priors, "post.mu" for the marg. posterior of the main effect mu, "post.tau" for the marg. posterior of the heterogeneity tau and "post.theta.new" for the marg. posterior of the predicted effect theta_new in a new study.</pre>
improper.prior	vector of integers specifying the position of the improper priors in the list tau.prior or NULL (the default). Determines which prior densities should not be plotted. Applies only to type = "pri.tau".
show.sigma.i	logical. Specifies if the standard errors of the estimates for the individual studies (the entries of the column "sigma" in the data frame df) should be added to the density plot as dots. Defaults to FALSE. Applies only to type = "pri.tau".

xlim	a vector of two real numbers. Limits of the x-axis. (First number ≥ 0 for densities for tau.)
ylim	a vector of two real non-negative numbers. Limits of the y-axis.
m_J	parameter value $m = m_J$ of the SGC(m) prior, which induces a marignal pos- terior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parameter is computed using the function m_j_sgc and some other parameters.
M_J	parameter value $M = M_J$ of the SIGC(M) prior, which induces a marignal posterior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parameter is computed using the function M_j_sigc and some other parameters.
upper.J	upper bound for the parameters M_J and m_J. Real number in $(1,\infty).$ Is required only if M_J=NA or m_J=NA.
digits.J	specifies the desired precision of the parameter values M_J and m_J , i.e. to how many digits these two values should be determined. Possible values are 1,2,3. Defaults to 2. Is required only if M_J=NA or m_J=NA.
m_inf	parameter value $m = m_{inf}$ of the SGC(m) prior, such that the median relative latent model complexity (RLMC) is close to 0. If set to NA (the default), this pa- rameter is computed using the function m_inf_sgc, such that the median RLMC is approximately equal to rlmc0.
M_inf	parameter value $M = M_{inf}$ of the SIGC(M) prior, such that the median relative latent model complexity (RLMC) is close to 1. If set to NA (the default), this parameter is computed using the function M_inf_sigc, such that the median RLMC is approximately equal to rlmc1.
rlmc0	RLMC target value for the SGC(m_{inf}) benchmark prior (typically close to 0). Is required only if m_inf=NA.
rlmc1	RLMC target value for the SIGC(M_{inf}) benchmark prior (typically close to 1). Is required only if M_inf=NA.
legend	logical. Specifies if a legend should be added to the plot. Defaults to FALSE.
pos.legend	a character string specifing the position of the legend in the plot. Options are all the keywords accepted by the legend function in the graphics package, i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
legend.tau.pric	
	a vector of character strings or expressions of the same length as the list tau.prior. Determines the legend entries corresponding to the actual heterogeneity priors specified in tau.prior, in the same order as the priors in that list.
xlab	x-axis label. If unspecified or set to NULL (the default), a default label specify- ing the paramter of interest is used.
bty	the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n".
mu.mean	mean of the normal prior for the effect mu.

mu.sd standard deviation of the normal prior for the effect mu.

Details

The five heterogeneity benchmark priors used are introduced in the Supplementary Material of Ott et al. (2021, Sections 2.2.1, 2.5 and 2.6, see also Section 3.4 of Ott et al. (2021) for Jeffreys reference prior), where they are denoted by $SGC(m_{inf})$, $SIGC(M_J)$, $SGC(m_J)$, $SIGC(M_{inf})$ and Jeffreys. Note that the latter Jeffreys reference prior is improper, but leads to a proper posterior if there are at least two studies in the meta-analysis data set.

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

If you wish to adapt the colors, line types or line widths of the plotted densities, we suggest to compute the models fits first by using the function fit_models_RA and then to apply the more flexible function plot_RA_fits operating on model fits of class bayesmeta.

Value

No return value, produces graphical output only.

Warning

This function may take several minutes to run if the parameter m_J and/or M_J is not specified, especially if the desired precision is digits.J=2 or even digits.J=3.

A warning message will be displayed if one of the parameters m_inf, M_J, m_J or M_inf has a value larger than $5*10^{6}$, since this may lead to numerical problems in the bayesmeta function used for computation of the marginal posteriors.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

fit_models_RA_5bm, plot_RA_fits

Examples

28

```
plot_RA_fits
```

Reference analysis plot based on bayesmeta fits: Plot heterogeneity benchmark priors and the corresponding marginal posteriors

Description

Plots the benchmark heterogeneity priors inducing the specified model fits fits.bm and the corresponding marginal benchmark posteriors for different parameters in the NNHM. Also displays the actual heterogeneity priors inducing the specified actual model fits fits.actual and the corresponding marginal posteriors. All bayesmeta fits should be based on the same data set.

Usage

Arguments

fits.actual	a list of model fits (max. 5 fits) of class bayesmeta, computed with the bayesmeta function in the package bayesmeta.
fits.bm	a list of model fits (max. 5 fits) of class bayesmeta, computed with the bayesmeta function in the package bayesmeta. To be used as benchmarks.
type	specifies if heterogeneity priors or marginal posterior densities for a given pa- rameter should be plotted. Options are "pri.tau" for heterogeneity priors, "post.mu" for the marg. posterior of the main effect mu, "post.tau" for the marg. posterior of the heterogeneity tau and "post.theta.new" for the marg. posterior of the predicted effect theta_new in a new study.
xlim	a vector of two real numbers. Limits of the x-axis. (First number ≥ 0 for densities for tau.)

ylim	a vector of two real non-negative numbers. Limits of the y-axis.
legend	logical. Specifies if a legend should be added to the plot. Defaults to FALSE.
pos.legend	a character string specifing the position of the legend in the plot. Options are all the keywords accepted by the legend function in the graphics package, i.e. "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
legend.tau.pri	or
	a vector of character strings or expressions with one entry for each fit in fits.actual and fits.bm (i.e. a vector of length length(fits.actual)+length(fits.bm)). Determines the legend entries corresponding to the actual und benchmark fits specified, in the same order as in the list c(fits.actual, fits.bm).
bty	the type of box to be drawn around the legend. The allowed values are "o" (the default) and "n".
col.actual	vector of color specifications for the lines representing the actual fits in fits.actual, in the same order as in that list. Vector of minimum length length(fits.actual).
col.bm	vector of color specifications for the lines representing the benchmark fits in fits.bm, in the same order as in that list. Vector of minimum length length(fits.bm).
lty.actual	vector of line type specifications for the lines representing the actual fits in fits.actual, in the same order as in that list. Vector of minimum length length(fits.actual).
lty.bm	vector of line type specifications for the lines representing the benchmark fits in fits.bm, in the same order as in that list. Vector of minimum length length(fits.bm).
lwd.actual	numeric vector specifying the width of the lines representing the actual fits in fits.actual, in the same order as in that list. Vector of minimum length length(fits.actual).
lwd.bm	numeric vector specifying the width of the lines representing the benchmark fits in fits.bm, in the same order as in that list. Vector of minimum length length(fits.bm).

Details

Two alternative suggestions for posterior benchmarks are provided in Ott et al. (2021, Section 3.4) and its Supplementary Material (Section 2.5) and they can be computed using the functions fit_models_RA and fit_models_RA_5bm, respectively.

Value

No return value, produces graphical output only.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

post_mu_fe

See Also

bayesmeta in the package bayesmeta, fit_models_RA, plot_RA

Examples

```
# for aurigular acupuncture (AA) data set with two
# actual half-normal and half-Cauchy heterogeneity priors
data(aa)
# compute the model fits
fits <- fit_models_RA(df=aa, tau.prior=list(function(t)dhalfnormal(t, scale=1),</pre>
                                             function(t)dhalfcauchy(t, scale=1)))
# plot the HN0 benchmark prior (do not show the improper J benchmark)
fits.bm.pri <- fits[1]</pre>
# benchmark fits under HN0 and J priors
fits.bm.post <- fits[1:2]</pre>
fits.actual <- fits[3:4]</pre>
# prior densities
plot_RA_fits(fits.actual=fits.actual, fits.bm=fits.bm.pri,
             type="pri.tau", xlim=c(0, 2), ylim=c(0, 3),
             legend=TRUE,
             legend.tau.prior=c("HN(1)", "HC(1)", "HN0"))
# marginal posterior for the effect mu
plot_RA_fits(fits.actual=fits.actual, fits.bm=fits.bm.post,
             type="post.mu", xlim=c(-1.5, 1.5), ylim=c(0, 3),
             legend=TRUE,
             legend.tau.prior=c("HN(1)", "HC(1)",
             "HN0", "J"))
```

Normal posterior for the overall mean parameter in the fixed effects model

Description

This function computes the mean and the standard deviation of the normal posterior distribution for the overall mean parameter mu in the fixed effects model.

Usage

post_mu_fe(df, mu.mean = 0, mu.sd = 4)

Arguments

df

data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.

post_RA

mu.mean	mean of the normal prior for the overall mean parameter mu. Defaults to 0.
mu.sd	standard deviation of the normal prior for the overall mean parameter mu. De- faults to 4.

Details

For the fixed effects model, the normal posterior for the overall mean parameter mu can be computed analytically (under the common assumption of a normal prior on mu) since this is a conjugate Bayesian normal-normal model. See for example Ott et al. (2021), Equation (2) for the formula (mu.mean corresponds to ν and mu.sd corresponds to γ).

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale (Roever, 2020).

Value

A list with two elements: the first element "mean" and the second element "sd", which refer to the mean and the standard deviation of the normal posterior of mu.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

Roever C. Bayesian random-effects meta-analysis using the bayesmeta R package (2020). *Journal of Statistical Software* **93(6)**, 1–51.

Examples

```
# load the aurigular acupuncture (AA) data set
data(aa)
# normal prior for log odds ratios suggested by Roever (2020)
post_mu_fe(df=aa, mu.mean=0, mu.sd=4)
```

post_RA	Posterior	reference	analysis	based	on a	ı data	frame	using	2 b	ench-
	marks									

Description

Computes a table of posterior estimates and informativeness values for the marginal posterior distributions of different parameters in the NNHM induced by the actual heterogeneity priors specified in tau.prior. Also provides the same estimates for the posterior benchmarks proposed in Ott et al. (2021).

post_RA

Usage

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list of prior specifications, which are <i>either</i> functions returning the probability densities of the actual priors of interest for the heterogeneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
show.re	logical. If TRUE, the estimates for the random effect parameters θ_i are also shown. Defaults to FALSE.
estimate	type of posterior point estimate. Either "median" for the posterior median or "mean" for the posterior mean. Defaults to "median".
ci.method	method for computation of 95% credible intervals (CrIs). Either "central" for equal-tailed CrIs or "shortest" for shortest CrIs. Defaults to "central".
H.dist.method	method for computation of Hellinger distances between marginal posterior den- sities. Either "integral" for integral-based computation or "moment" for ap- proximate moment-based calculation using a normal approximation. Defaults to "integral".
scale.hn0	scale parameter of the half-normal benchmark prior (usually a small number to obtain an anti-conservative benchmark which has most of its probability mass close to 0). Defaults to 0.002.
mu.mean	mean of the normal prior for the effect mu. Defaults to 0.
mu.sd	standard deviation of the normal prior for the effect mu. Defaults to 4.

Details

The two posterior benchmarks used are introduced in Ott et al. (2021, Section 3.4), where they are denoted by $po_J(\Psi)$ and $po_{HN0}(\Psi)$. Here, $\Psi \in \{\mu, \tau, \theta_1, ..., \theta_k, \theta_{new}\}$ denotes the parameter of interest in the NNHM, where θ_i is the random effect in the *i*th study and θ_{new} the predicted effect for a new study. For the overall mean parameter μ , we additionally consider the fixed-effects model benchmark $po_{FE}(\mu)$.

Note that Jeffreys reference posterior po_J is proper if there are at least two studies in the metaanalysis data set. It is based on the improper Jeffreys reference prior, which is minimally informative given the data. The computation of the informativeness values is described in Ott et al. (2021, Section 3.6). The absolute value of the signed informativeness quantifies how close the actual posterior and the reference posterior po_J are. If the signed informativeness is negative, then the actual prior is anticonservative with respect to Jeffreys reference prior J (that is puts more weight on smaller values for τ than J). If the signed informativeness is positive, then the actual prior is conservative with respect to Jeffreys reference prior J (that is puts more weight on larger values for τ than J).

If integral-based computation (H.dist.method = "integral") of Hellinger distances is selected (the default), numerical integration is applied to obtain the Hellinger distance between the two marginal posterior densities (by using the function H). If moment-based computation (H.dist.method = "moment") is selected, the marginal densities are first approximated by normal densities with the same means and standard deviations and then the Hellinger distance between these normal densities can be obtained by an analytical formula (implemented in the function H_normal).

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

Value

A matrix with 6 columns and a number of columns depending on the number of actual heterogeneity priors specified and the parameters of interests in the NNHM (if show.re = FALSE, then there are 3 parameters of interest $(\mu, \tau, \theta_{new})$ and the matrix has 3 * (n + 2) + 1 rows, where where *n*=length(tau.prior) is the number of actual heterogeneity priors specified; if show.re = TRUE, then the matrix has (k+3)*(n+2)+1 rows, where k is the number of studies in the meta-analysis data set (so that there are k + 3 parameters of interest).)

The row names specify the parameter in the NNHM for which the marginal posterior is considered, followed by the heterogeneity prior used to compute that posterior. HN0, J and FE denote the three benchmark priors introduced in Ott et al. (2021). pri_act_i denotes the i-th prior in the tau.prior list.

The 6 columns provide the following estimates:

- estimate: posterior point estimate (median or mean)
- CrI_low: lower limit of the 95% credible interval
- CrI_up: upper limit of the 95% credible interval
- length_CrI: length of the 95% credible interval
- H(po_HN0, po_act): Hellinger distance between the posterior benchmark $po_{HN0}(\Psi)$ and the marginal posterior induced by the heterogeneity prior listed on the left, for the parameter Ψ listed on the left
- signed_inf: Signed informativeness, i.e. $sign(H(po_{HN0}, po_{act}) H(po_{HN0}, po_J))H(po_{act}, po_J)$, for the marginal posterior induced by the heterogeneity prior listed on the left, for the parameter Ψ listed on the left

Warning

If the integral-based method is used to compute Hellinger distances (H.dist.method = "integral"), numerical problems may occur in some cases, which may lead to implausible outputs. Therefore, we generally recommend to double-check the results of the integral-based method using the moment-based method (H.dist.method = "moment") - especially if the former results are implausibe. If large differences between the two methods are observed, we recommend to rely on the moment-based method unless a normal approximation of the involved densities is inappropriate.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

post_RA_fits, post_RA_3bm

Examples

post_RA_3bm	Posterior reference analysis based on a data frame using 3 bench-
	marks

Description

Computes a table of Hellinger distances between marginal posterior distributions for different parameters in the NNHM induced by the actual heterogeneity priors specified in tau.prior and posterior benchmarks proposed in the Supplementary Material of Ott et al. (2021).

Usage

```
post_RA_3bm(df, tau.prior=list(function(x) dhalfnormal(x, scale=1)),
    H.dist.method = "integral",
    m_inf=NA, M_inf=NA, rlmc0=0.0001, rlmc1=0.9999,
    mu.mean=0, mu.sd=4)
```

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list of prior specifications, which are <i>either</i> functions returning the probability densities of the actual priors of interest for the heterogeneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.

H.dist.method	method for computation of Hellinger distances between marginal posterior den- sities. Either "integral" for integral-based computation or "moment" for ap- proximate moment-based calculation using a normal approximation. Defaults to "integral".
m_inf	parameter value $m = m_{inf}$ of the SGC(m) prior, such that the median relative latent model complexity (RLMC) is close to 0. If set to NA (the default), this parameter is computed using the function m_inf_sgc, such that the median RLMC is approximately equal to rlmc0.
M_inf	parameter value $M = M_{inf}$ of the SIGC(M) prior, such that the median relative latent model complexity (RLMC) is close to 1. If set to NA (the default), this parameter is computed using the function M_inf_sigc, such that the median RLMC is approximately equal to rlmc1.
rlmc0	RLMC target value for the SGC(m_{inf}) benchmark prior (typically close to 0). Is required only if m_inf=NA.
rlmc1	RLMC target value for the SIGC(M_{inf}) benchmark prior (typically close to 1). Is required only if M_inf=NA.
mu.mean	mean of the normal prior for the effect mu.
mu.sd	standard deviation of the normal prior for the effect mu.

Details

The three posterior benchmarks used are introduced in the Supplementary Material of Ott et al. (2021, Sections 2.2.1 and 2.5, see also Section 3.4 in Ott at al. (2021) for Jeffreys reference prior), where they are denoted by $po_{m_{inf}}(\Psi)$, $po_J(\Psi)$ and $po_{M_{inf}}(\Psi)$. Here, $\Psi \in \{\mu, \tau, \theta_1, ..., \theta_k, \theta_{new}\}$ denotes the parameter of interest in the NNHM, where θ_i is the random effect in the *i*th study and θ_{new} the predicted effect for a new study.

Note that Jeffreys reference posterior po_J is proper if there are at least two studies in the metaanalysis data set. It is based on the improper Jeffreys reference prior, which is minimally informative given the data.

If integral-based computation (H.dist.method = "integral") of Hellinger distances is selected (the default), numerical integration is applied to obtain the Hellinger distance between the two marginal posterior densities (by using the function H). If moment-based computation (H.dist.method = "moment") is selected, the marginal densities are first approximated by normal densities with the same means and standard deviations and then the Hellinger distance between these normal densities can be obtained by an analytical formula (implemented in the function H_normal).

The default values for mu.mean and mu.sd are suitable for effects mu on the log odds (ratio) scale.

Value

A list with two elements: The first element named "table" is a matrix containing the Hellinger distance estimates and the second element called "par" is a named vector giving the parameter values of the benchmark priors. The vector "par" has the following three components: m_inf, M_inf and C.

The matrix "table" contains the Hellinger distance estimates between marginal posteriors and has 3 columns and n * (k + 3) rows, where n=length(tau.prior) is the number of actual heterogeneity

priors specified and k is the number of studies in the meta-analysis data set (so that there are k + 3 parameters of interest).

The columns of the matrix give the following Hellinger distance estimates between two marginal posteriors (for the parameter of interest Ψ varying with rows) induced by the following two heterogeneity priors (from left to right):

H(po_{m_inf}, po_act): benchmark prior SGC(m_inf) and actual prior

H(po_J, po_act): Jeffreys reference prior π_J and actual prior

H(po_{M_inf}, po_act): benchmark prior SIGC(M_inf) and actual prior

The actual heterogenity prior and the parameter of interest Ψ vary with the rows in the following order:

```
mu, pri_act_1: \Psi = \mu and first actual prior in tau.prior
mu, pri_act_2: \Psi = \mu and second actual prior in tau.prior
...
mu, pri_act_n: \Psi = \mu and nth actual prior in tau.prior
tau, pri_act_1: \Psi = \tau and first actual prior in tau.prior
...
tau, pri_act_n: \Psi = \tau and nth actual prior
theta_1, pri_act_1: \Psi = \theta_1 and first actual prior
...
theta_k, pri_act_n: \Psi = \theta_k and nth actual prior
theta_new, pri_act_1: \Psi = \theta_{new} and first actual prior
...
theta_new, pri_act_n: \Psi = \theta_{new} and nth actual prior
```

Warnings

A warning message will be displayed if one of the parameters m_inf or M_inf has a value larger than $5*10^{6}$, since this may lead to numerical problems in the bayesmeta function used for computation of the marginal posteriors.

If the integral-based method is used to compute Hellinger distances (H.dist.method = "integral"), numerical problems may occur in some cases, which may lead to implausible outputs. Therefore, we generally recommend to double-check the results of the integral-based method using the moment-based method (H.dist.method = "moment") - especially if the former results are implausibe. If large differences between the two methods are observed, we recommend to rely on the moment-based method unless a normal approximation of the involved densities is inappropriate.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

post_RA_fits, pri_RA_5bm

Examples

post_RA_fits

Posterior reference analysis based on bayesmeta fits

Description

Computes a table of Hellinger distances between marginal posterior distributions for different parameters in the NNHM between the actual model fits in fits.actual and the benchmark fits in fits.bm. All fits should be based on the same data set.

Usage

Arguments

fits.actual	a list of model fits of class bayesmeta, computed with the bayesmeta function in the package bayesmeta.
fits.bm	a list of model fits of class bayesmeta, computed with the bayesmeta function in the package bayesmeta. To be used as benchmarks.
H.dist.method	method for computation of Hellinger distances between marginal posterior den- sities. Either "integral" for integral-based computation or "moment" for ap- proximate moment-based calculation using a normal approximation. Defaults to "integral".

Details

Two alternative suggestions for posterior benchmarks are provided in Ott et al. (2021, Section 3.4) and its Supplementary Material (Section 2.5) and they can be computed using the functions fit_models_RA and fit_models_RA_5bm, respectively.

If integral-based computation (H.dist.method = "integral") of Hellinger distances is selected (the default), numerical integration is applied to obtain the Hellinger distance between the two marginal posterior densities (by using the function H). If moment-based computation (H.dist.method = "moment") is selected, the marginal densities are first approximated by normal densities with the

38

same means and standard deviations and then the Hellinger distance between these normal densities can be obtained by an analytical formula (implemented in the function H_normal).

Value

A matrix of Hellinger distance estimates between marginal posteriors with n.bm columns and n.act * (k + 3) rows, where n.bm=length(fits.bm) is the number of benchmark fits specified, n.act=length(fits.actual) the number of actual fits specified and k the number of studies in the meta-analysis data set (so that there are k + 3 parameters $\Psi \in \{\mu, \tau, \theta_1, ..., \theta_k, \theta_{new}\}$ of potential interest in the NNHM).

The columns of the matrix give the following Hellinger distance estimates between two marginal posteriors (for the parameter of interest Ψ varying with rows) induced by the following two heterogeneity priors (from left to right):

- H(po_{bm_1}, po_act): first benchmark prior bm_1 inducing the fit fits.bm[[1]] and actual
 prior
- H(po_{bm_2}, po_act): second benchmark prior bm_2 inducing the fit fits.bm[[2]] and actual prior

••• ···

The actual heterogenity prior and the parameter of interest Ψ vary with the rows in the following order:

mu, pri_act_1: $\Psi = \mu$ and first actual prior in tau.prior mu, pri_act_2: $\Psi = \mu$ and second actual prior in tau.prior mu, pri_act_n: $\Psi = \mu$ and nth actual prior in tau.prior tau, pri_act_1: $\Psi = \tau$ and first actual prior in tau.prior tau, pri_act_n: $\Psi = \tau$ and nth actual prior theta_1, pri_act_1: $\Psi = \theta_1$ and first actual prior theta_k, pri_act_n: $\Psi = \theta_k$ and nth actual prior theta_new, pri_act_1: $\Psi = \theta_{new}$ and first actual prior theta_new, pri_act_n: $\Psi = \theta_{new}$ and nth actual prior

Warning

If the integral-based method is used to compute Hellinger distances (H.dist.method = "integral"), numerical problems may occur in some cases, which may lead to implausible outputs. Therefore, we generally recommend to double-check the results of the integral-based method using the moment-based method (H.dist.method = "moment") - especially if the former results are implausibe. If large differences between the two methods are observed, we recommend to rely on the moment-based method unless a normal approximation of the involved densities is inappropriate.

References

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

bayesmeta in the package bayesmeta, fit_models_RA, post_RA, pri_RA_fits

Examples

pri_RA_5bm

Prior reference analysis based on a data frame using 5 benchmarks

Description

Computes a table of Hellinger distance estimates between the actual heterogeneity prior(s) specified and four benchmark heterogeneity priors proposed in the Supplementary Material of Ott et al. (2021).

Usage

```
pri_RA_5bm(df, tau.prior=list(function(x) dhalfnormal(x, scale=1)),
    m_J=NA, M_J=NA, upper.J=3, digits.J=2,
    m_inf=NA, M_inf=NA, rlmc0=0.0001, rlmc1=0.9999,
    mu.mean=0, mu.sd=4)
```

40

Arguments

df	data frame with one column "y" containing the (transformed) effect estimates for the individual studies and one column "sigma" containing the standard errors of these estimates.
tau.prior	list of prior specifications, which are <i>either</i> functions returning the probability densities of the actual priors of interest for the heterogeneity parameter tau <i>or</i> character strings specifying priors implemented in the bayesmeta function. See the documentation of the argument tau.prior of the bayesmeta function for details.
m_J	parameter value $m = m_J$ of the SGC(m) prior, which induces a marignal pos- terior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parameter is computed using the function m_j_sgc and some other parameters.
M_J	parameter value $M = M_J$ of the SIGC(M) prior, which induces a marignal posterior for the heterogeneity standard deviation tau close to Jeffreys reference posterior (wrt the Hellinger distance). If set to NA (the default), this parameter is computed using the function M_j_sigc and some other parameters.
upper.J	upper bound for the parameters M_J and m_J. Real number in $(1, \infty)$. Is required only if M_J=NA or m_J=NA.
digits.J	specifies the desired precision of the parameter values M_J and m_J , i.e. to how many digits these two values should be determined. Possible values are 1,2,3. Defaults to 2. Is required only if M_J=NA or m_J=NA.
m_inf	parameter value $m = m_{inf}$ of the SGC(m) prior, such that the median relative latent model complexity (RLMC) is close to 0. If set to NA (the default), this pa- rameter is computed using the function m_inf_sgc, such that the median RLMC is approximately equal to rlmc0.
M_inf	parameter value $M = M_{inf}$ of the SIGC(M) prior, such that the median relative latent model complexity (RLMC) is close to 1. If set to NA (the default), this parameter is computed using the function M_inf_sigc, such that the median RLMC is approximately equal to rlmc1.
rlmc0	RLMC target value for the SGC(m_{inf}) benchmark prior (typically close to 0). Is required only if m_inf=NA.
rlmc1	RLMC target value for the SIGC(M_{inf}) benchmark prior (typically close to 1). Is required only if M_inf=NA.
mu.mean	mean of the normal prior for the effect mu.
mu.sd	standard deviation of the normal prior for the effect mu.

Details

The methodology for a prior reference analysis and the four proper heterogeneity benchmark priors used are introduced in the Supplementary Material of Ott et al. (2021, Sections 2.5 and 2.6). There, these four benchmark priors are denoted by $SGC(m_J)$, $SIGC(M_J)$, $SGC(m_{inf})$ and $SIGC(M_{inf})$.

Value

A list with two elements: The first element named "table" is a matrix containing the Hellinger distance estimates and the second element called "par" is a named vector giving the parameter values of the benchmark priors. The vector "par" has the following five components: m_inf, M_J, m_J, M_inf and C.

The matrix "table" contains the Hellinger distance estimates between actual and benchmark heterogeneity priors and has 4 columns and n rows, where n is the number of actual heterogeneity priors specified, i.e. the length of the list tau.prior.

The columns of the matrix give the following Hellinger distance estimates between two heterogeneity priors (from left to right):

H(SGC(m_inf), pri_act): benchmark prior SGC(m_inf) and actual prior

 $H(SIGC(M_J), pri_act)$: benchmark prior $SIGC(M_J)$ and actual prior

 $H(SGC(m_J), pri_act)$: benchmark prior $SGC(m_J)$ and actual prior

H(SIGC(M_inf), pri_act): benchmark prior SIGC(M_inf) and actual prior

Each row corresponds to one actual heterogeneity prior specified in the list tau.prior, in the same order as in that list. Thus, the row names are:

pri_act_1: first actual prior in tau.prior

pri_act_2: second actual prior in tau.prior

•••

pri_act_n: nth (last) actual prior in tau.prior

Warning

This function may take several minutes to run if the parameter m_J and/or M_J is not specified, especially if the desired precision is digits. J=2 or even digits. J=3.

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

See Also

post_RA_3bm, pri_RA_fits

Examples

42

pri_RA_fits

Prior reference analysis based on bayesmeta fits

Description

Computes a table of Hellinger distance estimates between the benchmark heterogeneity priors inducing the specified model fits in fits.bm and the actual heterogenity priors inducing the specified actual model fits in fits.actual. All fits should be based on the same data set.

Usage

pri_RA_fits(fits.actual, fits.bm)

Arguments

fits.actual	a list of model fits of class bayesmeta, computed with the bayesmeta function in the package bayesmeta.
fits.bm	a list of model fits of class bayesmeta, computed with the bayesmeta function in the package bayesmeta. To be used as benchmarks.

Details

Two alternative suggestions for benchmark priors are provided in Ott et al. (2021, Section 3.4) and its Supplementary Material (Sections 2.5 and 2.6). These benchmark priors and the corresponding fits can be computed using the functions fit_models_RA and fit_models_RA_5bm, respectively.

Value

A matrix of Hellinger distance estimates between actual and benchmark heterogeneity priors with n.bm columns and n.act rows, where n.bm=length(fit.bms) is the number of benchmark fits specified and n.act=length(fit.actual) the number of actual fits specified.

The columns of the matrix give the following Hellinger distance estimates between two heterogeneity priors (from left to right):

- H(pri_bm_1, pri_act): first benchmark prior bm_1 inducing the fit fits.bm[[1]] and actual
 prior
- H(pri_bm_2, pri_act): second benchmark prior bm_2 inducing the fit fits.bm[[2]] and actual
 prior

••• ···

rti

Each row correspond to one actual heterogeneity prior inducing one of the fits in fits.actual, in the same order as in that list. Thus, the row names are:

pri_act_1: first actual prior in tau.prior

pri_act_2: second actual prior in tau.prior

••• ···

pri_act_n: nth (last) actual prior in tau.prior

References

Ott, M., Plummer, M., Roos, M. (2021). Supplementary Material: How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine*. doi:10.1002/sim.9076

Ott, M., Plummer, M., Roos, M. (2021). How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. *Statistics in Medicine* **40**, 4505–4521. doi:10.1002/sim.9076

See Also

bayesmeta in the package bayesmeta, fit_models_RA_5bm, post_RA_fits, pri_RA_5bm

Examples

rti

Respiratory tract infections data

Description

Meta-analysis data set including 22 randomized, controlled clinical trials on the prevention of respiratory tract infections by selective decontamination of the digestive tract in intensive care unit patients. The patients in the treated group received oral antibiotics, and those in the control groups received no prophylaxis.

45

Usage

data(rti)

Format

A data frame with 22 observations on the following 7 variables:

study character string, label of the study

- f.t integer, number of patients who became cases of respiratory tract infections among those receiving antibiotics
- n.t integer, number of patients receiving antibiotics
- f.c integer, number of patients who became cases of respiratory tract infections among those receiving no prophylaxis
- n.c integer, number of patients receiving no prophylaxis (control group)

y numeric, log odds ratio estimates for the individual trials

sigma numeric, standard error of the log odds ratio estimate for the individual trials

Details

The data set was originally analyzed by the Selective Decontamination of the Digestive Tract Trialists' Collaborative Group (1993) and reanalyzed by Bodnar et al. (2017). Overall, 3836 patients are included in these 22 trials.

The log odds ratio estimates and standard errors were computed using the escalc function in the package metafor using the option of adding 0.5 to all cells in tables including zeros (argument to="only0") as described in Bodnar et al. (2017).

Source

Bodnar, O., Link, A., Arendacka, B., Possolo, A., Elster, C. (2017). Bayesian estimation in random effects meta-analysis using a non-informative prior. *Statistics in Medicine* **36**, 378–399.

References

Selective Decontamination of the Digestive Tract Trialists' Collaborative Group (1993). Metaanalysis of randomised controlled trials of selective decontamination of the digestive tract. *British Medical Journal* **307(6903)**, 525–532.

Examples

```
data(rti)
str(rti)
# forest plot
forest(x=rti$y, sei=rti$sigma, xlab="log odds ratio")
```

rti

sigma_ref

Description

Computes the reference standard deviation of the given meta-analysis data set. The reference standard deviation is defined as the geometric mean of the standard deviations of the individual studies (Sorbye & Rue 2014, equation (7)).

Usage

sigma_ref(df)

Arguments

df

data frame with one column "sigma" containing the standard errors of the estimates for the individual studies.

Value

The reference standard deviation of the data set. Non-negative real number.

References

Sorbye, S., Rue, H. (2014). Scaling intrinsic Gaussian Markov random field priors in spatial modelling. *Spatial Statistics* **8**, 39–51. doi:10.1016/j.spasta.2013.06.004

Examples

```
# reference sd for resporiratory tract infections (RTI) data
data(rti)
sigma_ref(df=rti)
```

Index

```
* datasets
    aa, 4
    aom, 5
    rti,44
* distribution
    dsgc, 8
    dsigc, 9
* htest
    fit_models_RA, 10
    fit_models_RA_5bm, 12
    ra4bayesmeta-package, 2
* package
    ra4bayesmeta-package, 2
aa, 4
aom, 5
bayesmeta, 11, 12, 14, 31, 40, 44
cal_h_dist,7
dsgc, 8, 10
dsigc, 9, 9
fit_models_RA, 10, 25, 31, 40
fit_models_RA_5bm, 12, 12, 28, 44
H, 15, 17, 18
H_fits, 16
H_normal, 15, 17, 17
m_inf_sgc, 14, 18, 20
M_inf_sigc, 14, 19, 19
m_j_sgc, 14, 21, 23
M_j_sigc, 14, 22, 22
plot_RA, 12, 23, 31
plot_RA_5bm, 25, 26
plot_RA_fits, 25, 28, 29
post_mu_fe, 31
post_RA, 32, 40
```

post_RA_3bm, 35, 35, 42
post_RA_fits, 35, 38, 38, 44
pri_RA_5bm, 38, 40, 44
pri_RA_fits, 40, 42, 43

ra4bayesmeta-package, 2
rti, 44

sigma_ref, 8, 9, 46