Package ‘rTensor’

October 14, 2022
Type Package

Title Tools for Tensor Analysis and Decomposition

Version 1.4.8

Author James Li and Jacob Bien and Martin Wells

Maintainer Koki Tsuyuzaki <k.t.the-answer@hotmail.co. jp>

Description A set of tools for creation, manipulation, and modeling
of tensors with arbitrary number of modes. A tensor in the context of data
analysis is a multidimensional array. rTensor does this by providing a S4
class "Tensor' that wraps around the base 'array’ class. r'Tensor
provides common tensor operations as methods, including matrix unfolding,
summing/averaging across modes, calculating the Frobenius norm, and taking
the inner product between two tensors. Familiar array operations are
overloaded, such as index subsetting via '[' and element-wise operations.
rTensor also implements various tensor decomposition, including CP, GLRAM,
MPCA, PVD, and Tucker. For tensors with 3 modes, rTensor also implements
transpose, t-product, and t-SVD, as defined in Kilmer et al. (2013). Some
auxiliary functions include the Khatri-Rao product, Kronecker product, and
the Hadamard product for a list of matrices.

License GPL (>=2)
Depends R (>=2.10.0)
Imports methods
Date 2021-05-14

URL https://github.com/rikenbit/rTensor
RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-15 06:20:10 UTC

R topics documented:

rTensor-package e

https://github.com/rikenbit/rTensor

Index

R topics documented:

ASAENSOT . . . v v v et e e e e e e e e e e e e e e e e e e 4
CP o o e e e e e e e e e 4
cs_fold e e e 6
cs_unfold-methods e 6
dim-methods e e 7
fnorm-methods 7
fold e e e e 8
hadamard_list e 9
head-methods e 10
hosvd L e e 10
initialize-methods e 12
innerProd-methods 12
khatri_rao s 13
khatri_rao list e e 14
kronecker_list e 14
k_fold e 15
k_unfold-methods 16
load_orl e e e e e 17
matvec-methods 18
modeMean-methods 19
modeSum-methods 20
100107 21
Ops-methods o L 22
plot_orlo 23
print-methods e 23
PV e e e 24
rand_teNSOT o o e e e e e s 25
rs_fold e 26
rs_unfold-methods e 26
show-methods e e 27
tmethods e 27
tail-methods e e 28
Tensor-class e e e 29
tperm-methods L 31
110 32
M . . e e e e e e e e e e e e e 33
TUCKET o e e e 34
tmult . .. e e e 35
SVA . . . e e e e e e e 36
. Svd_reconstruct e e e e e 37
unfold-methods 38
UNMALVEC . . . v ot v v e v e 39
vec-methods L. L e e 40
[Fmethods e 41

42

rTensor-package 3

rTensor-package Tools for tensor analysis and decomposition

Description

This package is centered around the Tensor-class, which defines a S4 class for tensors of arbitrary
number of modes. A vignette and/or a possible paper will be included in a future release of this
package.

Details
This page will summarize the full functionality of this package. Note that since all the methods
associated with S4 class Tensor-class are documented there, we will not duplicate it here.

The remaining functions can be split into two groups: the first is a set of tensor decompositions, and
the second is a set of helper functions that are useful in tensor manipulation.

rTensor implements the following tensor decompositions:

cp Canonical Polyadic (CP) decomposition
tucker General Tucker decomposition

mpca Multilinear Principal Component Analysis; note that for 3-Tensors this is also known as Gen-
eralized Low Rank Approximation of Matrices(GLRAM)

hosvd (Truncated-)Higher-order singular value decomposition

t_svd Tensor singular value decomposition; 3-Tensors only; also note that there is an asociated
reconstruction function t_svd_reconstruct

pvd Population value decomposition of images; 3-Tensors only
rTensor also provides a set functions for tensors multiplication:

ttm Tensor times matrix, aka m-mode product

ttl Tensor times list (of matrices)

t_mult Tensor product based on block circulant unfolding; only implemented for a pair of 3-
Tensors

...as well as for matrices:

hadamard_list Computes the Hadamard (element-wise) product of a list of matrices
kronecker_list Computes the Kronecker product of a list of matrices

khatri_rao Computes the Khatri-Rao product of two matrices

khatri_rao_list Computes the Khatri-Rao product of a list of matrices

fold General folding of a matrix into a tensor

k_fold Inverse operation for k_unfold

unmatvec Inverse operation for matvec

For more information on any of the functions, please consult the individual man pages.

Author(s)

James Li <jamesyili@gmail.com>, Jacob Bien, and Martin T. Wells

as.tensor Tensor Conversion

Description

Create a Tensor-class object from an array, matrix, or vector.

Usage
as.tensor(x, drop = FALSE)

Arguments
X an instance of array, matrix, or vector
drop whether or not modes of 1 should be dropped
Value

a Tensor-class object

Examples

#From vector

vec <- runif(3); vecT <- as.tensor(vec); vecT
#From matrix

mat <- matrix(runif(2*3),nrow=2,ncol=3)

matT <- as.tensor(mat); matT

#From array

indices <- ¢(2,3,4)

arr <- array(runif(prod(indices)), dim = indices)
arrT <- as.tensor(arr); arrT

cp Canonical Polyadic Decomposition

Description

Canonical Polyadic (CP) decomposition of a tensor, aka CANDECOMP/PARAFRAC. Approxi-
mate a K-Tensor using a sum of num_components rank-1 K-Tensors. A rank-1 K-Tensor can be
written as an outer product of K vectors. There are a total of num_compoents *tnsr@num_modes
vectors in the output, stored in tnsr@num_modes matrices, each with num_components columns.
This is an iterative algorithm, with two possible stopping conditions: either relative error in Frobe-
nius norm has gotten below tol, or the max_iter number of iterations has been reached. For more
details on CP decomposition, consult Kolda and Bader (2009).

cp 5

Usage

cp(tnsr, num_components = NULL, max_iter = 25, tol = 1e-05)

Arguments

tnsr Tensor with K modes

num_components the number of rank-1 K-Tensors to use in approximation

max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance
Details

Uses the Alternating Least Squares (ALS) estimation procedure. A progress bar is included to help
monitor operations on large tensors.

Value
a list containing the following

lambdas a vector of normalizing constants, one for each component

U a list of matrices - one for each mode - each matrix with num_components columns
conv whether or not resid < tol by the last iteration

norm_percent the percent of Frobenius norm explained by the approximation

est estimate of tnsr after compression

fnorm_resid the Frobenius norm of the error fnorm(est-tnsr)

all_resids vector containing the Frobenius norm of error for all the iterations

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

tucker

Examples

How to retrieve faces_tnsr from figshare

faces_tnsr <- load_orl()

subject <- faces_tnsr[,,14,]

dummy_faces_tnsr <- rand_tensor(c(92,112,40,10))
subject <- dummy_faces_tnsr[,,14,]

cpD <- cp(subject, num_components=3)

cpD$conv

cpD$norm_percent

plot(cpD$all_resids)

cs_unfold-methods

cs_fold Column Space Folding of Matrix

Description

DEPRECATED. Please see unmatvec

Usage

cs_fold(mat, m = NULL, modes = NULL)

Arguments
mat matrix to be folded
m the mode corresponding to c¢s_unfold
modes the original modes of the tensor
cs_unfold-methods Tensor Column Space Unfolding
Description

DEPRECATED. Please see matvec-methods and unfold-methods.
Usage
cs_unfold(tnsr, m)

S4 method for signature 'Tensor'
cs_unfold(tnsr, m = NULL)

Arguments

tnsr Tensor instance

m mode to be unfolded on
Details

cs_unfold(tnsr,m=NULL)

dim-methods

dim-methods Mode Getter for Tensor

Description

Return the vector of modes from a tensor

Usage

S4 method for signature 'Tensor
dim(x)
Arguments

X the Tensor instance

Details
dim(x)

Value

an integer vector of the modes associated with x

Examples

tnsr <- rand_tensor()
dim(tnsr)

fnorm-methods Tensor Frobenius Norm

Description

Returns the Frobenius norm of the Tensor instance.
Usage
fnorm(tnsr)

S4 method for signature 'Tensor'
fnorm(tnsr)

Arguments

tnsr the Tensor instance

8 fold

Details

fnorm(tnsr)

Value

numeric Frobenius norm of x

Examples

tnsr <- rand_tensor()
fnorm(tnsr)

fold General Folding of Matrix

Description

General folding of a matrix into a Tensor. This is designed to be the inverse function to unfold-methods,
with the same ordering of the indices. This amounts to following: if we were to unfold a Tensor
using a set of row_idx and col_idx, then we can fold the resulting matrix back into the original
Tensor using the same row_idx and col_idx.

Usage

fold(mat, row_idx = NULL, col_idx = NULL, modes = NULL)

Arguments
mat matrix to be folded into a Tensor
row_idx the indices of the modes that are mapped onto the row space
col_idx the indices of the modes that are mapped onto the column space
modes the modes of the output Tensor

Details

This function uses aperm as the primary workhorse.

Value

Tensor object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

hadamard_list 9

See Also

unfold-methods, k_fold, unmatvec

Examples

tnsr <- new("Tensor”,3L,c(3L,4L,5L),data=runif(60))
matT3<-unfold(tnsr,row_idx=2,col_idx=c(3,1))
identical (fold(matT3, row_idx=2,col_idx=c(3,1),modes=c(3,4,5)),tnsr)

hadamard_list List hadamard Product

Description

Returns the hadamard (element-wise) product from a list of matrices or vectors. Commonly used
for n-mode products and various Tensor decompositions.

Usage

hadamard_list(L)

Arguments

L list of matrices or vectors

Value

matrix that is the hadamard product

Note

The modes/dimensions of each element in the list must match.

See Also

kronecker_list, khatri_rao_list

Examples

lizt <- list('mat1' = matrix(runif(40),ncol=4),
'mat2' = matrix(runif(40),ncol=4),

'mat3' = matrix(runif(40),ncol=4))
dim(hadamard_list(lizt))

10

hosvd

head-methods Head for Tensor

Description

Extend head for Tensor

Usage

[

S4 method for signature 'Tensor
head(x, ...)

Arguments

X the Tensor instance

additional parameters to be passed into head()

Details
head(x,...)

See Also

tail-methods

Examples

tnsr <- rand_tensor()
head(tnsr)

hosvd (Truncated-)Higher-order SVD

Description

Higher-order SVD of a K-Tensor. Write the K-Tensor as a (m-mode) product of a core Tensor
(possibly smaller modes) and K orthogonal factor matrices. Truncations can be specified via ranks
(making them smaller than the original modes of the K-Tensor will result in a truncation). For the

mathematical details on HOSVD, consult Lathauwer et. al. (2000).

Usage

hosvd(tnsr, ranks = NULL)

hosvd 11

Arguments

tnsr Tensor with K modes

ranks a vector of desired modes in the output core tensor, default is tnsr@modes
Details

A progress bar is included to help monitor operations on large tensors.

Value

a list containing the following:

Z core tensor with modes speficied by ranks
U a list of orthogonal matrices, one for each mode
est estimate of tnsr after compression

fnorm_resid the Frobenius norm of the error fnorm(est-tnsr) - if there was no truncation, then
this is on the order of mach_eps * fnorm.

Note

The length of ranks must match tnsr@num_modes.

References

L. Lathauwer, B.Moor, J. Vanderwalle "A multilinear singular value decomposition". Journal of
Matrix Analysis and Applications 2000.

See Also

tucker

Examples

tnsr <- rand_tensor(c(6,7,8))

hosvdD <- hosvd(tnsr)
plot(hosvdD$fnorm_resid)

hosvdD2 <- hosvd(tnsr,ranks=c(3,3,4))
plot(hosvdD2$fnorm_resid)

12 innerProd-methods

initialize-methods Initializes a Tensor instance

Description

Not designed to be called by the user. Use as. tensor instead.

Usage

S4 method for signature 'Tensor'
initialize(.Object, num_modes = NULL, modes = NULL,

data = NULL)

Arguments

.Object the tensor object

num_modes number of modes of the tensor

modes modes of the tensor

data can be vector, matrix, or array
See Also

as.tensor

innerProd-methods Tensors Inner Product

Description

Returns the inner product between two Tensors

Usage

innerProd(tnsrl, tnsr2)

S4 method for signature 'Tensor,Tensor'
innerProd(tnsrl, tnsr2)

Arguments
tnsri first Tensor instance
tnsr2 second Tensor instance
Details

innerProd(tnsri1,tnsr2)

khatri_rao 13

Value

inner product between x1 and x2

Examples

tnsr1 <- rand_tensor()
tnsr2 <- rand_tensor()
innerProd(tnsri1, tnsr2)

khatri_rao Khatri-Rao Product

Description

Returns the Khatri-Rao (column-wise Kronecker) product of two matrices. If the inputs are vectors
then this is the same as the Kronecker product.

Usage

khatri_rao(x, y)

Arguments

X first matrix

y second matrix
Value

matrix that is the Khatri-Rao product

Note

The number of columns must match in the two inputs.

See Also

kronecker, khatri_rao_list

Examples

dim(khatri_rao(matrix(runif(12),ncol=4),matrix(runif(12),ncol=4)))

14 kronecker _list

khatri_rao_list List Khatri-Rao Product

Description
Returns the Khatri-Rao product from a list of matrices or vectors. Commonly used for n-mode
products and various Tensor decompositions.

Usage

khatri_rao_list(L, reverse = FALSE)

Arguments

L list of matrices or vectors

reverse whether or not to reverse the order
Value

matrix that is the Khatri-Rao product

Note

The number of columns must match in every element of the input list.

See Also

khatri_rao

Examples

smalllizt <- list('mat1' = matrix(runif(12),ncol=4),
'mat2' = matrix(runif(12),ncol=4),

'mat3' = matrix(runif(12),ncol=4))
dim(khatri_rao_list(smalllizt))

kronecker_list List Kronecker Product

Description
Returns the Kronecker product from a list of matrices or vectors. Commonly used for n-mode
products and various Tensor decompositions.

Usage

kronecker_list(L)

k_fold 15

Arguments

L list of matrices or vectors

Value

matrix that is the Kronecker product

See Also

hadamard_list, khatri_rao_list, kronecker

Examples

smalllizt <- list('mat1l' = matrix(runif(12),ncol=4),
'mat2' = matrix(runif(12),ncol=4),

'mat3' = matrix(runif(12),ncol=4))
dim(kronecker_list(smalllizt))

k_fold k-mode Folding of Matrix

Description
k-mode folding of a matrix into a Tensor. This is the inverse funtion to k_unfold in the m mode.
In particular, k_fold(k_unfold(tnsr, m) ,m,getModes(tnsr)) will result in the original Tensor.
Usage
k_fold(mat, m = NULL, modes = NULL)

Arguments
mat matrix to be folded into a Tensor
m the index of the mode that is mapped onto the row indices
modes the modes of the output Tensor

Details

This is a wrapper function to fold.

Value

Tensor object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

16 k_unfold-methods

See Also

k_unfold-methods, fold, unmatvec

Examples

tnsr <- new("Tensor"”,3L,c(3L,4L,5L),data=runif (60))
matT2<-k_unfold(tnsr,m=2)
identical (k_fold(matT2,m=2,modes=c(3,4,5)), tnsr)

k_unfold-methods Tensor k-mode Unfolding

Description

Unfolding of a tensor by mapping the kth mode (specified through parameter m), and all other
modes onto the column space. This the most common type of unfolding operation for Tucker
decompositions and its variants. Also known as k-mode matricization.

Usage

k_unfold(tnsr, m)

S4 method for signature 'Tensor'
k_unfold(tnsr, m = NULL)

Arguments

tnsr the Tensor instance

m the index of the mode to unfold on
Details

k_unfold(tnsr,m=NULL)

Value

matrix with x@modes[m] rows and prod(x@modes[-m]) columns

References

T. Kolda and B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

matvec-methods and unfold-methods

load_orl 17

Examples

tnsr <- rand_tensor()
matT2<-rs_unfold(tnsr,m=2)

load_orl ORL Database of Faces

Description

A dataset containing pictures of 40 individuals under 10 different lightings. Each image has 92 x
112 pixels. Structured as a 4-tensor with modes 92 x 112 x 40 x 10. The data is now stored in
figshare https://ndownloader.figshare.com/files/28005669

Usage

load_orl()

Format

A Tensor object with modes 92 x 112 x 40 x 10. The first two modes correspond to the image pixels,
the third mode corresponds to the individual, and the last mode correpsonds to the lighting.

Source

https://www.kaggle.com/kasikrit/att-database-of-faces

References

AT&T Laboratories Cambridge. https://www.kaggle.com/kasikrit/att-database-of-faces

F. Samaria, A. Harter, "Parameterisation of a Stochastic Model for Human Face Identification".
IEEE Workshop on Applications of Computer Vision 1994.

See Also

plot_orl

https://ndownloader.figshare.com/files/28005669
https://www.kaggle.com/kasikrit/att-database-of-faces
https://www.kaggle.com/kasikrit/att-database-of-faces

18 matvec-methods

matvec-methods Tensor Matvec Unfolding

Description

For 3-tensors only. Stacks the slices along the third mode. This is the prevalent unfolding for T-SVD
and T-MULT based on block circulant matrices.

Usage

matvec(tnsr)

S4 method for signature 'Tensor'
matvec(tnsr)

Arguments

tnsr the Tensor instance

Details

matvec(tnsr)

Value

matrix with prod(x@modes[-m]) rows and x@modes[m] columns

References

M. Kilmer, K. Braman, N. Hao, and R. Hoover, "Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging". SIAM Journal on Matrix
Analysis and Applications 2013.

See Also

k_unfold-methods and unfold-methods

Examples

tnsr <- rand_tensor(c(2,3,4))
matT1<- matvec(tnsr)

modeMean-methods 19

modeMean-methods Tensor Mean Across Single Mode

Description

Given a mode for a K-tensor, this returns the K-1 tensor resulting from taking the mean across that
particular mode.
Usage

modeMean(tnsr, m, drop)

S4 method for signature 'Tensor'
modeMean(tnsr, m = NULL, drop = FALSE)

Arguments
tnsr the Tensor instance
m the index of the mode to average across
drop whether or not mode m should be dropped
Details

modeMean (tnsr,m=NULL ,drop=FALSE)

Value

K-1 or K Tensor, where K = x@hum_modes

See Also

modeSum

Examples

tnsr <- rand_tensor()
modeMean(tnsr,1,drop=TRUE)

20 modeSum-methods

modeSum-methods Tensor Sum Across Single Mode

Description

Given a mode for a K-tensor, this returns the K-1 tensor resulting from summing across that partic-
ular mode.
Usage

modeSum(tnsr, m, drop)

S4 method for signature 'Tensor'
modeSum(tnsr, m = NULL, drop = FALSE)

Arguments

tnsr the Tensor instance

m the index of the mode to sum across

drop whether or not mode m should be dropped
Details

modeSum(tnsr,m=NULL,drop=FALSE)

Value

K-1 or K tensor, where K = x@hum_modes

See Also

modeMean

Examples

tnsr <- rand_tensor()
modeSum(tnsr, 3, drop=TRUE)

mpca 21

mpca Multilinear Principal Components Analysis

Description

This is basically the Tucker decomposition of a K-Tensor, tucker, with one of the modes uncom-
pressed. If K = 3, then this is also known as the Generalized Low Rank Approximation of Matrices
(GLRAM). This implementation assumes that the last mode is the measurement mode and hence
uncompressed. This is an iterative algorithm, with two possible stopping conditions: either rela-
tive error in Frobenius norm has gotten below tol, or the max_iter number of iterations has been
reached. For more details on the MPCA of tensors, consult Lu et al. (2008).

Usage

mpca(tnsr, ranks = NULL, max_iter = 25, tol = 1e-05)

Arguments
tnsr Tensor with K modes
ranks a vector of the compressed modes of the output core Tensor, this has length K-1
max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance
Details

Uses the Alternating Least Squares (ALS) estimation procedure. A progress bar is included to help
monitor operations on large tensors.

Value

a list containing the following:

Z_ext the extended core tensor, with the first K-1 modes given by ranks

U a list of K-1 orthgonal factor matrices - one for each compressed mode, with the number of
columns of the matrices given by ranks

conv whether or not resid < tol by the last iteration

est estimate of tnsr after compression

norm_percent the percent of Frobenius norm explained by the approximation
fnorm_resid the Frobenius norm of the error fnorm(est-tnsr)

all_resids vector containing the Frobenius norm of error for all the iterations

Note

The length of ranks must match tnsr@num_modes-1.

22 Ops-methods

References

H. Lu, K. Plataniotis, A. Venetsanopoulos, "Mpca: Multilinear principal component analysis of
tensor objects". IEEE Trans. Neural networks, 2008.

See Also

tucker, hosvd

Examples

How to retrieve faces_tnsr from figshare

faces_tnsr <- load_orl()

subject <- faces_tnsr[,,21,]

dummy_faces_tnsr <- rand_tensor(c(92,112,40,10))
subject <- dummy_faces_tnsr[,,21,]

mpcaD <- mpca(subject, ranks=c(10, 10))
mpcaD$conv

mpcaD$norm_percent

plot(mpcaD$all_resids)

Ops-methods Conformable elementwise operators for Tensor

Description

Overloads elementwise operators for tensors, arrays, and vectors that are conformable (have the
same modes).

Usage

S4 method for signature 'Tensor,Tensor'
Ops(el, e2)

Arguments

el left-hand object
e2 right-hand object

Examples

tnsr <- rand_tensor(c(3,4,5))
tnsr2 <- rand_tensor(c(3,4,5))
tnsrsum <- tnsr + tnsr2
tnsrdiff <- tnsr - tnsr2
tnsrelemprod <- tnsr * tnsr2
tnsrelemquot <- tnsr / tnsr2
for (i in 1:3L){

for (3 in 1:4L){

plot_orl 23

for (k in 1:5L){

stopifnot(tnsrsum@datali, j,k]==tnsr@datali, j,k]+tnsr2@datali, j,k])
stopifnot(tnsrdiff@datali, j,k]==(tnsr@datali,j,k]-tnsr2@datali, j, k1))
stopifnot(tnsrelemprod@datali, j,k]==tnsr@datali, j,k]l*tnsr2@datali,j,k])
stopifnot(tnsrelemquot@datali, j,k]==tnsr@datali, j,k]/tnsr2@datali,j,k])
3

}

3

plot_orl Function to plot the ORL Database of Faces

Description
A wrapper function to image() to allow easy visualization of faces_tnsr, the ORL Face Dataset. The
data is now stored in figshare https://ndownloader.figshare.com/files/28005669

Usage

plot_orl(subject = 1, condition = 1)

Arguments
subject which subject to plot (1-40)
condition which lighting condition (1-10)
References

AT&T Laboratories Cambridge. https://www.kaggle.com/kasikrit/att-database-of-faces

F. Samaria, A. Harter, "Parameterisation of a Stochastic Model for Human Face Identification".
IEEE Workshop on Applications of Computer Vision 1994.

print-methods Print for Tensor

Description

Extend print for Tensor

Usage

S4 method for signature 'Tensor'
print(x, ...)

https://ndownloader.figshare.com/files/28005669
https://www.kaggle.com/kasikrit/att-database-of-faces

24 pvd

Arguments

X the Tensor instance

additional parameters to be passed into print()

Details

print(x,...)

See Also

show

Examples

tnsr <- rand_tensor()
print(tnsr)

pvd Population Value Decomposition

Description

The default Population Value Decomposition (PVD) of a series of 2D images. Constructs population-
level matrices P, V, and D to account for variances within as well as across the images. Structurally
similar to Tucker (tucker) and GLRAM (mpca), but retains crucial differences. Requires 2*n3 + 2
parameters to specified the final ranks of P, V, and D, where n3 is the third mode (how many images
are in the set). Consult Crainiceanu et al. (2013) for the construction and rationale behind the PVD
model.

Usage

pvd(tnsr, uranks = NULL, wranks = NULL, a = NULL, b = NULL)

Arguments
tnsr 3-Tensor with the third mode being the measurement mode
uranks ranks of the U matrices
wranks ranks of the W matrices
a rank of P = U%x%t (U)
b rank of D = W%*%t (W)
Details

The PVD is not an iterative method, but instead relies on n3 + 2separate PCA decompositions. The
third mode is for how many images are in the set.

rand_tensor 25

Value
a list containing the following:
P population-level matrix P = U%*%t(U), where U is constructed by stacking the truncated left
eigenvectors of slicewise PCA along the third mode
V alist of image-level core matrices

D population-leve matrix D = W%*%t (W), where W is constructed by stacking the truncated right
eigenvectors of slicewise PCA along the third mode

est estimate of tnsr after compression
norm_percent the percent of Frobenius norm explained by the approximation

fnorm_resid the Frobenius norm of the error fnorm(est-tnsr)

References

C. Crainiceanu, B. Caffo, S. Luo, V. Zipunnikov, N. Punjabi, "Population value decomposition: a
framework for the analysis of image populations". Journal of the American Statistical Association,
2013.

Examples

How to retrieve faces_tnsr from figshare

faces_tnsr <- load_orl()

subject <- faces_tnsr[,,8,]

dummy_faces_tnsr <- rand_tensor(c(92,112,40,10))

subject <- dummy_faces_tnsr[,,8,]

pvdD <- pvd(subject, uranks=rep(46,10), wranks=rep(56,10), a=46, b=56)
plot(pvdD$fnorm_resid)

rand_tensor Tensor with Random Entries

Description

Generate a Tensor with specified modes with iid normal(0, 1) entries.

Usage

rand_tensor(modes = c(3, 4, 5), drop = FALSE)

Arguments

modes the modes of the output Tensor

drop whether or not modes equal to 1 should be dropped
Value

a Tensor object with modes given by modes

26

Note

Default rand_tensor () generates a 3-Tensor with modes c(3,4,5).

Examples

rand_tensor()
rand_tensor(c(4,4,4))
rand_tensor(c(10,2,1),TRUE)

rs_unfold-methods

rs_fold Row Space Folding of Matrix

Description
DEPRECATED. Please see k_fold.
Usage

rs_fold(mat, m = NULL, modes = NULL)

Arguments
mat matrix to be folded
m the mode corresponding to rs_unfold
modes the original modes of the tensor
rs_unfold-methods Tensor Row Space Unfolding
Description

DEPRECATED. Please see k_unfold-methods and unfold-methods.
Usage

rs_unfold(tnsr, m)

S4 method for signature 'Tensor'
rs_unfold(tnsr, m = NULL)

Arguments

tnsr Tensor instance

m mode to be unfolded on
Details

rs_unfold(tnsr,m=NULL)

show-methods 27

show-methods Show for Tensor

Description

Extend show for Tensor

Usage
S4 method for signature 'Tensor'
show(object)

Arguments

object the Tensor instance

Details

show(object)

See Also

print

Examples

tnsr <- rand_tensor()
tnsr

t-methods Tensor Transpose

Description

Implements the tensor transpose based on block circulant matrices (Kilmer et al. 2013) for 3-
tensors.

Usage
S4 method for signature 'Tensor'
t(x)

Arguments

X a 3-tensor

28 tail-methods

Details
t(x)

Value

tensor transpose of x

References

M. Kilmer, K. Braman, N. Hao, and R. Hoover, "Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging". SIAM Journal on Matrix
Analysis and Applications 2013.

Examples

tnsr <- rand_tensor()
identical(t(tnsr)@datal,,1],t(tnsr@datal,,1]))
identical(t(tnsr)@datal,,2],t(tnsr@datal,,5]1))
identical (t(t(tnsr)),tnsr)

tail-methods Tail for Tensor

Description

Extend tail for Tensor

Usage
S4 method for signature 'Tensor'
tail(x, ...)

Arguments

X the Tensor instance

additional parameters to be passed into tail()

Details

tail(x,...)

See Also

head-methods

Examples

tnsr <- rand_tensor()
tail(tnsr)

Tensor-class 29

Tensor-class S4 Class for a Tensor

Description

An S4 class for a tensor with arbitrary number of modes. The Tensor class extends the base array’
class to include additional tensor manipulation (folding, unfolding, reshaping, subsetting) as well
as a formal class definition that enables more explicit tensor algebra.

Details

This can be seen as a wrapper class to the base array class. While it is possible to create an instance
using new, it is also possible to do so by passing the data into as. tensor.

Each slot of a Tensor instance can be obtained using @.

The following methods are overloaded for the Tensor class: dim-methods, head-methods, tail-methods,
print-methods, show-methods, element-wise array operations, array subsetting (extract via ‘[’),

array subset replacing (replace via ‘[<-"), and tperm-methods, which is a wrapper around the base
aperm method.

To sum across any one mode of a tenor, use the function modeSum-methods. To compute the mean
across any one mode, use modeMean-methods.

You can always unfold any Tensor into a matrix, and the unfold-methods, k_unfold-methods,
and matvec-methods methods are for that purpose. The output can be kept as a Tensor with 2
modes or a matrix object. The vectorization function is also provided as vec. See the attached
vignette for a visualization of the different unfoldings.

Conversion from array/matrix to Tensor is facilitated via as. tensor. To convert from a Tensor
instance, simply invoke @data.

The Frobenius norm of the Tensor is given by fnorm-methods, while the inner product between
two Tensors (of equal modes) is given by innerProd-methods. You can also sum through any one
mode to obtain the K-1 Tensor sum using modeSum-methods. modeMean-methods provides similar
functionality to obtain the K-1 Tensor mean. These are primarily meant to be used internally but
may be useful in doing statistics with Tensors.

For Tensors with 3 modes, we also overloaded t (transpose) defined by Kilmer et.al (2013). See
t-methods.

To create a Tensor with i.i.d. random normal(0, 1) entries, see rand_tensor.

Slots
num_modes number of modes (integer)
modes vector of modes (integer), aka sizes/extents/dimensions

data actual data of the tensor, which can be ’array’ or ’vector’

30

Methods

[signature(tnsr = "Tensor"): ...

[<- signature(tnsr ="Tensor"): ...

matvec signature(tnsr ="Tensor"): ...

dim signature(tnsr ="Tensor"): ...

fnorm signature(tnsr = "Tensor"): ...

head signature(tnsr = "Tensor"): ...

initialize signature(.Object ="Tensor"): ...

innerProd signature(tnsrl = "Tensor"”, tnsr2="Tensor"): ...

modeMean signature(tnsr = "Tensor"): ...

modeSum signature(tnsr = "Tensor"): ...

Ops signature(el
Ops signature(el
Ops signature(el
Ops signature(el
Ops signature(el

"array"”, e2="Tensor"): ...

= "numeric”, e2 ="Tensor"): ...
="Tensor", e2 = "array"): ...
="Tensor", e2 = "numeric"”): ...

="Tensor", e2 = "Tensor"): ...

print signature(tnsr = "Tensor"): ...

k_unfold signature(tnsr ="Tensor"): ...

show signature(tnsr = "Tensor"”): ...

t signature(tnsr = "Tensor"): ...

tail signature(tnsr ="Tensor"): ...

unfold signature(tnsr = "Tensor"): ...

tperm signature(tnsr = "Tensor”): ...

image signature(tnsr ="Tensor"): ...

Note

Tensor-class

All of the decompositions and regression models in this package require a Tensor input.

Author(s)

James Li <jamesyili@gmail.com>

References

James Li, Jacob Bien, Martin T. Wells (2018). rTensor: An R Package for Multidimensional Array
(Tensor) Unfolding, Multiplication, and Decomposition. Journal of Statistical Software, 87(10),
1-31. URL http://www.jstatsoft.org/v087/i10/.

See Also

as.tensor

tperm-methods

Examples

tnsr <- rand_tensor()
class(tnsr)

tnsr

print(tnsr)

dim(tnsr)
tnsr@num_modes
tnsr@data

tperm-methods Mode Permutation for Tensor

Description

Overloads aperm for Tensor class for convenience.

Usage

tperm(tnsr, perm, ...)

S4 method for signature 'Tensor'

tperm(tnsr, perm, ...)
Arguments
tnsr the Tensor instance
perm the new permutation of the current modes

additional parameters to be passed into aperm

Details

tperm(tnsr,perm=NULL, ...)

Examples

tnsr <- rand_tensor(c(3,4,5))
dim(tperm(tnsr,perm=c(2,1,3)))
dim(tperm(tnsr,perm=c(1,3,2)))

32 ttl

ttl Tensor Times List

Description
Contracted (m-Mode) product between a Tensor of arbitrary number of modes and a list of matrices.
The result is folded back into Tensor.

Usage

ttl(tnsr, list_mat, ms = NULL)

Arguments

tnsr Tensor object with K modes

list_mat a list of matrices

ms a vector of modes to contract on (order should match the order of 1ist_mat)
Details

Performs ttm repeated for a single Tensor and a list of matrices on multiple modes. For instance,
suppose we want to do multiply a Tensor object tnsr with three matrices mat1, mat2, mat3 on
modes 1, 2, and 3. We could do ttm(ttm(ttm(tnsr,mat1,1),mat2,2),3), or we could do
ttl(tnsr,list(mat1,mat2,mat3),c(1,2,3)). The order of the matrices in the list should obvi-
ously match the order of the modes. This is a common operation for various Tensor decompositions
such as CP and Tucker. For the math on the m-Mode Product, see Kolda and Bader (2009).

Value

Tensor object with K modes

Note

The returned Tensor does not drop any modes equal to 1.

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

ttm

ttm 33

Examples

tnsr <- new("Tensor”,3L,c(3L,4L,5L),data=runif(60))
lizt <- list('matl' = matrix(runif(30),ncol=3),
'mat2' = matrix(runif(40),ncol=4),

'mat3' = matrix(runif(50),ncol=5))
ttl(tnsr,lizt,ms=c(1,2,3))

ttm Tensor Times Matrix (m-Mode Product)

Description
Contracted (m-Mode) product between a Tensor of arbitrary number of modes and a matrix. The
result is folded back into Tensor.

Usage

ttm(tnsr, mat, m = NULL)

Arguments
tnsr Tensor object with K modes
mat input matrix with same number columns as the mth mode of tnsr
m the mode to contract on

Details

By definition, rs_unfold(ttm(tnsr,mat),m) =mat%x%rs_unfold(tnsr,m), so the number of
columns in mat must match the mth mode of tnsr. For the math on the m-Mode Product, see
Kolda and Bader (2009).

Value

a Tensor object with K modes

Note
The mth mode of tnsr must match the number of columns in mat. By default, the returned Tensor
does not drop any modes equal to 1.

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

ttl, rs_unfold-methods

34 tucker

Examples

tnsr <- new("Tensor”,3L,c(3L,4L,5L),data=runif(60))
mat <- matrix(runif(50),ncol=5)
ttm(tnsr,mat,m=3)

tucker Tucker Decomposition

Description

The Tucker decomposition of a tensor. Approximates a K-Tensor using a n-mode product of a core
tensor (with modes specified by ranks) with orthogonal factor matrices. If there is no truncation
in one of the modes, then this is the same as the MPCA, mpca. If there is no truncation in all the
modes (i.e. ranks = tnsr@modes), then this is the same as the HOSVD, hosvd. This is an iterative
algorithm, with two possible stopping conditions: either relative error in Frobenius norm has gotten
below tol, or the max_iter number of iterations has been reached. For more details on the Tucker
decomposition, consult Kolda and Bader (2009).

Usage

tucker(tnsr, ranks = NULL, max_iter = 25, tol = 1e-05)

Arguments
tnsr Tensor with K modes
ranks a vector of the modes of the output core Tensor
max_iter maximum number of iterations if error stays above tol
tol relative Frobenius norm error tolerance

Details

Uses the Alternating Least Squares (ALS) estimation procedure also known as Higher-Order Or-
thogonal Iteration (HOOI). Intialized using a (Truncated-)HOSVD. A progress bar is included to
help monitor operations on large tensors.

Value
a list containing the following:

Z the core tensor, with modes specified by ranks

U alist of orthgonal factor matrices - one for each mode, with the number of columns of the matrices
given by ranks

conv whether or not resid < tol by the last iteration

est estimate of tnsr after compression

norm_percent the percent of Frobenius norm explained by the approximation
fnorm_resid the Frobenius norm of the error fnorm(est-tnsr)

all_resids vector containing the Frobenius norm of error for all the iterations

t mult 35

Note

The length of ranks must match tnsr@num_modes.

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

hosvd, mpca

Examples

tnsr <- rand_tensor(c(4,4,4,4))

tuckerD <- tucker(tnsr,ranks=c(2,2,2,2))
tuckerD$conv

tuckerD$norm_percent
plot(tuckerD$all_resids)

t_mult Tensor Multiplication (T-MULT)

Description

Implements T-MULT based on block circulant matrices (Kilmer et al. 2013) for 3-tensors.

Usage

t_mult(x, y)

Arguments

X a 3-tensor

y another 3-tensor

Details

Uses the Fast Fourier Transform (FFT) speed up suggested by Kilmer et al. 2013 instead of explic-
itly constructing the block circulant matrix. For the mathematical details of T-MULT, see Kilmer et
al. (2013).

Value

tensor product between x and y

Note

This only works (so far) between 3-Tensors.

36 t svd

References

M. Kilmer, K. Braman, N. Hao, and R. Hoover, "Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging". STAM Journal on Matrix
Analysis and Applications 2013.

Examples

tnsr <- new("Tensor"”,3L,c(3L,4L,5L),data=runif (60))
tnsr2 <- new("Tensor”,3L,c(4L,3L,5L),data=runif (60))
t_mult(tnsr, tnsr2)

t_svd Tensor Singular Value Decomposition

Description

TSVD for a 3-Tensor. Constructs 3-Tensors U, S, Vsuchthat tnsr=t_mult(t_mult(U,S),t(V)).
U and V are orthgonal 3-Tensors with orthogonality defined in Kilmer et al. (2013), and S is a 3-
Tensor consists of facewise diagonal matrices. For more details on the TSVD, consult Kilmer et al.
(2013).

Usage

t_svd(tnsr)

Arguments

tnsr 3-Tensor to decompose via TSVD

Value
a list containing the following:

U the left orthgonal 3-Tensor
V the right orthgonal 3-Tensor

S the middle 3-Tensor consisting of face-wise diagonal matrices

Note

Computation involves complex values, but if the inputs are real, then the outputs are also real. Some
loss of precision occurs in the truncation of the imaginary components during the FFT and inverse
FFT.

References

M. Kilmer, K. Braman, N. Hao, and R. Hoover, "Third-order tensors as operators on matrices: a
theoretical and computational framework with applications in imaging". STAM Journal on Matrix
Analysis and Applications 2013.

t svd_reconstruct

See Also

t_mult, t_svd_reconstruct

Examples

tnsr <- rand_tensor()
tsvdD <- t_svd(tnsr)

37

t_svd_reconstruct Reconstruct Tensor From TSVD

Description

Reconstruct the original 3-Tensor after it has been decomposed into U, S, V via t_svd.

Usage

t_svd_reconstruct(L)

Arguments

L list that is an output from t_svd

Value

a 3-Tensor

See Also

t_svd

Examples

tnsr <- rand_tensor(c(10,10,10))
tsvdD <- t_svd(tnsr)
1 - fnorm(t_svd_reconstruct(tsvdD)-tnsr)/fnorm(tnsr)

38 unfold-methods

unfold-methods Tensor Unfolding

Description

Unfolds the tensor into a matrix, with the modes in rs onto the rows and modes in cs onto the
columns. Note that c(rs,cs) must have the same elements (order doesn’t matter) as x@modes.
Within the rows and columns, the order of the unfolding is determined by the order of the modes.
This convention is consistent with Kolda and Bader (2009).

Usage

unfold(tnsr, row_idx, col_idx)

S4 method for signature 'Tensor'
unfold(tnsr, row_idx = NULL, col_idx = NULL)

Arguments
tnsr the Tensor instance
row_idx the indices of the modes to map onto the row space
col_idx the indices of the modes to map onto the column space
Details

For Row Space Unfolding or m-mode Unfolding, see rs_unfold-methods. For Column Space
Unfolding or matvec, see cs_unfold-methods.

vec-methods returns the vectorization of the tensor.
unfold(tnsr,row_idx=NULL,col_idx=NULL)

Value

matrix with prod(row_idx) rows and prod(col_idx) columns

References
T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

k_unfold-methods and matvec-methods

Examples

tnsr <- rand_tensor()
matT3<-unfold(tnsr,row_idx=2,col_idx=c(3,1))

unmatvec 39

unmatvec Unmatvec Folding of Matrix

Description

The inverse operation to matvec-methods, turning a matrix into a Tensor. For a full account of
matrix folding/unfolding operations, consult Kolda and Bader (2009).

Usage

unmatvec(mat, modes = NULL)

Arguments
mat matrix to be folded into a Tensor
modes the modes of the output Tensor
Value

Tensor object with modes given by modes

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

See Also

matvec-methods, fold, k_fold

Examples

tnsr <- new("Tensor”,3L,c(3L,4L,5L),data=runif (60))
matT1<-matvec(tnsr)
identical (unmatvec(matT1,modes=c(3,4,5)),tnsr)

40 vec-methods

vec-methods Tensor Vec

Description

Turns the tensor into a single vector, following the convention that earlier indices vary slower than
later indices.

Usage
vec(tnsr)

S4 method for signature 'Tensor'
vec(tnsr)

Arguments

tnsr the Tensor instance

Details

vec(tnsr)

Value

vector with length prod(x@modes)

References

T. Kolda, B. Bader, "Tensor decomposition and applications". SIAM Applied Mathematics and
Applications 2009.

Examples

tnsr <- rand_tensor(c(4,5,6,7))
vec(tnsr)

[-methods 41

[-methods Extract or Replace Subtensors

Description

Extends ’[’ and ’[<-’ from the base array class for the Tensor class. Works exactly as it would for
the base ’array’ class.

Usage

S4 method for signature 'Tensor'
x[i, j, ..., drop = TRUE]

S4 replacement method for signature 'Tensor'

x[i, j, ...]1 <= value
Arguments
X Tensor to be subset
i, 3, ... indices that specify the extents of the sub-tensor
drop whether or not to reduce the number of modes to exclude those that have *1’ as
the mode
value either vector, matrix, or array that will replace the subtensor
Details
x[i,j,...,drop=TRUE]
Value

an object of class Tensor

Examples

tnsr <- rand_tensor()
tnsr[1,2,3]
tnsr[(3,1,]

tnsr[,,5]
tnsr[,,5,drop=FALSE]

tnsr[1,2,3] <- 3; tnsr[1,2,3]
tnsr[3,1,] <- rep(0,5); tnsr[(3,1,]
tnsr[,2,] <- matrix(@,nrow=3,ncol=5); tnsr[,2,]

Index

+ datasets
load_orl, 17
[,Tensor-method ([-methods), 41
[-methods, 41
[<-,Tensor-method ([-methods), 41

as.tensor, 4, 29, 30

cp, 3,4

cs_fold, 6

cs_unfold (cs_unfold-methods), 6

cs_unfold, Tensor-method
(cs_unfold-methods), 6

cs_unfold-methods, 6

dim,Tensor-method (dim-methods), 7
dim-methods, 7

extract,Tensor-method ([-methods), 41

fnorm (fnorm-methods), 7

fnorm, Tensor-method (fnorm-methods), 7
fnorm-methods, 7

fold, 3, 8, 15, 16, 39

hadamard_list, 3,9, 15

head, Tensor-method (head-methods), 10
head-methods, 10
hosvd, 3, 10, 22, 34, 35

initialize,Tensor-method
(initialize-methods), 12

initialize-methods, 12

innerProd (innerProd-methods), 12

innerProd, Tensor, Tensor-method
(innerProd-methods), 12

innerProd-methods, 12

k_fold, 3, 9, 15, 26, 39
k_unfold, 3
k_unfold (k_unfold-methods), 16

42

k_unfold, Tensor-method
(k_unfold-methods), 16
k_unfold-methods, 16
khatri_rao, 3, 13, 14
khatri_rao_list, 3,9, 13, 14, 15
kronecker, 13, 15
kronecker_list, 3,9, 14

load_orl, 17

matvec, 3

matvec (matvec-methods), 18

matvec, Tensor-method (matvec-methods),
18

matvec-methods, 18

modeMean, 20

modeMean (modeMean-methods), 19

modeMean, Tensor-method
(modeMean-methods), 19

modeMean-methods, 19

modeSum, /9

modeSum (modeSum-methods), 20

modeSum, Tensor-method
(modeSum-methods), 20

modeSum-methods, 20

mpca, 3, 21, 24, 34, 35

Ops,array, Tensor-method (Ops-methods),
22

Ops,numeric, Tensor-method
(Ops-methods), 22

Ops, Tensor,array-method (Ops-methods),
22

Ops, Tensor,numeric-method
(Ops-methods), 22

Ops, Tensor,Tensor-method (Ops-methods),
22

Ops-methods, 22

plot_orl, 17,23

INDEX

print, 27

print,Tensor-method (print-methods), 23
print-methods, 23

pvd, 3, 24

rand_tensor, 25, 29

rs_fold, 26

rs_unfold (rs_unfold-methods), 26

rs_unfold, Tensor-method
(rs_unfold-methods), 26

rs_unfold-methods, 26

rTensor (rTensor-package), 3

rTensor-package, 3

show, 24
show, Tensor-method (show-methods), 27
show-methods, 27

t,Tensor-method (t-methods), 27
t-methods, 27

t_mult, 3, 35, 37

t_svd, 3, 36, 37
t_svd_reconstruct, 3, 37, 37
tail,Tensor-method (tail-methods), 28
tail-methods, 28

Tensor (Tensor-class), 29
Tensor-class, 29

tperm (tperm-methods), 31

tperm, Tensor-method (tperm-methods), 31
tperm-methods, 31

ttl, 3,32, 33

ttm, 3, 32, 33
tucker, 3,5, 11, 21, 22, 24, 34

unfold (unfold-methods), 38

unfold, Tensor-method (unfold-methods),
38

unfold-methods, 38

unmatvec, 3, 6, 9, 16, 39

vec (vec-methods), 40
vec, Tensor-method (vec-methods), 40
vec-methods, 40

43

	rTensor-package
	as.tensor
	cp
	cs_fold
	cs_unfold-methods
	dim-methods
	fnorm-methods
	fold
	hadamard_list
	head-methods
	hosvd
	initialize-methods
	innerProd-methods
	khatri_rao
	khatri_rao_list
	kronecker_list
	k_fold
	k_unfold-methods
	load_orl
	matvec-methods
	modeMean-methods
	modeSum-methods
	mpca
	Ops-methods
	plot_orl
	print-methods
	pvd
	rand_tensor
	rs_fold
	rs_unfold-methods
	show-methods
	t-methods
	tail-methods
	Tensor-class
	tperm-methods
	ttl
	ttm
	tucker
	t_mult
	t_svd
	t_svd_reconstruct
	unfold-methods
	unmatvec
	vec-methods
	[-methods
	Index

