A fast, flexible, and comprehensive framework for 
    quantitative text analysis in R.  Provides functionality for corpus management,
    creating and manipulating tokens and n-grams, exploring keywords in context, 
    forming and manipulating sparse matrices
    of documents by features and feature co-occurrences, analyzing keywords, computing feature similarities and
    distances, applying content dictionaries, applying supervised and unsupervised machine learning, 
    visually representing text and text analyses, and more. 
| Version: | 4.3.1 | 
| Depends: | R (≥ 4.1.0), methods | 
| Imports: | fastmatch, jsonlite, lifecycle, magrittr, Matrix (≥ 1.5-0), Rcpp (≥ 0.12.12), SnowballC, stopwords, stringi, xml2, yaml | 
| LinkingTo: | Rcpp | 
| Suggests: | rmarkdown, spelling, testthat, formatR, tm (≥ 0.6), knitr, lsa, rlang, slam | 
| Enhances: | dplyr, lda, purrr, spacyr, stm, text2vec, tibble, tidytext, tokenizers, topicmodels | 
| Published: | 2025-07-10 | 
| DOI: | 10.32614/CRAN.package.quanteda | 
| Author: | Kenneth Benoit  [cre, aut, cph],
  Kohei Watanabe  [aut],
  Haiyan Wang  [aut],
  Paul Nulty  [aut],
  Adam Obeng  [aut],
  Stefan Müller  [aut],
  Akitaka Matsuo  [aut],
  William Lowe  [aut],
  Christian Müller [ctb],
  Olivier Delmarcelle  [ctb],
  European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS) | 
| Maintainer: | Kenneth Benoit  <kbenoit at lse.ac.uk> | 
| BugReports: | https://github.com/quanteda/quanteda/issues | 
| License: | GPL-3 | 
| URL: | https://quanteda.io | 
| NeedsCompilation: | yes | 
| Language: | en-GB | 
| Citation: | quanteda citation info | 
| Materials: | README, NEWS | 
| In views: | NaturalLanguageProcessing | 
| CRAN checks: | quanteda results |