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1 Motivation

QTL hotspots, groups of traits co-mapping to the same genomic location, are a common feature
of genetical genomics studies. Genomic locations associated with many traits are biologically
interesting since they may harbor influential regulators. Nonetheless, non-genetic mechanisms,
uncontrolled environmental factors and unmeasured variables are capable of inducing a strong
correlation structure among clusters of transcripts, and as a consequence, whenever a transcript
shows a spurious linkage, many correlated transcripts will likely map to the same locus, creating
a spurious QTL hotspot. Permutation approaches that do not take into account the phenotypic
correlation tend to underestimate the size of the hotspots that might appear by change in these
situations (Breitling et al. 2008).

This issue motivated the development of permutation tests that preserve the correlation
structure of the phenotypes in order to determine the significance of QTL hotspots (Breitling
et al. 2008, Chaibub Neto et al. 2012). In this tutorial we present software tools implementing
the NL-method (Chaibub Neto et al. 2012), the N -method (Breitling et al. 2008), and the
Q-method (West et al. 2007, Wu et al. 2008) permutation approaches.

2 Overview

This tutorial illustrates the application of the NL-, N - and Q-methods, implemented in the
qtlhot R package, to a few toy examples. The qtlhot package is built over the R/qtl package
(Broman et al. 2003), and we assume the reader is familiar with it.

3 Basic functionality with No Real Hotspots

In this section we consider two toy simulated examples. In the first we simulate highly correlated
phenotypes. In the second, we simulate uncorrelated phenotypes.
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> library(qtlhot)

We start by simulating a “null backcross” data set composed of 1,000 phenotypes, 4 chro-
mosomes, 51 equally spaced genetic markers per chromosome, and 100 individuals, with the
sim.null.cross function. The latent.eff parameter control the amount of correlation among
the phenotypes. Each phenotype k is generated according to the model Yk = θL + εk, where
L ∼ N(0, σ2) is a latent variable, θ represents the effect (latent.eff) of the latent variable on
the phenotype, and εk ∼ N(0, σ2) represents a residual error term with σ2 set to res.var. Note
that we do not simulate any QTLs in a “null cross” and any linkages we might detect in such a
data set are due entirely to chance.

> ncross1 <- sim.null.cross(chr.len = rep(100, 4),

+ n.mar = 51,

+ n.ind = 100,

+ type = "bc",

+ n.phe = 1000,

+ latent.eff = 3,

+ res.var = 1,

+ init.seed = 123457)

The function include.hotspots takes the “null cross” as an input and includes 3 hotspots
of size hsize at position hpos of chromosome hchr into it. Explicitly, it simulates each one of
the hotspots according to the model Y ∗

k = βM+Yk, where Yk is the phenotype generated by the
generate.null.cross function; M = γ Q+ εM is a master regulator that affects all phenotypes
in the hotspot; Q is a QTL located at position hpos of chromosome hchr; γ represents the QTL
effect (Q.eff); εM ∼ N(0, σ2); and β is computed such that the association between Y ∗

k and Q,
measured by the LOD score, is given (theoretically) by a valued sampled from the user specified
LOD score range (lod.range.1 and etc).

> cross1 <- include.hotspots(cross = ncross1,

+ hchr = c(2, 3, 4),

+ hpos = c(25, 75, 50),

+ hsize = c(100, 50, 20),

+ Q.eff = 2,

+ latent.eff = 3,

+ lod.range.1 = c(2.5, 2.5),

+ lod.range.2 = c(5, 8),

+ lod.range.3 = c(10, 15),

+ res.var = 1,

+ n.phe = 1000,

+ init.seed = 12345)

Note that by choosing latent.eff = 3 we generate highly correlated phenotype data. The
distribution of the correlation values for each pair of phenotypes is given below.
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> ncor1 <- cor(cross1$pheno)

> summary(ncor1[lower.tri(ncor1)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4145 0.8517 0.8929 0.8649 0.9063 0.9691

> rm(ncor1)

Next we obtain standard permutation thresholds (Churchill and Doerge 1994) for single trait
QTL mapping analysis for the sequence alphas, representing target genome wide error rates
(GWER).

> set.seed(123)

> pt <- scanone(ncross1, method = "hk", n.perm = 1000)

> alphas <- seq(0.01, 0.10, by=0.01)

> lod.thrs <- summary(pt, alphas)

> lod.thrs

LOD thresholds (1000 permutations)

lod

1% 3.11

2% 2.89

3% 2.68

4% 2.57

5% 2.44

6% 2.34

7% 2.26

8% 2.20

9% 2.15

10% 2.11

> lod.thr <- lod.thrs[5]

We perform QTL mapping analysis for 1,000 phenotypes using Haley-Knott regression, and
keep only the drop.lod = 1.5 LOD support interval (Manichaikul et al. 2006) around significant
peaks (above lod.thr) at each chromosome for each trait. LOD support intervals are the most
commonly used interval estimate for the location of a QTL.

> scan1 <- qtl::scanone(cross1, pheno.col = 1:1000, method = "hk")

The routine highlod just saves the LOD support intervals for significant peaks, which dra-
matically reduces the object size from the result of scanone. We can examine the maximum
hotspot size for each possible single trait threshold using the max method for highlod objects.
The first column gives the counts associated with QTL mapping threshold of 3.11, whereas the
last one shows the counts based on the more liberal threshold 2.11. Note how the counts increase
as the QTL mapping thresholds decrease.
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> high1 <- highlod(scan1, lod.thr = min(lod.thrs), drop.lod = 1.5)

> max(high1, lod.thr = lod.thrs)

chr pos max.N lod.thr

D3M38 3 74 50 3.11

D2M12 2 22 69 2.89

D2M13 2 24 89 2.68

D2M131 2 24 93 2.57

D2M121 2 22 95 2.44

D2M132 2 24 98 2.34

D2M133 2 24 99 2.26

D2M122 2 22 99 2.20

D1M34 1 66 110 2.15

D1M341 1 66 126 2.11

Next we infer the hotspot architecture at varying QTL mapping thresholds. In other words,
for each genomic position, we count the number of traits that map to it with a LOD score equal
or higher than the threshold in lod.thr. The hots1 object is a scanone object with added
attributes and specialized summary and plot methods. The summary shows the counts for the
most significant loci per chromosome, essentially using the summary method for scanone objects.

> hots1 <- hotsize(high1, lod.thr = lod.thr)

> summary(hots1)

hotsize elements: chr pos max.N

LOD threshold: 2.438697

chr pos max.N

D1M48 1 94 41

D2M13 2 24 95

D3M37 3 72 50

D4M23 4 44 20

We plot the hotspot architecture inferred using the single trait permutation threshold 2.44
(α = 0.05). Figure 1 shows the counts across the genome. Recall that in the call of function
include.hotspots we set to simulate 3 hotspots: (1) a hotspot of size 100 at position 25cM
of chromosome 2 with LOD scores around 2.5; (2) a hotspot of size 50 at position 75cM of
chromosome 3 with LOD scores ranging from 5 to 8; and (3) a hotspot of size 20 at position 50cM
of chromosome 4 with LOD scores ranging from 10 to 15. Nonetheless, Figure 1 shows several
spurious peaks on chromosome 1, that arise because of the high correlation of the phenotypes.

> plot(hots1, cex.lab = 1.5, cex.axis = 1.5)

Next, we perform permutation tests to assess the statistical significance of the hotspots
detected on Figure 1. We consider the N - and NL-methods. [The Q method of West and

4



0

20

40

60

80

Chromosome

co
un

ts

1 2 3 4

Figure 1: Hotspot architecture associated with QTL mapping threshold of 2.44 in example 1.

Wu is documented in the ww.perm manual page but not shown here.] The hotperm function
implements the N - and NL-methods’ permutation schemes (see Chaibub Neto et al. 2012,
for details). The parameter n.quant sets the maximum hotspot size to be analyzed by the
NL-method. The parameter drop.lod controls the magnitude of the LOD support interval
computation during the LOD profile processing step. The function’s output is a list with two
elements: max.lod.quant and max.N.

> set.seed(12345)

> hotperm1 <- hotperm(cross = cross1,

+ n.quant = 300,

+ n.perm = 100,

+ lod.thrs = lod.thrs,

+ alpha.levels = alphas,

+ drop.lod = 1.5,

+ verbose = FALSE)

> names(hotperm1)

[1] "max.lod.quant" "max.N"

> summary(hotperm1)

max.N: hotspot threshold by single-trait LOD threshold and significance level

99% 98% 97% 96% 95% 94% 93% 92% 91% 90%

3.11 52 43 39 30 28 10 8 7 7 6
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2.89 80 72 62 59 51 22 19 17 16 13

2.68 156 151 134 96 59 51 44 41 28 21

2.57 209 191 188 120 77 71 67 60 35 31

2.44 294 275 270 177 119 110 92 79 63 60

2.34 375 345 332 227 163 154 127 95 88 87

2.26 441 407 379 270 203 199 162 116 112 111

2.2 485 452 426 306 240 233 201 145 139 132

2.15 516 497 472 334 267 257 234 169 160 153

2.11 553 532 504 373 306 287 266 195 181 178

max.lod.quant: LOD threshold by hotspot size quantile and significance level

99% 98% 97% 96% 95% 94% 93% 92% 91% 90%

1 5.42 4.90 4.63 4.35 4.28 4.20 4.12 4.03 3.91 3.78

2 4.98 4.74 4.51 4.27 4.00 3.74 3.71 3.68 3.59 3.51

5 4.79 4.69 4.59 4.44 4.28 4.12 3.92 3.71 3.51 3.49

10 4.48 4.46 4.44 4.38 4.23 4.08 3.92 3.78 3.66 3.53

20 4.23 4.20 4.18 4.16 4.14 4.03 3.92 3.80 3.69 3.58

50 3.84 3.74 3.64 3.55 3.45 3.35 3.25 3.15 3.06 3.05

100 3.72 3.66 3.60 3.54 3.48 3.42 3.36 3.31 3.25 3.19

200 3.38 3.36 3.34 3.31 3.29 3.26 3.24 3.21 3.19 3.16

300 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.23

The max.N element of the hotperm1 object stores the output of the N -method’s permuta-
tions and is given by a matrix with 100 rows representing the permutations, and 10 columns
representing the QTL mapping thresholds. Entry ij stores the maximum genome wide hotspot
size detected at permutation i using the QTL mapping threshold j. The max.N element of the
summary is a 10 by 10 matrix with rows indexing the QTL mapping thresholds and columns
indexing the target genome wide error rates. Each entry ij shows the hotspot size above which
a hotspot is considered significant at a GWER j using the QTL mapping threshold i. As be-
fore, our interest focus on the diagonal, and the N -method’s threshold that controls the hotspot
GWER at a 5% level when the QTL mapping was controlled at a GWER of 5% (single trait
LOD threshold of 2.44) is 119 traits per hotspot (rounded up). Note that according to the
N -method, none of the hotspots on Figure 1 is significant.

The max.lod.quant element of the hotperm1 object stores the output of the NL-method’s
permutations and is given by a matrix with 100 rows representing the permutations, and 300
columns representing the hotspot sizes analyzed. Entry ij stores the maximum genome wide
qLOD(n) value–the nth LOD score in a sample ordered from highest to lowest–computed at
permutation i using the QTL mapping threshold j. The max.lod.quant element of the summary
shows just the extremes and quartiles.

The max.lod.quant element of the quantile contains the sliding LOD quantiles from 1 up
to 300 for each single trait LOD threshold. This can be used to plot how many traits pass the
sliding LOD threshold, and are significant, at each locus in the genome. Figure 2 shows the
hotspot significance profile for the thresholds targeting GWER at a 5% level. Note that we only
consider LODs above lod.thr, and chromosome 1 has none.
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Figure 2: Hotspot size significance profile targeting GWER at a 5% level for example 1.

> quant1 <- quantile(hotperm1, 0.05, lod.thr = lod.thr)

> plot(high1, quant.level = quant1, sliding = TRUE)
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Figure 3: Hotspot size significance profile at 5% level for example 1. Black is raw counts, red is
counts smoothed over a 5cM window, blue is the sliding LOD threshold approach.
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Figure 2 depicts a sliding window of hotspot size thresholds ranging from n = 1, . . . , N ,
where N = 100 corresponds to the (approximate) hotspot size threshold derived from the N -
method. For each genomic location this figure shows the hotspot sizes at which the hotspot was
significant, that is, at which the hotspot locus had more traits than the hotspot size threshold
on the left mapping to it with a LOD score higher than the threshold on the right than expected
by chance. For example, the hotspot on chromosome 3 was significant at all sizes from 1 to 50,
meaning that at least 1 trait mapped to the hotspot locus with LOD higher than 3.79, at least
20 traits mapped to the hotspot locus with LOD higher than 3.19, and so on up to hotspot
size 50, all with LODs higher than 2.97. The N -method that did not detect any hotspots, but
the NL-method’s sliding window correctly detected the simulated hotspots and showed that the
apparent hotspots on chromosome 1 were noisy artifacts.

Figure 3 is another way to visualize this, using the sliding LOD threshold (blue cureve).
We also show a 5-cM smoothing window applied to the counts (red curve). Note that with the
sliding LOD threshold, no hotspots (or individual traits) are significant on chr 1, and hotspots
of size 20 are found on chr 2 and 4, with a significant hotspot of size 50 on chr 3.

> hotsq1 <- hotsize(high1, lod = lod.thr, window = 5, quant.level = quant1)

> plot(hotsq1)

> summary(hotsq1)

hotsize elements: chr pos max.N max.N.window quant

LOD threshold: 2.438697

smooth window: 5

quantile level summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.439 2.528 2.673 2.826 3.077 3.790

chr pos max.N max.N.window quant

D1M48 1 94 41 28 0

D2M12 2 22 95 84 93

D3M36 3 70 50 19 50

D4M27 4 52 20 9 20

4 Example with Uncorrelated Phenotypes

Next we consider a second toy example with uncorrelated phenotype data. We repeat the
simulation and analysis steps presented previously changing latent.eff to zero.

> ncross2 <- sim.null.cross(chr.len = rep(100,4),

+ n.mar = 51,

+ n.ind = 100,

+ type = "bc",

+ n.phe = 1000,
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Figure 4: Hotspot architecture targeting 5% GWER for example 2.

+ latent.eff = 0,

+ res.var = 1,

+ init.seed = 123457)

> cross2 <- include.hotspots(cross = ncross2,

+ hchr = c(2, 3, 4),

+ hpos = c(25, 75, 50),

+ hsize = c(100, 50, 20),

+ Q.eff = 2,

+ latent.eff = 0,

+ lod.range.1 = c(2.5, 2.5),

+ lod.range.2 = c(5, 8),

+ lod.range.3 = c(10, 15),

+ res.var = 1,

+ n.phe = 1000,

+ init.seed = 12345)

> ncor2 <- cor(cross2$pheno)

> summary(ncor2[lower.tri(ncor2)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.471212 -0.067159 0.001263 0.002224 0.070245 0.666915

> rm(ncor2)

> scan2 <- scanone(cross2, pheno.col = 1:1000, method = "hk")

> high2 <- highlod(scan2, lod.thr = lod.thr, drop.lod = 1.5)
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> hots2 <- hotsize(high2)

> plot(hots2, cex.lab = 1.5, cex.axis = 1.5)
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Figure 5: Hotspot significance profile targeting 5% GWER for example 2.
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Figure 6: Hotspot significance scan targeting 5% GWER for example 2.
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> set.seed(12345)

> hotperm2 <- hotperm(cross = cross2,

+ n.quant = 300,

+ n.perm = 100,

+ lod.thrs = lod.thrs,

+ alpha.levels = alphas,

+ drop.lod = 1.5,

+ verbose = FALSE)

> quant2 <- quantile(hotperm2, 0.05, lod.thr = lod.thr)

The N -method, as expected, gave rise to much smaller thresholds in this second example
with uncorrelated phenotypes. Additionally, inspection of Figure 4 shows no spurious hotspots
on chromosome 1.

> plot(high2, lod.thr = lod.thr, quant.level = quant2, sliding = TRUE)

Figure 5 presents the hotspot significance profile targeting 5% GWER. For this second ex-
ample, all methods correctly detected the simulated hotspots.

> plot(high2, quant.level = quant2)

Figure 6 shows another way to represent significant hotspots. We overlay the largest signif-
icant hotspot counts using the sliding quantiles in red on top of the curve on Figure 4. Notice
that the large sizes are all significant, but only small sizes corresponding to larger LOD scores
are significant. We add a right axis with the sliding LOD thresholds.
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