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.jgc Invoke Java Garbage Collection
Description

. jgc invokes the R and Java garbage collectors.

Usage
.jgc(R.gc = TRUE, ...)
Arguments
R.gc logical, if TRUE then gc (. . .) is called first, if FALSE only Java garbage collector
is called
any additional parameters passed to gc()
Details
. jgc invokes the R garbage collector (unless R.gc=FALSE) which removes any unused Java refer-

ences and then invokes the Java garbage collector to reclaim Java heap space.
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Author(s)

Simon Urbanek

.jinstanceof Is a java object an instance of a given java class

Description

Is a java object an instance of a given java class

Usage

o %instanceof% cl
.jinstanceof( o, cl )

Arguments
o java object reference
cl java class. This can be a character vector of length one giving the name of the
class, or another java object, or an instance of the Class class, or a object of class
jclassName.
Value

TRUE if o is an instance of cl

Author(s)

Romain Francois <francoisromain @free.fr>

Examples

Double <- J("java.lang.Double")
d <- new( Double, "10.2" )

# character
%instanceof% "java.lang.Double”
d %instanceof% "java.lang.Number”

(e}

# jclassName
d %instanceof% Double

# instance of Class
Double.class <- Double@jobj

d %instanceof% Double.class

# other object
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other.double <- new( Double, 10.2 )
d %instanceof% other.double

aslist Converts java objects or arrays to R lists

Description

as.list is implemented for java objects and java arrays to facilitate using lapply calls over ele-
ments of a java array or items of an Iterator associated with an Iterable object

For java array references, as.list is mapped to . jevalArray

For java objects that implement the Iterable interface, the list is created by iterating over the associ-
ated iterator

Usage
## S3 method for class 'jobjRef'
as.list(x, ...)
## S3 method for class 'jarrayRef'
as.list(x, ...)

Arguments
X java array or Iterable java object

ignored
Value

An R list, or vector.

Note

The function is not intended to be called directly. It is implemented so that java arrays or Iterable
java objects can be used as the first argument of lapply

See Also

.jevalArray, lapply
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Examples

# lapplying over a java array
a <- .jarray( list(
.jnew( "java/awt/Point"”, 10L, 10L ),
.jnew( "java/awt/Point"”, 30L, 30L )
D)
lapply( a, function(point){
with(point, {
x+y)*2
)
)

# lapply over a Vector (implements Iterable)

v <- .jnew("java/util/Vector")

v$add( "foo" )

v$add( .jnew("java/lang/Double”, 10.2 ) )

sapply( v, function(item) item$getClass()$getName() )

clone Object cloner

Description

Generic function to clone objects

Usage
clone(x, ...)
Arguments
X An object to clone
Further arguments, ignored
Value

A clone of the object

Methods

clone signature(x ="jobjRef"): clone a java object reference (must implement Cloneable)
clone signature(x = "jarrayRef"): clone a java rugged array (not yet implemented)

clone signature(x ="jrectRef"): clone a java rectangular array (not yet implemented)
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Warning

The implementation of clone for java object references uses the clone method of the Object class.
The reading of its description in the java help page is strongly recommended.

Examples

pl <- .jnew("java/awt/Point"” )
p2 <- clone( p1 )

p2$move( 10L, 10L )

pl1$getX()

# check that p1 and p2 are not references to the same java object
stopifnot( pl1$getX() == 0 )
stopifnot( p2%$getX() == 10 )

Exceptions Exception handling

Description

R handling of java exception

Usage

## S3 method for class 'Throwable'

x$name

## S3 replacement method for class 'Throwable'
x$name <- value

Arguments

X condition
name

value

Details

Java exceptions are mapped to R conditions that are relayed by the stop function.
The R condition contains the actual exception object as the jobj item.

The class name of the R condition is made of a vector of simple java class names, the class names
without their package path. This allows the R code to use direct handlers similar to direct exception
handlers in java. See the example below.
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Integer <- J("java.lang.Integer")

tryCatch( Integer$parseInt( "10.." ), NumberFormatException = function(e){
e$jobj$printStackTrace()

)

# the dollar method is also implemented for Throwable conditions,
# so that syntactic sugar can be used on condition objects
# however, in the example below e is __not__ a jobjRef object reference

tryCatch( Integer$parseInt( "10.." ), NumberFormatException = function(e){
e$printStackTrace()

b

J High level API for accessing Java

Description

J creates a Java class reference or calls a Java method

Usage
J(class, method, ..., class.loader=.rJava.class.loader)
Arguments
class java object reference or fully qualified class name in JNI notation (e.g "java/lang/String"
) or standard java notation (e.g "java.lang.String")
method if present then J results in a method call, otherwise it just creates a class name

reference.

optional parameters that will be passed to the method (if the method argument
is present)

class.loader  optional, custom loader to use if a class look-up is necessary (i.e., if classis a
string)

Details

J is the high-level access to Java.

If the method argument is missing then code must be a class name and J creates a class name refer-
ence that can be used either in a call to new to create a new Java object (e.g. new(J("java.lang.String"),
"foo0")) or with $ operator to call a static method (e.g. J("java.lang.Double")$parseDouble("10.2").)

If the method argument is present then it must be a string vector of length one which defines the
method to be called on the object.
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Value

If method is missing the the returned value is an object of the class jclassName. Otherwise the
value is the result of the method invocation. In the latter case Java exceptions may be thrown and
the function doesn’t return.

Note

J is a high-level API which is slower than . jnew or . jcall since it has to use reflection to find the
most suitable method.

See Also

.jcall, . jnew

Examples

if (!nzchar(Sys.getenv("NOAWT"))) {
f <- new(J("java.awt.Frame"), "Hello")
f$setVisible (TRUE)

3

J("java.lang.Double")$parseDouble("10.2")
J("java.lang.Double"”, "parseDouble”, "10.2" )

Double <- J("java.lang.Double")
Double$parseDouble( "10.2")

# String[] strings = new String[]{ "string"”, "array" } ;
strings <- .jarray( c("string"”, "array") )

# this uses the JList( Object[] ) constructor

# even though the "strings"” parameter is a String[]
1 <- new( J("javax.swing.JList"), strings)

jarray Java array handling functions

Description

. jarray takes a vector (or a list of Java references) as its argument, creates a Java array containing
the elements of the vector (or list) and returns a reference to such newly created array.

.jevalArray takes a reference to a Java array and returns its contents (if possible).

Usage

.jarray(x, contents.class = NULL, dispatch = FALSE)
.jevalArray(obj, rawJNIRefSignature = NULL, silent = FALSE, simplify = FALSE)
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Arguments

X vector or a list of Java references
contents.class common class of the contained objects, see details

obj Java object reference to an array that is to be evaluated

rawJNIRefSignature
JNI signature that would be used for conversion. If set to NULL, the signature is
detected automatically.

silent if set to true, warnings are suppressed

dispatch logical. If TRUE the code attempts to dispatch to either a jarrayRef object for
rugged arrays and jrectRef objects for rectangular arrays, creating possibly a
multi-dimensional object in Java (e.g., when used with a matrix).

simplify if set to TRUE more than two-dimensional arrays are converted to native objects
(e.g., matrices) if their type and size matches (essentially the inverse for objects
created with dispatch=TRUE).

Details

.jarray: The input can be either a vector of some sort (such as numeric, integer, logical, ...) or a list
of Java references. The contents is pushed to the Java side and a corresponding array is created. The
type of the array depends on the input vector type. For example numeric vector creates double[]
array, integer vector creates int[] array, character vector String[] array and so on. If x is a list, it
must contain Java references only (or NULLs which will be treated as NULL references).

The contents.class parameter is used only if x is a list of Java object references and it can
specify the class that will be used for all objects in the array. If set to NULL no assumption is made
and java/lang/Object will be used. Use with care and only if you know what you’re doing - you
can always use . jcast to cast the entire array to another type even if you use a more general object
type. One typical use is to construct multi-dimensional arrays which mandates passing the array
type as contents.class.

The result is a reference to the newly created array.
The inverse function which fetches the elements of an array reference is . jevalArray.

.jevalArray currently supports only a subset of all possible array types. Recursive arrays are
handled by returning a list of references which can then be evaluated separately. The only exception
is simplify=TRUE in which case . jevalArray attempts to convert multi-dimensional arrays into
native R type if there is a such. This only works for rectangular arrays of the same basic type (i.e.
the length and type of each referenced array is the same - sometimes matrices are represented that
way in Java).

Value

. jarray returns a Java array reference (jarrayRef or jrectRef) to an array created with the sup-
plied contents.

. jevalArray returns the contents of the array object.
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Examples

a <- .jarray(1:10)

print(a)

.jevalArray(a)

b <- .jarray(c("hello”,"world"))
print(b)

c <- .jarray(list(a,b))

print(c)

# simple .jevalArray will return a list of references
print(l <- .jevalArray(c))

# to convert it back, use lapply
lapply(1l, .jevalArray)

# two-dimensional array resulting in int[2][10]
d <- .jarray(list(a,a),"[I")

print(d)

# use dispatch to convert a matrix to [[D

e <- .jarray(matrix(1:12/2, 3), dispatch=TRUE)
print(e)

# simplify it back to a matrix

.jevalArray(e, simplify=TRUE)

jarrayRef-class Class "jarrayRef" Reference to an array Java object

Description

This class is a subclass of jobjRef-class and represents a reference to an array Java object.

Objects from the Class

Objects cannot be created directly, but only as the return value of . jcall function.

Slots

jsig: JNI signature of the array type
jobj: Internal identifier of the object
jclass: Inherited from jobjRef, but unspecified

Methods

[ signature(x = "jarrayRef"): not yet implemented

[[ signature(x ="jarrayRef"): R indexing of java arrays
[[<- signature(x = "jarrayRef"): replacement method
head signature(x = "jarrayRef"): head of the java array

tail signature(x = "jarrayRef"): tail of the java array
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length signature(object = "jarrayRef"): Number of java objects in the java array
str signature(object = "jarrayRef"): ...

unique signature(x = "jarrayRef"): not yet implemented

duplicated signature(x = "jarrayRef"): not yet implemented

anyDuplicated signature(x = "jarrayRef"): not yet implemented

sort signature(x = "jarrayRef"): not yet implemented

rev signature(x = "jarrayRef"): not yet implemented

min signature(x = "jarrayRef"): not yet implemented

max signature(x = "jarrayRef"): not yet implemented

range signature(x = "jarrayRef"): not yet implemented

Extends

Class "jobjRef", directly.

Author(s)

Simon Urbanek

See Also

.jcall or jobjRef jrectRef for rectangular arrays

java-tools Jjava tools used internally in rJava

Description

java tools used internally in rJava

Examples
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JavaAccess Field/method operator for Java objects

Description

The $ operator for jobjRef Java object references provides convenience access to object attributes
and calling Java methods.

Usage

## S3 method for class 'jobjRef'
.DollarNames(x, pattern = "" )
## S3 method for class 'jarrayRef'
.DollarNames(x, pattern = "" )

## S3 method for class 'jrectRef"
.DollarNames(x, pattern = "" )
## S3 method for class 'jclassName'

.DollarNames(x, pattern = "" )

Arguments

X object to complete

pattern pattern

Details

rJava provides two levels of API: low-level JNI-API in the form of . jcall function and high-level
reflection API based on the $ operator. The former is very fast, but inflexible. The latter is a
convenient way to use Java-like programming at the cost of performance. The reflection API is
build around the $ operator on jobjRef-class objects that allows to access Java attributes and call
object methods.

$ returns either the value of the attribute or calls a method, depending on which name matches first.
$<- assigns a value to the corresponding Java attribute.

names and .DollarNames returns all fields and methods associated with the object. Method names
are followed by ( or () depending on arity. This use of names is mainly useful for code completion,
it is not intended to be used programmatically.

This is just a convenience API. Internally all calls are mapped into . jcall calls, therefore the
calling conventions and returning objects use the same rules. For time-critical Java calls . jcall
should be used directly.

Methods

$ signature(x = "jobjRef"): ...
$ signature(x = "jclassName"): ...

$<- signature(x = "jobjRef"): ...
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$<- signature(x ="jclassName"): ...
names signature(x = "jobjRef"): ...
names signature(x = "jarrayRef"): ...
names signature(x = "jrectRef"): ...

names signature(x = "jclassName"): ...

See Also

J, .jcall, . jnew, jobjRef-class

Examples

v <- new(J("java.lang.String"), "Hello World!")
v$length()

v$indexOf ("World")

names(v)

J("java.lang.String")$valueOf (10)

Double <- J("java.lang.Double")

# the class pseudo field - instance of Class for the associated class
# similar to java Double.class

Double$class

javalmport Attach mechanism for java packages

Description

The javaImport function creates an item on R’s search that maps names to class names references
found in one or several "imported" java packages.

Usage

javalmport(packages = "java.lang")
Arguments

packages character vector containing java package paths
Value

An external pointer to a java specific UserDefinedDatabase object
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Warning

This feature is experimental. Use with caution, and don’t forget to detach.

Note

Currently the list of objects in the imported package is populated as new objects are found, not at
creation time.

Author(s)

Romain Francois <francoisromain @free.fr>

References

User-Defined Tables in the R Search Path. Duncan Temple Lang. December 4, 2001 https:
//www.omegahat.net/RObjectTables/

See Also

attach

Examples

## Not run:
attach( javaImport( "java.util” ), pos = 2 , name = "java:java.util” )

# now we can just do something like this
v <- new( Vector )

v$add( "foobar" )

Is( pos =2 )

# or this

m <- new( HashMap )
m$put( "foo", "bar" )
1s( pos = 2 )

# or even this :
Collections$EMPTY_MAP

## End(Not run)

jcall Call a Java method

Description

.jcall calls a Java method with the supplied arguments.
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Usage
.jcall(obj, returnSig = "V", method, ..., evalArray = TRUE,
evalString = TRUE, check = TRUE, interface = "RcallMethod”,
simplify = FALSE, use.true.class = FALSE)
Arguments

obj Java object (jobjRef as returned by .jcall or . jnew) or fully qualified class
name in JNI notation (e.g. "java/lang/String").

returnSig Return signature in JNI notation (e.g. "V" for void, "[I" for int[] etc.). For con-
venience additional type "S" is supported and expanded to "Ljava/lang/String;",
re-mapping "T" to represent the type short.

method The name of the method to be called
Any parameters that will be passed to the Java method. The parameter types
are determined automatically and/or taken from the jobjRef object. All named
parameters are discarded.

evalArray This flag determines whether the array return value is evaluated (TRUE) or passed
back as Java object reference (FALSE).

simplify If evalArray is TRUE then this argument is passed to . jevalArray().

evalString This flag determines whether string result is returned as characters or as Java
object reference.

check If set to TRUE then checks for exceptions are performed before and after the call
using . jcheck(silent=FALSE). This is usually the desired behavior, because
all calls fail until an exception is cleared.

interface This option is experimental and specifies the interface used for calling the Java

method; the current implementation supports two interfaces:

"RcallMethod"” the default interface.

"RcallSyncMethod” synchronized call of a method. This has similar effect as
using synchronize in Java.

use.true.class logical. If set to TRUE, the true class of the returned object will be used instead
of the declared signature. TRUE allows for example to grab the actual class of
an object when the return type is an interface, or allows to grab an array when
the declared type is Object and the returned object is an array. Use FALSE for
efficiency when you are sure about the return type.

Details

.jcall requires exact match of argument and return types. For higher efficiency . jcall doesn’t
perform any lookup in the reflection tables. This means that passing subclasses of the classes present
in the method definition requires explicit casting using . jcast. Passing null arguments also needs
a proper class specification with . jnull.

Java types long and float have no corresponding types in R and therefore any such parameters
must be flagged as such using . jfloat and . jlong functions respectively.

Java also distinguishes scalar and array types whereas R doesn’t have the concept of a scalar. In R
a scalar is basically a vector (called array in Java-speak) of the length 1. Therefore passing vectors
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of the length 1 is ambiguous. . jcall assumes that any vector of the length 1 that corresponds to a
native Java type is a scalar. All other vectors are passed as arrays. Therefore it is important to use
. jarray if an arbitrary vector (including those of the length 1) is to be passed as an array parameter.

Important note about encoding of character vectors: Java interface always works with strings in
UTF-8 encoding, therefore the safest way is to run R in a UTF-8 locale. If that is not possible
for some reason, rJava can be used in non-UTF-8 locales, but care must be taken. Since R 2.7.0
it is possible to associate encoding with strings and rJava will flag all strings it produces with the
appropriate UTF-8 tag. R will then perform corresponding appropriate conversions where possible
(at a cost of speed and memory usage), but 3rd party code may not (e.g. older packages). Also
rJava relies on correct encoding flags for strings passed to it and will attempt to perform conversions
where necessary. If some 3rd party code produces strings incorrectly flagged, all bets are off.

Finally, for performance reasons class, method and field names as well as signatures are not always
converted and should not contain non-ASCII characters.

Value

Returns the result of the method.

See Also

.jnew, . jcast, .jnull, . jarray

Examples

.jcall("java/lang/System”,"S", "getProperty”, "os.name")
if (!nzchar(Sys.getenv("NOAWT"))) {
f <- .jnew("java/awt/Frame”,"Hello")
.jcall(f,,"setVisible", TRUE)
3
jcast Cast a Java object to another class
Description

. jcast returns a Java object reference cast to another Java class.

Usage

.jcast(obj, new.class = "java/lang/Object”, check = FALSE, convert.array = FALSE)
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Arguments
obj a Java object reference
new.class fully qualified class name in JNI notation (e.g. "java/lang/String").
check logical. If TRUE, it is checked that the object effectively is an instance of the new

class. See %instanceof%. Using FALSE (the default) for this argument, rJava
does not perform type check and this will cause an error on the first use if the
cast is illegal.

convert.array logical. If TRUE and the object is an array, it is converted into a jarrayRef
reference.
Details

This function is necessary if a argument of . jcall or . jnew is defined as the superclass of the
object to be passed (see . jcall). The original object is not modified.

The default values for the arguments check and convert.array is FALSE in order to guarantee
backwards compatibility, but it is recommended to set the arguments to TRUE
Value

Returns a Java object reference (jobjRef) to the object obj, changing the object class.

See Also

.jcall

Examples

## Not run:
v <- .jnew("java/util/Vector")
.jcall("java/lang/System”,"1","identityHashCode", .jcast(v, "java/lang/Object”))

## End(Not run)

jcastToArray Ensures that a given object is an array reference

Description
.jcastToArray takes a Java object reference of any kind and returns Java array reference if the
given object is a reference to an array.

Usage

.jcastToArray(obj, signature=NULL, class="", quiet=FALSE)
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Arguments
obj Java object reference to cast or a scalar vector
signature array signature in JNI notation (e.g. "[I" for an array of integers). If set to NULL
(the default), the signature is automatically determined from the object’s class.
class force the result to pose as a particular Java class. This has the same effect as
using . jcast on the result and is provided for convenience only.
quiet if set to TRUE, no failures are reported and the original object is returned unmod-
ified.
Details

Sometimes a result of a method is by definition of the class java.lang.0Object, but the actual
referenced object may be an array. In that case the method returns a Java object reference instead
of an array reference. In order to obtain an array reference, it is necessary to cast such an object to
an array reference - this is done using the above . jcastToArray function.

The input is an object reference that points to an array. Usually the signature should be left at NULL
such that it is determined from the object’s class. This is also a check, because if the object’s class
is not an array, then the functions fails either with an error (when quiet=FALSE) or by returning the
original object (when quiet=TRUE). If the signature is set to anything else, it is not verified and the
array reference is always created, even if it may be invalid and unusable.

For convenience . jcastToArray also accepts non-references in which case it simply calls . jarray,
ignoring all other parameters.

Value

Returns a Java array reference (jarrayRef) on success. If quiet is TRUE then the result can also be
the original object in the case of failure.

Examples

## Not run:

a <- .jarray(1:10)

print(a)

# let's create an array containing the array

aa <- .jarray(list(a))

print(aa)

ba <- .jevalArray(aa)[[1]1]

# it is NOT the inverse, because .jarray works on a list of objects
print(ba)

# so we need to cast the object into an array

b <- .jcastToArray(ba)

# only now a and b are the same array reference

print(b)

# for convenience .jcastToArray behaves like .jarray for non-references
print(.jcastToArray(1:10/2))

## End(Not run)
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Java exception handling

Description

. jcheck checks the Java VM for any pending exceptions and clears them.

. jthrow throws a Java exception.

. jgetEx polls for any pending exceptions and returns the exception object.

.jclear clears a pending exception.

Usage

.jcheck(silent = FALSE)

.jthrow(exception, message = NULL)
.jgetEx(clear = FALSE)

.jclear()

Arguments

silent

exception

message

clear

Details

If set to FALSE then Java is instructed to print the exception on stderr. Note
that Windows Rgui doesn’t show stderr so it will not appear there (as of rJava
0.5-1 some errors that the JVM prints using the vfprintf callback are passed to
R. However, some parts are printed using System.err in which case the usual
redirection using the System class can be used by the user).

is either a class name of an exception to create or a throwable object reference
that is to be thrown.

if exception is a class name then this parameter specifies the string to be used
as the message of the exception. This parameter is ignored if exception is a
reference.

if set to TRUE then the returned exception is also cleared, otherwise the throwable
is returned without clearing the cause.

Please note that some functions (such as . jnew or . jcall) call . jcheck implicitly unless instructed
to not do so. If you want to handle Java exceptions, you should make sure that those function don’t
clear the exception you may want to catch.

The exception handling is still as a very low-level and experimental, because it requires polling of
exceptions. A more elaborate system using constructs similar to try ... catch is planned for next
major version of rJava.

Warning: When requesting exceptions to not be cleared automatically, please note that the show
method (which is called by print) has a side-effect of making a Java call to get the string represen-
tation of a Java object. This implies that it will be impeded by any pending exceptions. Therefore
exceptions obtained through . jgetEx can be stored, but should not be printed (or otherwise used in
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Java calls) until after the exception is cleared. In general, all Java calls will fail (possibly silently)
until the exception is cleared.

Value

. jcheck returns TRUE if an exception occurred or FALSE otherwise.

. jgetEx returns NULL if there are no pending exceptions or an object of the class "java.lang. Throwable"
representing the current exception.

See Also

.jcall, . jnew

Examples

# we try to create a bogus object and

# instruct .jnew to not clear the exception
# this will raise an exception

v <- .jnew("foo/bar", check=FALSE)

# you can poll for the exception, but don't try to print it
# (see details above)
if (!is.null(e<-.jgetEx())) print(”"Java exception was raised")

# expect TRUE result here because the exception was still not cleared
print(.jcheck(silent=TRUE))
# next invocation will be FALSE because the exception is now cleared
print(.jcheck(silent=TRUE))

# now you can print the actual expection (even after it was cleared)
print(e)

jclassName-class Class "jclassName" - a representation of a Java class name

Description

This class holds a name of a class in Java.

Objects from the Class

Objects of this class should *not* be created directly. Instead, the function J should be used to
create new objects of this class.

Slots

name: Name of the class (in source code notation)

jobj: Object representing the class in Java
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Methods

The objects of class jclassName are used indirectly to be able to create new Java objects via
new such as new(J("java.lang.String"), "foo") or to use the $ convenience operator on static
classes, such as J("java.lang.Double")$parseDouble("10.2").

as.character signature(x = "jclassName"): returns the class name as a string vector of length
one.

Author(s)

Simon Urbanek

See Also

J, new

jengine Java callback engineCast a Java object to another class

Description

. jengine obtains the current callback engine or starts it.

Usage

.jengine(start=FALSE, silent=FALSE)

Arguments
start if set to TRUE then the callback engine is started if it is not yet active
silent if set to TRUE then NULL is returned if there is no engine available. Otherwise
an error is raised
Details

. jengine can be used to detect whether the engine was started or to start the engine.

Before any callbacks from Java into R can be performed, the Java callback engine must be initial-
ized, loading Java/R Interface (JRI). If JRI was not started and start is set to TRUE then . jengine
will load necessary classes and start it.

Note that JRI is an optional part of rJava and requires R shared library at the moment. By default
rJava will continue with installation even if JRI cannot be built.

Value

Returns a Java object reference (jobjRef) to the current Java callback engine.
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See Also

.jcall

Examples

## Not run:
.jengine(TRUE)

## End(Not run)

jequals Comparing Java References

Description
. jequals function can be used to determine whether two objects are equal. In addition, it allows
mixed comparison of non-Java object for convenience, unless strict comparison is desired.
The binary operators == and ! = are mapped to (non-strict) call to . jequals for convenience.
. jcompare compares two objects in the sense of the java.lang.Comparable interface.

The binary operators <, >, <=, >= are mapped to calls to . jcompare for convenience

Usage

.jequals(a, b, strict = FALSE)
.jcompare( a, b )

Arguments
a first object
b second object
strict when set to TRUE then non-references save for NULL are always treated as differ-
ent, see details.
Details

. jequals compares two Java objects by calling equals method of one of the objects and passing
the other object as its argument. This allows Java objects to define the ‘equality’ in object-dependent
way.

In addition, . jequals allows the comparison of Java object to other scalar R objects. This is done
by creating a temporary Java object that corresponds to the R object and using it for a call to the
equals method. If such conversion is not possible a warning is produced and the result it FALSE.
The automatic conversion will be avoided if strict parameter is set to TRUE.

NULL values in a or b are replaced by Java null-references and thus . jequals(NULL,NULL) is TRUE.

If neither a and b are Java objects (with the exception of both being NULL) then the result is identical
to that of all.equal(a,b).

Neither comparison operators nor . jequals supports vectors and returns FALSE in that case. A
warning is also issued unless strict comparison was requested.
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Value

. jequals returns TRUE if both object are considered equal, FALSE otherwise.

. jcompare returns the result of the compareTo java method of the object a applied to b

Methods
!= signature(el = "ANY", e2 = "jobjRef"): ...
!= signature(el = "jobjRef"”, e2 ="jobjRef"): ...
!= signature(el = "jobjRef", e2 ="ANY"): ...
== signature(el ="ANY", e2 ="jobjRef"): ...
== signature(el = "jobjRef", e2 ="jobjRef"): ...
== signature(el = "jobjRef", e2 = "ANY"): ...
< signature(el = "ANY", e2 = "jobjRef"): ...
< signature(el = "jobjRef", e2 = "jobjRef"): ...
< signature(el = "jobjRef"”, e2 = "ANY"): ...
> signature(el = "ANY", e2 = "jobjRef"): ...
> signature(el = "jobjRef", e2 = "jobjRef"): ...
> "jobjRef", e2 = "ANY"): ...

>= signature(el = "ANY", e2 = "jobjRef"): ...

signature(el

>= signature(el = "jobjRef"”, e2 ="jobjRef"): ...
>= signature(el ="jobjRef", e2="ANY"): ...
<= signature(el ="ANY", e2 ="jobjRef"): ...
<= signature(el = "jobjRef", e2 = "jobjRef"): ...
<= signature(el = "jobjRef", e2 = "ANY"): ...

Note

Don’t use x == NULL to check for null-references, because x could be NULL and thus the result
would be an empty vector. Use is. jnull instead. (In theory is. jnull and x == . jnull() are the
the same, but is. jnull is more efficient.)

See Also

is.jnull
Examples

s <- .jnew("java/lang/String"”, "foo")

.jequals(s, "foo") # TRUE

.jequals(s, "foo", strict=TRUE) # FALSE - "foo"” is not a Java object
t <-s

.jequals(s, t, strict=TRUE) # TRUE
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s=="foo" # TRUE

jfield

Double <- J("java.lang.Double")
dl <- new( Double, 0.0 )
d2 <- new( Double, 1.0 )
d3 <- new( Double, 0.0 )

dl < d2
d1 <= d3
d1 >= d3
dl > d2

# cannot compare a Double and a String
try( d1 < "foo" )

# but can compare a Double and an Integer

dl < 1oL

jfield

Obtains the value of a field

Description

. jfield returns the value of the specified field on an object.

Usage

.jfield(o, sig = NULL, name, true.class = is.null(sig), convert = TRUE)

. jfield<-"(o,

Arguments

o

sig

name

true.class

name, value)

Class name or object (Java reference) whose field is to be accessed. Static fields
are supported both by specifying the class name or using an instance.

signature (JNI type) of the field. If set to NULL rJava attempts to determine
the signature using reflection. For efficiency it is recommended to specify the
signature, because the reflection lookup is quite expensive.

name of the field to access

by default the class of the resulting object matches the signature of the field.
Setting this flag to TRUE causes . jfield to use true class name of the resulting
object instead. (this flag has no effect on scalar fields)
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convert when set to TRUE all references are converted to native types (where possible).
Otherwise Java references are returned directly.

value value to assign into the field. The field signature is determined from the value
in the same way that parameter signatures are determined in . jcall - be sure to
cast the value as necessary, no automatic conversion is done.

Details

The detection of a field signature in . jfield using reflection is considerably expensive (more than
3 additional method calls have to be performed), therefore it is recommended for time-critical code
to specify the field signature beforehand.

NOTE: The sequence of arguments in . jfield has been changed since rJava 0.5 to be more con-
sistent and match the sequence in . jcall. Also . jsimplify is no longer needed as primitive types
are obtained directly.

Value

.jfield: contents of the field, . jfield<-: modified object.

See Also

.jcall

Examples

## Not run:
.jfield("java/lang/Boolean”,, "TYPE")

## End(Not run)

jfloat Wrap numeric vector as flat Java parameter

Description

.jfloat marks a numeric vector as an object that can be used as parameter to Java calls that require
float parameters. Similarly, . jlong marks a numeric vector as long parameter, . jshort as short
and . jbyte as byte.

Usage

.jfloat(x)
.jlong(x)
. jbyte(x)
.jchar(x)
.jshort(x)
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Arguments

X numeric vector

Details

R has no native float or long type. Numeric vectors are stored as doubles, hence there is no native
way to pass float numbers to Java methods. The . jfloat call marks a numeric vector as having
the Java type float by wrapping it in the jfloat class. The class is still a subclass of numeric,
therefore all regular R operations are unaffected by this.

Similarly, . jlong is used to mark a numeric vector as a parameter of the long Java type. Please
note that in general R has no native type that will hold a long value, so conversion between Java’s
long type and R’s numeric is potentially lossy.

. jbyte is used when a scalar byte is to be passed to Java. Note that byte arrays are natively passed
as raw vectors, not as . jbyte arrays, although non-scalar . jbyte is equivalent except for using
four-times as much memory.

.jchar is strictly experimental and uses integer vector as storage class. The type char in Java
represents 16-bit Unicode code points (not to be confused with char in C which is byte in Java!),
see Java documentation for details. x can also be a non-NA string in which case . jchar(x) is just
a shorthand for . jnew("”java.lang.String", x)$toCharArray() and thus performs a Java call
(unlike all other functions mentioned here).

Value

Returns a numeric vector of the class jfloat, jlong, jbyte, jshort or jchar that can be used as
parameter to Java calls that require float, long, byte, short or char parameters respectively.

See Also

.jcall, jfloat-class

"on "o

jfloat-class Classes "jfloat", "jlong", "jbyte" and "jchar" specify Java native types
that are not native in R

Description

These classes wrap a numeric vector to be treated as float or long argument when passed to Java
and an integer vector to be treated as byte or char. R doesn’t distinguish between double and
float, but Java does. In order to satisfy object types, numeric vectors that should be converted to
floats or long on the Java side must be wrapped in this class. In addition jbyte must be used when
passing scalar byte (but not byte arrays, those are mapped into RAW vectors). Finally jchar it used
when mapping integer vectors into unicode Java character vectors.

Objects from the Class

Objects can be created by calling . jfloat, . jlong, . jbyte or . jchar respectively.
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Slots

.Data: Payload

Extends

"jfloat" and "jlong": Class "numeric”, from data part. Class "vector"”, by class "numeric”.

"jbyte" and "jchar": Class "integer", from data part. Class "vector”, by class "integer".

Methods

non:

"jfloat" and "jlong" have no methods other than those inherited from "numeric". "jbyte" and "jchar"
have no methods other than those inherited from "integer".

Author(s)

Simon Urbanek

See Also

.jfloat, . jlong, . jbyte, . jchar and . jcall

jinit Initialize Java VM

Description

.jinit initializes the Java Virtual Machine (JVM). This function must be called before any rJava
functions can be used.

.jvmState() returns the state of the current JVM.

Usage

.jinit(classpath = NULL, parameters = getOption("java.parameters"),
silent = FALSE, force.init = FALSE)

.jvmState()
Arguments
classpath Any additional classes to include in the Java class paths (i.e. locations of Java
classes to use). This path will be prepended to paths specified in the CLASSPATH
environment variable. Do NOT set this system class path initializing a package,
use . jpackage instead, see details.
parameters character vector of parameters to be passed to the virtual machine. They are

implementation dependent and apply to JDK version 1.2 or higher only. Please
note that each parameter must be in a separate element of the array, you cannot
use a space-separated string with multiple parameters.
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jinit

Other optional Java initialization parameters (implementation-dependent).

silent If set to TRUE no warnings are issued.
force.init If set to TRUE JVM is re-initialized even if it is already running.
Details

Starting with version 0.5 rJava provides a custom class loader that can automatically track classes
and native libraries that are provided in R packages. Therefore R packages should NOT use
.jinit, butcall . jpackage instead. In addition this allows the use of class path modifying function
. jaddClassPath.

Important note: if a class is found on the system class path (i.e. on the classpath specified to
.Jjinit) then the system class loader is used instead of the rJava loader, which can lead to problems
with reflection and native library support is not enabled. Therefore it is highly recommended to use
. jpackage or . jaddClassPath instead of classpath (save for system classes).

Stating with version 0.3-8 rJava is now capable of modifying the class path on the fly for certain
Sun-based Java virtual machines, even when attaching to an existing VM. However, this is done by
exploiting the way ClassLoader is implemented and may fail in the future. In general it is officially
not possible to change the class path of a running VM.

At any rate, it is impossible to change any other VM parameters of a running VM, so when using
.Jinit in a package, be generous with limits and don’t use VM parameters to unnecessarily restrict
resources (or preferably use . jpackage instead). JVM parameters can only be set if the initial state
of the JVM is "none”.

There is a subtle difference between "initialized"” and the JVM state. It is in theory possible for
"initialized" to be FALSE and still "state” to be "created” or "attached” in case where JVM
was created but rJava has not been able to initialize for other reasons, although such state should be
rare and problematic in either case. Behavior of rJava functions other than . jinit and . jvmState
is undefined unless . jvmState()$initialized is TRUE.

Value

The return value is an integer specifying whether and how the VM was initialized. Negative values
indicate failure, zero denotes successful initialization and positive values signify partially successful
initilization (i.e. the VM is up, but parameters or class path could not be set due to an existing or
incompatible VM).

.jvmState returns a named list with at least the following elements:

initialized TRUE if rJava is initialized and has a runing JVM, FALSE otherwise.

state string representing the current state of the JVM. One of the following values:
"none” if there is no JVM, "created” if the current JVM has been created by
rJava, "attached" if rJava attached into an existing JVM (typically when R is
embedded into a running JVM via JRI), "detached” if there is a JVM (such as
embedded R), but rJava has not been initialized to use it, "dead” if the process
is about to die due to the JVM forcing en exit or "destroyed” if a JVM existed
before, but was destroyed.

See Also

. jpackage
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Examples

## Not run:

## set heap size limit to 512MB (see java -X) and

## use "myClasses.jar"” as the class path
.jinit(classpath="myClasses.jar", parameters="-Xmx512m")
.jvmState()

## End(Not run)

jmemprof rJava memory profiler

Description

.jmemprof enables or disables rJava memory profiling. If rJava was compiled without memory
profiling support, then a call to this function always causes an error.

Usage

.jmemprof (file = "-")
Arguments

file file to write profiling information to or NULL to disable profiling
Details

The file parameter must be either a filename (which will be opened in append-mode) or "-" to
use standard output or NULL to disable profiling. An empty string "" is equivalent to NULL in this
context.

Note that lots of finalizers are run only when R exists, so usually you want to enable profiling early
and let R exit to get a sensible profile. Running gc may be helpful to get rid of references that can
be collected in R.

A simple perl script is provided to analyze the result of the profiler. Due to its simple text format, it is
possible to capture entire stdout including the profiler information to have both the console context
for the allocations and the profile. Memory profiling is also helpful if rJava debug is enabled.

Note that memory profiling support must be compiled in rJava and it is by default compiled only if
debug mode is enabled (which is not the case by default).

Value

Returns NULL.
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Examples

jnew

## memory profiling support is optional so only works when enabled

tryCatch(

.jmemprof ("rJava.mem.profile.txt"),
error=function(e) message(e))

jnew

Create a Java object

Description

. Jnew create a new Java object.

Usage

.jnew(class,

Arguments

class

check

silent

class.loader

Value

., check=TRUE, silent=!check, class.loader=NULL)

fully qualified class name in JNI notation (e.g. "java/lang/String").

Any parameters that will be passed to the corresponding constructor. The param-
eter types are determined automatically and/or taken from the jobjRef object.
For details see . jcall. Note that all named parameters are discarded.

If set to TRUE then . jcheck is invoked before and after the call to the constructor
to clear any pending Java exceptions.

If set to FALSE then . jnew will fail with an error if the object cannot be created,
otherwise a null-reference is returned instead. In addition, this flag is also passed
to final . jcheck if check above is set to TRUE. Note that the error handling also
clears exceptions, so check=FALSE, silent=FALSE is usually not a meaningful
combination.

optional class loader to force for loading the class. If not set, the rJava class
loader is used first. The default Java class loader is always used as a last resort.
Set to .rJava.class.loader inside a package if it uses its own class loader
(see . jpackage for details).

Returns the reference (jobjRef) to the newly created object or null-reference (see .jnull) if
something went wrong.

See Also

.jcall, .jnull
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Examples

## Not run:
f <- .jnew("java/awt/Frame”,"Hello")
.jcall(f,,"setVisible”,TRUE)

## End(Not run)

jnull Java null object reference

Description

.jnull returns a null reference of a specified class type. The resulting object is of the class
jobjRef.

is.jnull is an extension of is.null that also returns TRUE if the supplied object is a null Java
reference.

Usage

.jnull(class = "java/lang/Object")
is.jnull(x)

Arguments
class fully qualified target class name in JNI notation (e.g. "java/lang/String").
X object to check

Details

.jnull is necessary if null is to be passed as an argument of . jcall or . jnew, in order to be able
to find the correct method/constructor.

Example: given the following method definitions of the class A:

e public static void run(String a);
* public static void run(Double n);
Calling .jcall("A",,"run” ,NULL) is ambiguous, because it is unclear which method is to be

used. Therefore rJava requires class information with each argument to . jcall. If we wanted to
run the String-version, we could use . jcall("A",,"run”,.jnull("java/lang/String")).

is.jnull is a test that should be used to determine whether a given Java reference is a null refer-
ence.
Value

.jnull returns a Java object reference (jobjRef) of a null object having the specified object class.

is. jnull returns TRUE if is.null(x) is TRUE or if x is a Java null reference.
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See Also

.jcall, .jcast

Examples

## Not run:
.jcall("java/lang/System”,"1","identityHashCode", .jnull())

## End(Not run)

jobjRef-class Class "jobjRef" - Reference to a Java object

Description

This class describes a reference to an object held in a JavaVM.

Objects from the Class
Objects of this class should *not* be created directly. Instead, the function . jnew should be use to
create new Java objects. They can also be created as results of the . jcall function.

Slots

jobj: Internal identifier of the object (external pointer to be precise)
jclass: Java class name of the object (in JNI notation)

Java-side attributes are not accessed via slots, but the $ operator instead.

Methods

This object’s Java methods are not accessed directly. Instead, . jcall JNI-API should be used for
invoking Java methods. For convenience the $ operator can be used to call methods via reflection
APL

Author(s)

Simon Urbanek

See Also

.jnew, . jcall or jarrayRef-class



Jjpackage 33

jpackage Initialize an R package containing Java code

Description

. jpackage initializes the Java Virtual Machine (JVM) for an R package. In addition to starting the
JVM it also registers Java classes and native code contained in the package with the JVM. function
must be called before any rJava functions can be used.

Usage
.jpackage(name, jars='x', morePaths='"', nativelLibrary=FALSE,
lib.loc=NULL, parameters = getOption("java.parameters”),
own.loader = FALSE)
Arguments
name name of the package. It should correspond to the pkgname parameter of . onLoad
or .First.1lib function.
jars Java archives in the java directory of the package that should be added to the
class path. The paths must be relative to package’s java directory. A special
value of '*' adds all . jar files from the java the directory.
morePaths vector listing any additional entries that should be added to the class path.

nativelLibrary alogical determining whether rJava should look for native code in the R pack-
age’s shared object or not.

lib.1loc a character vector with path names of R libraries, or NULL (see system.file
and examples below).

parameters optional JVM initialization parameters which will be used if JVM is not ini-
tilized yet (see . jinit).

own.loader if TRUE then a new, separate class loader will be initilized for the package and
assigned to the .pkg.class.loader variable in the package namespace. New
packages should make use of this feature.

Details

. jpackage initializes a Java R package as follows: first the JVM is initialized via .jinit (if it
is not running already). Then the java directory of the package is added to the class path. Then
. jpackage prepends jars with the path to the java directory of the package and adds them to the
class path (or all . jar files if '*' was specified). Finally the morePaths parameter (if set) is passed
to a call to . jaddClassPath.

Therefore the easiest way to create a Java package is to add . jpackage (pkgname, 1ib.loc=libname)
in .onLoad or .First.lib, and copy all necessary classes to a JAR file(s) which is placed in the
inst/java/ directory of the source package.
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If a package needs special Java parameters, " java.parameters” option can be used to set them on
initialization. Note, however, that Java parameters can only be used during JVM initialization and
other package may have intialized JVM already.

Since rJava 0.9-14 there is support of package-specific class loaders using the own.loader=TRUE
option. This is important for packages that may be using classes that conflict with other packages are
therefore is highly recommended for new packages. Before this feature, there was only one global
class loader which means that the class path was shared for all class look ups. If two packages use
the same (fully qualified) class name, even in a dependency, they are likely to clash with each if they
don’t use exactly the same version. Therefore it is safer for each package use use a private class
loader for its classes to guarantee that the only the classes supplied with the package will be used. To
do that, a package will set own.loader=TRUE which instructs rJava to not change the global loader,
but instead create a separate one for the package and assignitto .rJava.class.loader in the pack-
age namespace. Then if package wants to instantiate a new class, it would use . jnew("myClass”,
class.loader=.rJava.class.loader) to use its own loader instead of the global one. The global
loader’s class path won’t be touched, so it won’t find the package’s classes. It is possible to get the
loader used in a package using . jclassLoader (package="fo00") which will return the global one
if the package has not registered its own. Similarly, to retrieve the class path used by a package, one
would use . jclassPath(.jclassLoader (package="f00")).

Note that with the advent of multiple class loaders the value of the java.class.path property is
no longer meaningful as it can reflect only one of the loaders.

Value

The return value is an invisible TRUE if the initialization was successful.

See Also

.jinit

Examples

## Not run:

.onLoad <- function(libname, pkgname) {
. jpackage(pkgname, lib.loc=1libname, own.loader=TRUE)
## do not use, just an illustration of the concept:
cat("my Java class path: ")
print(.jclassPath(. jclassLoader (package=pkgname)))

}

## End(Not run)

jrectRef-class Rectangular java arrays

Description

References to java arrays that are guaranteed to be rectangular, i.e similar to R arrays
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Objects from the Class

Objects of this class should *not* be created directly. Instead, they usually come as a result of a
java method call.

Slots

jsig: JNI signature of the array type
jobj: Internal identifier of the object
jclass: Inherited from jobjRef, but unspecified

dimension: dimension vector of the array

Extends

Class "jarrayRef", directly. Class " jobjRef", by class "jarrayRef", distance 2.

Methods

length signature(x = "jrectRef"): The number of elements in the array. Note that if the array
has more than one dimension, it gives the number of arrays in the first dimension, and not the
total number of atomic objects in the array (like R does). This gives what would be returned
by array.length in java.

str signature(object = "jrectRef"): ...

[ signature(x = "jrectRef"): R indexing of rectangular java arrays

dim signature(x = "jrectRef"): extracts the dimensions of the array

dim<- signature(x = "jrectRef"): sets the dimensions of the array

unique signature(x = "jrectRef"): unique objects in the array

duplicated signature(x ="jrectRef"): see duplicated

anyDuplicated signature(x ="jrectRef"): see anyDuplicated

sort signature(x = "jrectRef"): returns a new array with elements from x in order
rev signature(x = "jrectRef"): returns a new array with elements from x reversed

min signature(x = "jrectRef"): the smallest object in the array (in the sense of the Comparable

interface)
max signature(x = "jrectRef"): the biggest object in the array (in the sense of the Comparable
interface)
range signature(x = "jrectRef"): the range of the array (in the sense of the Comparable inter-
face)
Examples

v <- new( J("java.util.Vector”) )

v$add( "hello” )

v$add( "world” )

v$add( new( J("java.lang.Double"), "10.2" ) )
array <- v$toArray()
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array[ c(TRUE,FALSE,TRUE) ]
array[ 1:2 1]
array[ -3 ]

# length
length( array )

# also works as a pseudo field as in java
array$length

jreflection Simple helper functions for Java reflection

Description

.jconstructors returns a character vector with all constructors for a given class or object. . jmethods
returns a character vector with all methods for a given class or object. . jfields returns a character
vector with all fields (aka attributes) for a given class or object.

Usage

.jconstructors(o, as.obj = FALSE, class.loader=.rJava.class.loader)
.jmethods(o, name = NULL, as.obj = FALSE, class.loader=.rJava.class.loader)
.jfields(o, name = NULL, as.obj = FALSE, class.loader=.rJava.class.loader)

Arguments
o Name of a class (either notation is fine) or an object whose class will be queried
name string, regular expression of the method/field to look for
as.obj if TRUE then a list of Java objects is returned, otherwise a character vector (ob-

tained by calling toString() on each entry).

class.loader optional, class loader to use for class look up if needed (i.e., if o is a string)

Details

There first two functions are intended to help with finding correct signatures for methods and con-
structors. Since the low-level API in rJava doesn’t use reflection automatically, it is necessary to
provide a proper signature. That is somewhat easier using the above methods.
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Value

Returns a character vector (if as.obj is FALSE) or a list of Java objects. Each entry corresponds
to the Constructor resp. Method resp. Field object. The string result is constructed by calling
toString() on the objects.

See Also

.jcall, . jnew, .jcast or $, jobjRef-method

Examples

## Not run:
.jconstructors("”java.util.Vector")
v <- .jnew("java.util.Vector")
.jmethods(v, "add")

## End(Not run)

jserialize Java object serialization

Description

.Jjserialize serializes a Java object into raw vector using Java serialization.
.junserialize re-constructs a Java object from its serialized (raw-vector) form.

. jcache updates, retrieves or removes R-side object cache which can be used for persistent storage
of Java objects across sessions.

Usage

.jserialize(o)
.junserialize(data)
.jcache(o, update=TRUE)

Arguments
0 Java object
data serialized Java object as a raw vector
update must be TRUE (cache is updated), FALSE (cache is retrieved) or NULL (cache is

deleted).
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Details

Not all Java objects support serialization, see Java documentation for details. Note that Java seri-
alization and serialization of R objects are two entirely different mechanisms that cannot be inter-
changed. . jserialize and . junserialize can be used to access Java serialization facilities.

. jcache manipulates the R-side Java object cache associated with a given Java reference:

Java objects do not persist across sessions, because the Java Virtual Machine (JVM) is destroyed
when R is closed. All saved Java object references will be restored as null references, since the cor-
responding objects no longer exist (see R documentation on serialization). However, it is possible
to serialize a Java object (if supported by the object) and store its serialized form in R. This allows
for the object to be deserialized when loaded into another active session (but see notes below!)

R-side cache consists of a serialized form of the object as raw vector. This cache is attached to the
Java object and thus will be saved when the Java object is saved. rJava provides an automated way
of deserializing Java references if they are null references and have a cache attached. This is done
on-demand basis whenever a reference to a Java object is required.

Therefore packages can use . jcache to provide a way of creating Java references that persist across
sessions. However, they must be very cautious in doing so. First, make sure the serialized form is
not too big. Storing whole datasets in Java serialized form will hog immense amounts of memory on
the R side and should be avoided. In addition, be aware that the cache is just a snapshot, it doesn’t
change when the referenced Java object is modified. Hence it is most useful only for references
that are not modified outside R. Finally, internal references to other Java objects accessible from
R are not retained (see below). Most common use of . jcache is with Java references that point
to definitions of methods (e.g., models) and other descriptive objects which are then used by other,
active Java classes to act upon. Caching of such active objects is not a good idea, they should be
instantiated by functions that operate on the descriptive references instead.

Important note: the serialization of Java references does NOT take into account any dependencies
on the R side. Therefore if you hold a reference to a Java object in R that is also referenced by
the serialized Java object on the Java side, then this relationship cannot be retained upon restore.
Instead, two copies of disjoint objects will be created which can cause confusion and erroneous
behavior.

The cache is attached to the reference external pointer and thus it is shared with all copies of the
same reference (even when changed via . jcast etc.), but it is independent of other references to
the object obtained separately (e.g., via . jcall or . jfield).

Also note that deserialization (even automated one) requires a running virtual machine. There-
fore you must make sure that either . jinit or . jpackage is used before any Java references are
accessed.

Value

.jserialize returns a raw vector

.junserialize returns a Java object or NULL if an error occurred (currently you may use . jcheck ()
to further investigate the error)

. jcache returns the current cache (usually a raw vector) or NULL if there is no cache.
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jsimplify Converts Java object to a simple scalar if possible

Description
.Jsimplify attempts to convert Java objects that represent simple scalars into corresponding scalar
representation in R.

Usage

.jsimplify(o, promote=FALSE)

Arguments
o arbitrary object
promote logical, if TRUE then an ambiguous conversion where the native type value would
map to NA (e.g., Java int type with value -2147483648) will be taken to repre-
sent an actual value and will be promoted to a larger type that can represent
the value (in case of int promoted to double). If FALSE then such values are
assumed to represent NAs.
Details

If o is not a Java object reference, o is returned as-is. If o is a reference to a scalar object (such as
single integer, number, string or boolean) then the value of that object is returned as R vector of the
corresponding type and length one.

This function is used by . jfield to simplify the results of field access if required.

Currently there is no function inverse to this, the usual way to wrap scalar values in Java references
is to use . jnew as the corresponding constructor.
Value

Simple scalar or o unchanged.

See Also
.jfield

Examples

## Not run:

i <- .jnew("java/lang/Integer”, as.integer(10))
print(i)

print(.jsimplify(i))

## End(Not run)
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loader Java Class Loader

Description

.jaddClassPath adds directories or JAR files to the class path.

.jclassPath returns a vector containing the current entries in the class path

Usage

.jaddClassPath(path, class.loader=.rJava.class.loader)
.jclassPath(class.loader=.rJava.class. loader)
.jclasslLoader (package=NULL)

Arguments
path character string vector listing the paths to add to the class path
class.loader  Java class loader to use for the query of madification. Defaults to global class
loader.
package string, name of a package or NULL for the global class loader

Details

Whenever a class needs to be instantiated in Java it is referred by name which is used to locate a file
with the bytecode for the class. The mechanism to map a name to an actual bytecode to load ind
instantiate is habdled by the Java class loader. It typically keeps a list of directories and JAR files to
search for the class names.

The . jaddClassPath() function allows the user to append new locations to the list of places which
will be searched. The function . jclassPath retrieves the current sarch list from the loader.

When rJava is initialized, it instantiates the global class loader which is responsible for finding
classes in functions such as . jnew(). In addition to the global class loader, R packages can create
their own class loaders to avoid conflicts between packages such that they can be sure to use their
own files to look for classes. See . jpackage for details on how that works. If the package argument
is supplied . jclassLoader will look in that package to see if it has a custom loader and will return
it, otherwise it returns the global loader. Note that is will fail with an error when supplied a non-
existing package name.

If you want to trace issues related to missing classes, you can enable debugging in the class loader
by using the setDebug method, for example: . jclassLoader () $setDebug(1L)

Value

.jclassPath returns a character vector listing the class path sequence.

See Also

. jpackage
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Examples

## Not run:
.jaddClassPath("/my/jars/foo. jar","/my/classes/")
print(.jclassPath())

## End(Not run)

new Create a new Java object

Description

Creates a new Java object and invokes the constructor with given arguments.

Details

The new method is used as the high-level API to create new Java objects (for low-level access see
. jnew). It returns the newly created Java object.

. arguments are passed to the constructor of the class specified as J("class.name").

Methods

new signature(Class ="jclassName"): ...

See Also

.jnew, jclassName-class

Examples

## Not run:

v <- new(J("java.lang.String"), "Hello World!")
v$length()

v$indexOf ("World")

names(v)

## End(Not run)
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rep Creates java arrays by cloning

Description

Creates a java array by cloning a reference several times

Methods
rep signature(object = "jobjRef"): ...
rep signature(object = "jarrayRef"): ...

rep signature(object = "jrectRef"): ...

See Also

rep or .jarray

Examples

if (!nzchar(Sys.getenv("NOAWT"))) {
p <- .jnew( "java.awt.Point"” )
a <-rep(p, 10)

stopifnot( dim(a) == c(10L ) )

al[1]1$move( 10L, 50L )

stopifnot( al[2]]%$getX() == 0.0 )
3

show Show a Java Object Reference

Description

Display a Java object reference in a descriptive, textual form. The default implementation calls
toString Java method to obtain object’s printable value and uses calls show on the resulting string
garnished with additional details.

Methods

show signature(object = "jobjRef"): ...
show signature(object = "jarrayRef"): ...
show signature(object = "jclassName"): ...

str signature(object = "jobjRef"): currently identical to show



toJava 43

toJava Convert R objects to REXP references in Java

Description

toJava takes an R object and creates a reference to that object in Java. This reference can then
be passed to Java methods such that they can refer to it back in R. This is commonly used to pass
functions to Java such that Java code can call those functions later.

Usage

toJava(x, engine = NULL)

Arguments
X R object to reference. It can be any R object and it will be retained at least for
the duration of the reference on the Java side.
engine REngine in which the reference is to be created. If <code>null</code> then
the last created engine is used. This must be a Java object and a subclass of
org.rosuda.REngine (and NOT the old org.rosuda.JRI.Rengine!).
Value

There result is a Java reference (jobjRef) of the Java class REXPReference.

Examples

## Not run:
.jinitQ
# requires JRI and REngine classes
.jengine(TRUE)
f <= function() { cat("Hello!\n"); 1 }
fref <- toJava(f)
# to use this in Java you would use something like:
# public static REXP call(REXPReference fn) throws REngineException, REXPMismatchException {
# return fn.getEngine().eval (new REXPLanguage(new RList(new REXP[] { fn })), null, false);
# 3
# .jcall("Call”,"Lorg/rosuda/REngine/REXP;", "call"”, fref)

## End(Not run)
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with.jobjRef with and within methods for Java objects and class names

Description

Convenience wrapper that allow calling methods of Java object and classes from within the object

(or class).

Usage
## S3 method for class 'jobjRef'
with(data, expr, ...)
## S3 method for class 'jobjRef'
within(data, expr, ...)

## S3 method for class 'jarrayRef'

with(data, expr, ...)
## S3 method for class 'jarrayRef'
within(data, expr, ...)

## S3 method for class 'jclassName'

with(data, expr, ...)
## S3 method for class 'jclassName'
within(data, expr, ...)
Arguments
data A Java object reference or a java class name. See J
expr R expression to evaluate
ignored
Details

The expression is evaluated in an environment that contains a mapping between the public fields
and methods of the object.

The methods of the object are mapped to standard R functions in the environment. In case of classes,
only static methods are used.

The fields of the object are mapped to active bindings (see makeActiveBinding) so that they can be
accessed and modified from within the environment. For classes, only static fields are used.

Value

with returns the value of the expression and within returns the data argument

Author(s)

Romain Francois <francoisromain @free.fr>
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References

the java.lang.reflect package: https://docs.oracle.com/javase/8/docs/api/java/lang/
reflect/package-summary.html

Examples

if (!nzchar(Sys.getenv("NOAWT"))) {
p <- .jnew( "java/awt/Point”, oL, oL )
with( p, {

# x and y and now @

move( 10L, 10L )

# x and y are now 10

X <= X +y

)

f <= within( .jnew( "javax/swing/JFrame"” ) , {
layout <- .jnew( "java/awt/BorderLayout"” )
setLayout( layout )
add( .jnew( "javax/swing/JLabel”, "north” ), layout$NORTH )
add( .jnew( "javax/swing/JLabel”, "south” ), layout$SOUTH )
add( .jnew( "javax/swing/JLabel”, "west"” ), layout$WEST )
add( .jnew( "javax/swing/JLabel”, "east” ), layout$EAST )
setSize( .jnew( "java/awt/Dimension”, 400L, 400L ) )
setVisible( TRUE )

)
3

Double <- J("java.lang.Double")
with( Double, MIN_VALUE )
with( Double, parseDouble( "10.2" ) )

## Not run:
# inner class example

HashMap <- J("java.util.HashMap")

with( HashMap, new( SimpleEntry, "key"”, "value"” ) )
with( HashMap, SimpleEntry )

## End(Not run)

with( J("java.lang.System"), getProperty(”java.home") )


https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
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