
Package ‘quitefastmst’
July 23, 2025

Type Package

Title Euclidean and Mutual Reachability Minimum Spanning Trees

Version 0.9.0

Date 2025-07-22

Description Functions to compute Euclidean minimum spanning trees using single-,
sesqui-, and dual-tree Boruvka algorithms. Thanks to K-d trees, they are
fast in spaces of low intrinsic dimensionality. Mutual reachability
distances (used in the definition of the 'HDBSCAN*' algorithm)
are also supported. The package also features relatively fast fallback
minimum spanning tree and nearest-neighbours algorithms for spaces of
higher dimensionality. The 'Python' version of 'quitefastmst' is available
via 'PyPI'.

BugReports https://github.com/gagolews/quitefastmst/issues

URL https://quitefastmst.gagolewski.com/,

https://github.com/gagolews/quitefastmst

License AGPL-3

Imports Rcpp

Suggests datasets

LinkingTo Rcpp

Encoding UTF-8

SystemRequirements OpenMP, C++17

RoxygenNote 7.3.2

NeedsCompilation yes

Author Marek Gagolewski [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-0637-6028>)

Maintainer Marek Gagolewski <marek@gagolewski.com>

Repository CRAN

Date/Publication 2025-07-23 19:00:11 UTC

1

https://github.com/gagolews/quitefastmst/issues
https://quitefastmst.gagolewski.com/
https://github.com/gagolews/quitefastmst
https://orcid.org/0000-0003-0637-6028


2 knn_euclid

Contents

knn_euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
mst_euclid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
omp_set_num_threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 9

knn_euclid Euclidean Nearest Neighbours

Description

If Y is NULL, then the function determines the first k nearest neighbours of each point in X with
respect to the Euclidean distance. It is assumed that each query point is not its own neighbour.

Otherwise, for each point in Y, this function determines the k nearest points thereto from X.

Usage

knn_euclid(
X,
k = 1L,
Y = NULL,
algorithm = "auto",
max_leaf_size = 0L,
squared = FALSE,
verbose = FALSE

)

Arguments

X the "database"; a matrix of shape n× d

k requested number of nearest neighbours (should be rather small)

Y the "query points"; NULL or a matrix of shape m × d; note that setting Y=X,
contrary to NULL, will include the query points themselves amongst their own
neighbours

algorithm "auto", "kd_tree" or "brute"; K-d trees can be used for d between 2 and 20
only; "auto" selects "kd_tree" in low-dimensional spaces

max_leaf_size maximal number of points in the K-d tree leaves; smaller leaves use more mem-
ory, yet are not necessarily faster; use 0 to select the default value, currently set
to 32

squared whether the output nn.dist should be based on the squared Euclidean distance

verbose whether to print diagnostic messages



knn_euclid 3

Details

The implemented algorithms, see the algorithm parameter, assume that k is rather small, say,
k ≤ 20.

Our implementation of K-d trees (Bentley, 1975) has been quite optimised; amongst others, it has
good locality of reference (at the cost of making a copy of the input dataset), features the sliding
midpoint (midrange) rule suggested by Maneewongvatana and Mound (1999), node pruning strate-
gies inspired by some ideas from (Sample et al., 2001), and a couple of further tuneups proposed by
the current author. Still, it is well-known that K-d trees perform well only in spaces of low intrin-
sic dimensionality. Thus, due to the so-called curse of dimensionality, for high d, the brute-force
algorithm is recommended.

The number of threads used is controlled via the OMP_NUM_THREADS environment variable or via the
omp_set_num_threads function at runtime. For best speed, consider building the package from
sources using, e.g., -O3 -march=native compiler flags.

Value

A list with two elements, nn.index and nn.dist, is returned.

nn.dist and nn.index have shape n× k or m× k, depending whether Y is given.

nn.index[i,j] is the index (between 1 and n) of the j-th nearest neighbour of i.

nn.dist[i,j] gives the weight of the edge {i, nn.index[i,j]}, i.e., the distance between the
i-th point and its j-th nearest neighbour, j = 1, . . . , k. nn.dist[i,] is sorted nondecreasingly for
all i.

Author(s)

Marek Gagolewski

References

J.L. Bentley, Multidimensional binary search trees used for associative searching, Communications
of the ACM 18(9), 509–517, 1975, doi:10.1145/361002.361007.

S. Maneewongvatana, D.M. Mount, It’s okay to be skinny, if your friends are fat, 4th CGC Workshop
on Computational Geometry, 1999.

N. Sample, M. Haines, M. Arnold, T. Purcell, Optimizing search strategies in K-d Trees, 5th
WSES/IEEE Conf. on Circuits, Systems, Communications & Computers (CSCC’01), 2001.

See Also

The official online manual of quitefastmst at https://quitefastmst.gagolewski.com/

mst_euclid

Examples

library("datasets")
data("iris")
X <- jitter(as.matrix(iris[1:2])) # some data
neighbours <- knn_euclid(X, 1) # 1-NNs of each point

https://www.gagolewski.com/
https://doi.org/10.1145/361002.361007
https://quitefastmst.gagolewski.com/


4 mst_euclid

plot(X, asp=1, las=1)
segments(X[,1], X[,2], X[neighbours$nn.index,1], X[neighbours$nn.index,2])

knn_euclid(X, 5, matrix(c(6, 4), nrow=1)) # five closest points to (6, 4)

mst_euclid Euclidean and Mutual Reachability Minimum Spanning Trees

Description

The function determines the/a(*) minimum spanning tree (MST) of a set of n points, i.e., an acyclic
undirected connected graph whose vertices represent the points, edges are weighted by the distances
between point pairs, and have minimal total weight.

MSTs have many uses in, amongst others, topological data analysis (clustering, density estimation,
dimensionality reduction, outlier detection, etc.).

In clustering and density estimation, the parameter M plays the role of a smoothing factor; for discus-
sion, see (Campello et al., 2015) and the references therein. M corresponds to the hdbscan Python
package’s min_samples=M-1.

For M ≤ 2, we get a spanning tree that minimises the sum of Euclidean distances between the
points, i.e., the classic Euclidean minimum spanning tree (EMST). If M = 2, the function addi-
tionally returns the distance to each point’s nearest neighbour.

If M > 2, the spanning tree is the smallest with respect to the degree-M mutual reachability
distance (Campello et al., 2013) given by dM (i, j) = max{cM (i), cM (j), d(i, j)}, where d(i, j) is
the standard Euclidean distance between the i-th and the j-th point, and cM (i) is the i-th M -core
distance defined as the distance between the i-th point and its (M − 1)-th nearest neighbour (not
including the query point itself).

Usage

mst_euclid(
X,
M = 1L,
algorithm = "auto",
max_leaf_size = 0L,
first_pass_max_brute_size = 0L,
mutreach_adj = -1.00000011920929,
verbose = FALSE

)

Arguments

X the "database"; a matrix of shape n× d

M the degree of the mutual reachability distance (should be rather small). M ≤ 2
denotes the ordinary Euclidean distance



mst_euclid 5

algorithm "auto", "single_kd_tree", "sesqui_kd_tree", "dual_kd_tree", or "brute";
K-d trees can only be used for d between 2 and 20 only; "auto" selects "sesqui_kd_tree"
for d ≤ 20. "brute" is used otherwise

max_leaf_size maximal number of points in the K-d tree leaves; smaller leaves use more mem-
ory, yet are not necessarily faster; use 0 to select the default value, currently set
to 32 for the single-tree and sesqui-tree and 8 for the dual-tree Borůvka algo-
rithm

first_pass_max_brute_size

minimal number of points in a node to treat it as a leaf (unless it’s actually a leaf)
in the first iteration of the algorithm; use 0 to select the default value, currently
set to 32

mutreach_adj adjustment for mutual reachability distance ambiguity (for M > 2) whose frac-
tional part should be close to 0: values in (−1, 0) prefer connecting to farther
nearest neighbours, values in (0, 1) fall for closer NNs (which is what many
other implementations provide), values in (−2,−1) prefer connecting to points
with smaller core distances, values in (1, 2) favour larger core distances; see
below for more details

verbose whether to print diagnostic messages

Details

(*) We note that if there are many pairs of equidistant points, there can be many minimum spanning
trees. In particular, it is likely that there are point pairs with the same mutual reachability distances.

To make the definition less ambiguous (albeit with no guarantees), internally, the brute-force al-
gorithm relies on the adjusted distance: dM (i, j) = max{cM (i), cM (j), d(i, j)} + εd(i, j) or
dM (i, j) = max{cM (i), cM (j), d(i, j)}−εmin{cM (i), cM (j)}, where ε is close to 0. |mutreach_adj|<1
selects the former formula (ε=mutreach_adj) whilst 1<|mutreach_adj|<2 chooses the latter (ε=mutreach_adj±1).

For the K-d tree-based methods, on the other hand, mutreach_adj indicates the preference towards
connecting to farther/closer points with respect to the original metric or having smaller/larger core
distances if a point i has multiple nearest-neighbour candidates j′, j′′ with cM (i) ≥ max{d(i, j′), cM (j′)}
and cM (i) ≥ max{d(i, j′′), cM (j′′)}.

Generally, the smaller the mutreach_adj, the more leaves should be in the tree (note that there are
only four types of adjustments, though).

The implemented algorithms, see the algorithm parameter, assume that M is rather small; say,
M ≤ 20.

Our implementation of K-d trees (Bentley, 1975) has been quite optimised; amongst others, it has
good locality of reference (at the cost of making a copy of the input dataset), features the sliding
midpoint (midrange) rule suggested by Maneewongvatana and Mound (1999), node pruning strate-
gies inspired by some ideas from (Sample et al., 2001), and a couple of further tuneups proposed
by the current author.

The "single-tree" version of the Borůvka algorithm is parallelised: in every iteration, it seeks each
point’s nearest "alien", i.e., the nearest point thereto from another cluster. The "dual-tree" Borůvka
version of the algorithm is, in principle, based on (March et al., 2010). As far as our implementation
is concerned, the dual-tree approach is often only faster in 2- and 3-dimensional spaces, for M ≤ 2,
and in a single-threaded setting. For another (approximate) adaptation of the dual-tree algorithm to
mutual reachability distances, see (McInnes and Healy, 2017).



6 mst_euclid

The "sesqui-tree" variant (by the current author) is a mixture of the two approaches: it compares
leaves against the full tree and can be run in parallel. It is usually faster than the single- and dual-tree
methods in very low dimensional spaces and usually not much slower than the single-tree variant
otherwise.

Nevertheless, it is well-known that K-d trees perform well only in spaces of low intrinsic dimen-
sionality (the "curse"). For high d, the "brute-force" algorithm is recommended. Here, we provided
a parallelised (see Olson, 1995) version of the Jarník (1930) (a.k.a. Prim, 1957) algorithm, where
the distances are computed on the fly (only once for M ≤ 2).

The number of threads used is controlled via the OMP_NUM_THREADS environment variable or via the
omp_set_num_threads function at runtime. For best speed, consider building the package from
sources using, e.g., -O3 -march=native compiler flags.

Value

A list with two $(M=1)$ or four $(M>1)$ elements, mst.index and mst.dist, and additionally
nn.index and nn.dist.

mst.index is a matrix with n− 1 rows and 2 columns, whose rows define the tree edges.

mst.dist is a vector of length n− 1 giving the weights of the corresponding edges.

The tree edges are ordered with respect to weights nondecreasingly, and then by the indexes (lexico-
graphic ordering of the (weight, index1, index2) triples). For each i, it holds mst_ind[i,1]<mst_ind[i,2].

nn.index is an n by M − 1 matrix giving the indexes of each point’s nearest neighbours with
respect to the Euclidean distance. nn.dist provides the corresponding distances.

Author(s)

Marek Gagolewski

References

V. Jarník, O jistém problému minimálním, Práce Moravské Přírodovědecké Společnosti 6, 1930,
57–63.

C.F. Olson, Parallel algorithms for hierarchical clustering, Parallel Computing 21(8), 1995, 1313–1325.

R. Prim, Shortest connection networks and some generalizations, The Bell System Technical Journal
36(6), 1957, 1389–1401.

O. Borůvka, O jistém problému minimálním, Práce Moravské Přírodovědecké Společnosti 3, 1926,
37–58.

W.B. March, R. Parikshit, A.G. Gray, Fast Euclidean minimum spanning tree: Algorithm, analysis,
and applications, Proc. 16th ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining
(KDD ’10), 2010, 603–612.

J.L. Bentley, Multidimensional binary search trees used for associative searching, Communications
of the ACM 18(9), 509–517, 1975, doi:10.1145/361002.361007.

S. Maneewongvatana, D.M. Mount, It’s okay to be skinny, if your friends are fat, 4th CGC Workshop
on Computational Geometry, 1999.

N. Sample, M. Haines, M. Arnold, T. Purcell, Optimizing search strategies in K-d Trees, 5th
WSES/IEEE Conf. on Circuits, Systems, Communications & Computers (CSCC’01), 2001.

https://www.gagolewski.com/
https://doi.org/10.1145/361002.361007


omp_set_num_threads 7

R.J.G.B. Campello, D. Moulavi, J. Sander, Density-based clustering based on hierarchical density
estimates, Lecture Notes in Computer Science 7819, 2013, 160–172. doi:10.1007/978364237456-
2_14.

R.J.G.B. Campello, D. Moulavi, A. Zimek, J. Sander, Hierarchical density estimates for data clus-
tering, visualization, and outlier detection, ACM Transactions on Knowledge Discovery from Data
(TKDD) 10(1), 2015, 1–51, doi:10.1145/2733381.

L. McInnes, J. Healy, Accelerated hierarchical density-based clustering, IEEE Intl. Conf. Data
Mining Workshops (ICMDW), 2017, 33–42, doi:10.1109/ICDMW.2017.12.

See Also

The official online manual of quitefastmst at https://quitefastmst.gagolewski.com/

knn_euclid

Examples

library("datasets")
data("iris")
X <- jitter(as.matrix(iris[1:2])) # some data
T <- mst_euclid(X) # Euclidean MST of X
plot(X, asp=1, las=1)
segments(X[T$mst.index[, 1], 1], X[T$mst.index[, 1], 2],

X[T$mst.index[, 2], 1], X[T$mst.index[, 2], 2])

omp_set_num_threads Get or Set the Number of Threads

Description

These functions get or set the maximal number of OpenMP threads that can be used by knn_euclid
and mst_euclid, amongst others.

Usage

omp_set_num_threads(n_threads)

omp_get_max_threads()

Arguments

n_threads maximum number of threads to use

Value

omp_get_max_threads returns the maximal number of threads that will be used during the next
call to a parallelised function, not the maximal number of threads possibly available. It there is no
built-in support for OpenMP, 1 is always returned.

For omp_set_num_threads, the previous value of max_threads is returned.

https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1145/2733381
https://doi.org/10.1109/ICDMW.2017.12
https://quitefastmst.gagolewski.com/


8 omp_set_num_threads

Author(s)

Marek Gagolewski

See Also

The official online manual of quitefastmst at https://quitefastmst.gagolewski.com/

https://www.gagolewski.com/
https://quitefastmst.gagolewski.com/


Index

knn_euclid, 2, 7

mst_euclid, 3, 4, 7

omp_get_max_threads
(omp_set_num_threads), 7

omp_set_num_threads, 3, 6, 7

9


	knn_euclid
	mst_euclid
	omp_set_num_threads
	Index

