Package 'pvclass'

April 30, 2025

Type Package

Title P-Values for Classification

Version 1.4.1

Date 2025-04-30

Imports Matrix

Description Computes nonparametric p-values for the potential class memberships of new observations as well as cross-validated p-values for the training data. The p-values are based on permutation tests applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or 'penalized logistic regression'. Additionally, it provides graphical displays and quantitative analyses of the p-values.

License GPL (≥ 2)

LazyLoad yes

NeedsCompilation no

Author Niki Zumbrunnen [aut, cre], Lutz Duembgen. [aut]

Maintainer Niki Zumbrunnen <niki.zumbrunnen@gmail.com>

Repository CRAN

Date/Publication 2025-04-30 07:30:01 UTC

Contents

pvclass-package	. 2
analyze.pvs	. 3
buerk	. 4
cvpvs	. 6
cvpvs.gaussian	. 7
cvpvs.knn	. 8
cvpvs.logreg	. 10

cvpvs.wnn		
pvs.gaussian		
pvs.knn		
pvs.logreg		
pvs.wnn		
pvs.wiii	•••	- 21
		24

Index

pvclass-package *P-Values for Classification*

Description

Computes nonparametric p-values for the potential class memberships of new observations as well as cross-validated p-values for the training data. The p-values are based on permutation tests applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or 'penalized logistic regression'.

Additionally, it provides graphical displays and quantitative analyses of the p-values.

Details

Use cvpvs to compute cross-validated p-values, pvs to classify new observations and analyze.pvs to analyze the p-values.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
cv <- cvpvs(X,Y)
analyze.pvs(cv,Y)
```

```
pv <- pvs(NewX, X, Y, method = 'k', k = 10)
analyze.pvs(pv)</pre>
```

analyze.pvs Analyze P-Values

Description

Graphical displays and quantitative analyses of a matrix of p-values.

Usage

```
analyze.pvs(pv, Y = NULL, alpha = 0.05, roc = TRUE, pvplot = TRUE, cex = 1)
```

Arguments

pv	matrix with p-values, e.g. output of cvpvs or pvs.
Υ	optional. Vector indicating the classes which the observations belong to.
alpha	test level, i.e. 1 - confidence level.
roc	logical. If TRUE and Y is not NULL, ROC curves are plotted.
pvplot	logical. If TRUE or Y is NULL, the p-values are displayed graphically.
cex	A numerical value giving the amount by which plotting text should be magnified relative to the default.

Details

Displays the p-values graphically, i.e. it plots for each p-value a rectangle. The area of this rectangle is proportional to the the p-value. The rectangle is drawn blue if the p-value is greater than alpha and red otherwise.

If Y is not NULL, i.e. the class memberships of the observations are known (e.g. cross-validated pvalues), then additionally it plots the empirical ROC curves and prints some empirical conditional inclusion probabilities $I(b, \theta)$ and/or pattern probabilities P(b, S). Precisely, $I(b, \theta)$ is the proportion of training observations of class b whose p-value for class θ is greater than α , while P(b, S) is the proportion of training observations of class b such that the $(1 - \alpha)$ -prediction region equals S.

Value

Т

Table containing empirical conditional inclusion and/or pattern probabilities for each class b. In case of L = 2 or L = 3 classes, all patterns S are considered. In case of L > 3, all inclusion probabilities and some special patters S are considered.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs, pvs

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
cv <- cvpvs(X,Y)
analyze.pvs(cv,Y)
pv <- pvs(NewX, X, Y, method = 'k', k = 10)
analyze.pvs(pv)
```

buerk

Medical Dataset

Description

This data set collected by Dr. Bürk at the university hospital in Lübeck contains data of 21556 surgeries in a certain time period (end of the nineties). Besides the mortality and the morbidity it contains 21 variables describing the condition of the patient and the surgery.

Usage

data(buerk)

Format

A data frame with 21556 observations on the following 23 variables.

age Age in years

sex Sex (1 = female, 0 = male)

buerk

- asa ASA-Score (American Society of Anesthesiologists), describes the physical condition on an ordinal scale:
 - 1 = A normal healthy patient
 - 2 = A patient with mild systemic disease
 - 3 = A patient with severe systemic disease
 - 4 = A patient with severe systemic disease that is a constant threat to life
 - 5 = A moribund patient who is not expected to survive without the operation
 - 6 = A declared brain-dead patient whose organs are being removed for donor purposes
- rf_cer Risk factor: cerebral (1 = yes, 0 = no)
- rf_car Risk factor: cardiovascular (1 = yes, 0 = no)
- rf_pul Risk factor: pulmonary (1 = yes, 0 = no)
- rf_ren Risk factor: renal (1 = yes, 0 = no)
- rf_hep Risk factor: hepatic (1 = yes, 0 = no)
- rf_imu Risk factor: immunological (1 = yes, 0 = no)
- rf_metab Risk factor: metabolic (1 = yes, 0 = no)
- rf_noc Risk factor: uncooperative, unreliable (1 = yes, 0 = no)
- e_malig Etiology: malignant (1 = yes, 0 = no)
- e_vascu Etiology: vascular (1 = yes, 0 = no)
- antibio Antibiotics therapy (1 = yes, 0 = no)
- op Surgery indicated (1 = yes, 0 = no)
- opacute Emergency operation (1 = yes, 0 = no)
- optime Surgery time in minutes
- opsepsis Septic surgery (1 = yes, 0 = no)
- opskill Expirienced surgeond, i.e. senior physician (1 = yes, 0 = no)
- blood Blood transfusion necessary (1 = yes, 0 = no)
- icu Intensive care necessary (1 = yes, 0 = no)
- mortal Mortality (1 = yes, 0 = no)
- morb Morbidity (1 = yes, 0 = no)

Source

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* **2**, 468–493, available at doi:10.1214/08EJS245.

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

cvpvs

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data.

Usage

```
cvpvs(X, Y, method = c('gaussian', 'knn', 'wnn', 'logreg'), ...)
```

Arguments

Х	matrix containing training observations, where each observation is a row vector.
Y	vector indicating the classes which the training observations belong to.
method	one of the following methods: 'gaussian': plug-in statistic for the standard Gaussian model, 'knn': k nearest neighbors, 'wnn': weighted nearest neighbors, 'logreg': multicategory logistic regression with <i>l</i> 1-penalization.
	further arguments depending on the method (see cvpvs.gaussian, cvpvs.knn, cvpvs.wnn, cvpvs.logreg).

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or multicategory logistic regression with l1-penalization (see cvpvs.gaussian, cvpvs.knn, cvpvs.wnn, cvpvs.logreg) with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

cvpvs.gaussian

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs.gaussian, cvpvs.knn, cvpvs.wnn, cvpvs.logreg, pvs, analyze.pvs

Examples

```
X <- iris[,1:4]
Y <- iris[,5]
```

cvpvs(X,Y,method='k',k=10,distance='d')

cvpvs.gaussian

Cross-Validated P-Values (Gaussian)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on a plug-in statistic for the standard Gaussian model. The latter means that the conditional distribution of X, given Y = y, is Gaussian with mean depending on y and a global covariance matrix.

Usage

```
cvpvs.gaussian(X, Y, cova = c('standard', 'M', 'sym'))
```

Arguments

Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
cova	estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the standard Gaussian model with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs, cvpvs.knn, cvpvs.wnn, cvpvs.logreg

Examples

```
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.gaussian(X, Y, cova = 'standard')
```

cvpvs.knn

Cross-Validated P-Values (k Nearest Neighbors)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'k nearest neighbors'.

cvpvs.knn

Usage

Arguments

Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
k	number of nearest neighbors. If k is a vector or $k = NULL$, the program searches for the best k. For more information see section 'Details'.
distance	the distance measure: "euclidean": fixed Euclidean distance, "ddeuclidean": data driven Euclidean distance (component-wise standardiza- tion), "mahalanobis": Mahalanobis distance.
cova	estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'k nearest neighbors' with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

If k is a vector, the program searches for the best k. To determine the best k for the p-value PV[i, b], the class label of the training observation X[i] is set temporarily to b and then for all training observations with Y[j] != b the proportion of the k nearest neighbors of X[j] belonging to class b is computed. Then the k which minimizes the sum of these values is chosen. If k = NULL, it is set to 2:ceiling(length(Y)/2).

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

If k is a vector or NULL, PV has an attribute "opt.k", which is a matrix and opt.k[i,b] is the best k for observation X[i,] and class b (see section 'Details'). opt.k[i,b] is used to compute the p-value for observation X[i,] and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* **2**, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs, cvpvs.gaussian, cvpvs.wnn, cvpvs.logreg

Examples

```
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.knn(X, Y, k = c(5, 10, 15))
```

cvpvs.logreg	Cross-Validated P-Values (Penalized Multicategory Logistic Regres-
	sion)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'penalized logistic regression'.

Usage

Arguments

Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
tau.o	the penalty parameter (see section 'Details' below).
find.tau	logical. If TRUE the program searches for the best tau. For more information see section 'Details'.
delta	factor for the penalty parameter. Should be greater than 1. Only needed if find.tau == TRUE.
tau.max	maximal penalty parameter considered. Only needed if find.tau == TRUE.
tau.min	minimal penalty parameter considered. Only needed if find.tau == TRUE.
pen.method	the method of penalization (see section 'Details' below).
progress	optional parameter for reporting the status of the computations.

10

cvpvs.logreg

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] equals b, based on the remaining training observations.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'penalized logistic regression'. This means, the conditional probability of Y = y, given X = x, is assumed to be proportional to $exp(a_y + b_y^T x)$. The parameters a_y , b_y are estimated via penalized maximum log-likelihood. The penalization is either a weighted sum of the euclidean norms of the vectors $(b_1[j], b_2[j], \ldots, b_L[j])$ (pen.method=='vectors') or a weighted sum of all moduli $|b_y[j]|$ (pen.method=='simple'). The weights are given by tau.o times the sample standard deviation (within groups) of the *j*-th components of the feature vectors. In case of pen.method=='none', no penalization is used, but this option may be unstable.

If find.tau == TRUE, the program searches for the best penalty parameter. To determine the best parameter tau for the p-value PV[i,b], the class label of the training observation X[i,] is set temporarily to b and then for all training observations with Y[j] != b the estimated probability of X[j,] belonging to class b is computed. Then the tau which minimizes the sum of these values is chosen. First, tau.o is compared with tau.o*delta. If tau.o*delta is better, it is compared with tau.o*delta^2, etc. The maximal parameter considered is tau.max. If tau.o is better than tau.o*delta, it is compared with tau.o*delta^-1, etc. The minimal parameter considered is tau.min.

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b, based on the remaining training observations.

If find.tau == TRUE, PV has an attribute "tau.opt", which is a matrix and tau.opt[i,b] is the best tau for observation X[i,] and class b (see section 'Details'). tau.opt[i,b] is used to compute the p-value for observation X[i,] and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs, cvpvs.gaussian, cvpvs.knn, cvpvs.wnn

Examples

```
## Not run:
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.logreg(X, Y, tau.o=1, pen.method="vectors",progress=TRUE)
## End(Not run)
# A bigger data example: Buerk's hospital data.
## Not run:
data(buerk)
X.raw <- as.matrix(buerk[,1:21])</pre>
Y.raw <- buerk[,22]
n0.raw <- sum(1 - Y.raw)
n1 <- sum(Y.raw)
n0 <- 3*n1
X0 <- X.raw[Y.raw==0,]
X1 <- X.raw[Y.raw==1,]</pre>
tmpi0 <- sample(1:n0.raw,size=n0,replace=FALSE)</pre>
tmpi1 <- sample(1:n1 ,size=n1,replace=FALSE)</pre>
X <- rbind(X0[tmpi0,],X1)</pre>
Y <- c(rep(1,n0),rep(2,n1))</pre>
str(X)
str(Y)
PV <- cvpvs.logreg(X,Y,</pre>
tau.o=5,pen.method="v",progress=TRUE)
analyze.pvs(Y=Y,pv=PV,pvplot=FALSE)
## End(Not run)
```

```
cvpvs.wnn
```

Cross-Validated P-Values (Weighted Nearest Neighbors)

Description

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. The p-values are based on 'weighted nearest-neighbors'.

Usage

```
cvpvs.wnn(X, Y, wtype = c('linear', 'exponential'), W = NULL,
    tau = 0.3, distance = c('euclidean', 'ddeuclidean',
    'mahalanobis'), cova = c('standard', 'M', 'sym'))
```

12

cvpvs.wnn

Arguments

Х	matrix containing training observations, where each observation is a row vector.
Y	vector indicating the classes which the training observations belong to.
wtype	type of the weight function (see section 'Details' below).
W	vector of the (decreasing) weights (see section 'Details' below).
tau	parameter of the weight function. If tau is a vector or tau = NULL, the program searches for the best tau. For more information see section 'Details'.
distance	the distance measure: "euclidean": fixed Euclidean distance, "ddeuclidean": data driven Euclidean distance (component-wise standardiza- tion), "mahalanobis": Mahalanobis distance.
соvа	estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes cross-validated nonparametric p-values for the potential class memberships of the training data. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] equals b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'weighted nearest neighbors' with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

The (decreasing) weights for the observations can be either indicated with a n dimensional vector W or (if W = NULL) one of the following weight functions can be used: linear:

$$W_i = \max(1 - \frac{i}{n}/\tau, 0),$$

exponential:

$$W_i = (1 - \frac{i}{n})^{\tau}.$$

If tau is a vector, the program searches for the best tau. To determine the best tau for the p-value PV[i,b], the class label of the training observation X[i] is set temporarily to b and then for all training observations with Y[j] != b the sum of the weights of the observations belonging to class b is computed. Then the tau which minimizes the sum of these values is chosen.

If W = NULL and tau = NULL, tau is set to seq(0.1,0.9,0.1) if wtype = "1" and to c(1,5,10,20) if wtype = "e".

Value

PV is a matrix containing the cross-validated p-values. Precisely, for each feature vector X[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

If tau is a vector or NULL (and W = NULL), PV has an attribute "opt.tau", which is a matrix and opt.tau[i,b] is the best tau for observation X[i,] and class b (see section 'Details'). "opt.tau" is used to compute the p-values.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

cvpvs, cvpvs.gaussian, cvpvs.knn, cvpvs.logreg

Examples

```
X <- iris[, 1:4]
Y <- iris[, 5]
cvpvs.wnn(X, Y, wtype = '1', tau = 0.5)
```

pvs

P-Values to Classify New Observations

Description

Computes nonparametric p-values for the potential class memberships of new observations.

Usage

```
pvs(NewX, X, Y, method = c('gaussian', 'knn', 'wnn', 'logreg'), ...)
```

Arguments

NewX	data matrix consisting of one or several new observations (row vectors) to be classified.
Х	matrix containing training observations, where each observation is a row vector.
Y	vector indicating the classes which the training observations belong to.
method	one of the following methods: 'gaussian': plug-in statistic for the standard Gaussian model, 'knn': k nearest neighbors, 'wnn': weighted nearest neighbors, 'logreg': multicategory logistic regression with <i>l</i> 1-penalization.

• • •

further arguments depending on the method (see pvs.gaussian, pvs.knn, pvs.wnn, pvs.logreg).

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the Gaussian model, 'k nearest neighbors', 'weighted nearest neighbors' or multicategory logistic regression with l1-penalization (see pvs.gaussian, pvs.knn, pvs.wnn, pvs.logreg) with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* **2**, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

pvs.gaussian, pvs.knn, pvs.wnn, pvs.logreg, cvpvs, analyze.pvs

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
pvs(NewX, X, Y, method = 'k', k = 10)
```

```
pvs.gaussian
```

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on a plug-in statistic for the standard Gaussian model. The latter means that the conditional distribution of X, given Y = y, is Gaussian with mean depending on y and a global covariance matrix.

Usage

```
pvs.gaussian(NewX, X, Y, cova = c('standard', 'M', 'sym'))
```

Arguments

NewX	data matrix consisting of one or several new observations (row vectors) to be classified.
Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
соvа	estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using a plug-in statistic for the standard Gaussian model with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

pvs.knn

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

pvs, pvs.knn, pvs.wnn, pvs.logreg

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
pvs.gaussian(NewX, X, Y, cova = 'standard')
```

pvs.knn

P-Values to Classify New Observations (k Nearest Neighbors)

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'k nearest neighbors'.

Usage

Arguments

NewX	data matrix consisting of one or several new observations (row vectors) to be classified.
Х	matrix containing training observations, where each observation is a row vector.
Y	vector indicating the classes which the training observations belong to.
k	number of nearest neighbors. If k is a vector or $k = NULL$, the program searches for the best k. For more information see section 'Details'.
distance	 the distance measure: 'euclidean': fixed Euclidean distance, 'ddeuclidean': data driven Euclidean distance (component-wise standardization), 'mahalanobis': Mahalanobis distance.

cova estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'k nearest neighbors' with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

If k is a vector, the program searches for the best k. To determine the best k for the p-value PV[i,b], the new observation NewX[i,] is added to the training data with class label b and then for all training observations with Y[j] != b the proportion of the k nearest neighbors of X[j,] belonging to class b is computed. Then the k which minimizes the sum of these values is chosen. If k = NULL, it is set to 2:ceiling(length(Y)/2).

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

If k is a vector or NULL, PV has an attribute "opt.k", which is a matrix and opt.k[i,b] is the best k for observation NewX[i,] and class b (see section 'Details'). opt.k[i,b] is used to compute the p-value for observation NewX[i,] and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

pvs, pvs.gaussian, pvs.wnn, pvs.logreg

pvs.logreg

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
pvs.knn(NewX, X, Y, k = c(5, 10, 15))
```

pvs.logre	g
-----------	---

P-Values to Classify New Observations (Penalized Multicategory Logistic Regression)

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'penalized logistic regression'.

Usage

Arguments

NewX	data matrix consisting of one or several new observations (row vectors) to be classified.
Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
tau.o	the penalty parameter (see section 'Details' below).
find.tau	logical. If TRUE the program searches for the best tau. For more information see section 'Details'.
delta	factor for the penalty parameter. Should be greater than 1. Only needed if find.tau == TRUE.
tau.max	maximal penalty parameter considered. Only needed if find.tau == TRUE.
tau.min	minimal penalty parameter considered. Only needed if find.tau == TRUE.
a0, b0	optional starting values for logistic regression.
pen.method	the method of penalization (see section 'Details' below).
progress	optional parameter for reporting the status of the computations.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] equals b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'penalized logistic regression'. This means, the conditional probability of Y = y, given X = x, is assumed to be proportional to $exp(a_y + b_y^T x)$. The parameters a_y , b_y are estimated via penalized maximum log-likelihood. The penalization is either a weighted sum of the euclidean norms of the vectors $(b_1[j], b_2[j], \ldots, b_L[j])$ (pen.method=='vectors') or a weighted sum of all moduli $|b_{\theta}[j]|$ (pen.method=='simple'). The weights are given by tau.o times the sample standard deviation (within groups) of the *j*-th components of the feature vectors. In case of pen.method=='none', no penalization is used, but this option may be unstable.

If find.tau == TRUE, the program searches for the best penalty parameter. To determine the best parameter tau for the p-value PV[i,b], the new observation NewX[i,] is added to the training data with class label b and then for all training observations with Y[j] != b the estimated probability of X[j,] belonging to class b is computed. Then the tau which minimizes the sum of these values is chosen. First, tau.o is compared with tau.o*delta. If tau.o*delta is better, it is compared with tau.o*delta^2, etc. The maximal parameter considered is tau.max. If tau.o is better than tau.o*delta, it is compared with tau.o*delta^-1, etc. The minimal parameter considered is tau.min.

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

If find.tau == TRUE, PV has an attribute "tau.opt", which is a matrix and tau.opt[i,b] is the best tau for observation NewX[i,] and class b (see section 'Details'). tau.opt[i,b] is used to compute the p-value for observation NewX[i,] and class b.

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

pvs, pvs.gaussian, pvs.knn, pvs.wnn

pvs.wnn

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
pvs.logreg(NewX, X, Y, tau.o=1, pen.method="vectors", progress=TRUE)
# A bigger data example: Buerk's hospital data.
## Not run:
data(buerk)
X.raw <- as.matrix(buerk[,1:21])</pre>
Y.raw <- buerk[,22]
n0.raw <- sum(1 - Y.raw)
n1 <- sum(Y.raw)</pre>
n0 <- 3*n1
X0 <- X.raw[Y.raw==0,]
X1 <- X.raw[Y.raw==1,]
tmpi0 <- sample(1:n0.raw,size=3*n1,replace=FALSE)</pre>
tmpi1 <- sample(1:n1 ,size= n1,replace=FALSE)</pre>
Xtrain <- rbind(X0[tmpi0[1:(n0-100)],],X1[1:(n1-100),])</pre>
Ytrain <- c(rep(1,n0-100),rep(2,n1-100))</pre>
Xtest <- rbind(X0[tmpi0[(n0-99):n0],],X1[(n1-99):n1,])</pre>
Ytest <- c(rep(1,100),rep(2,100))</pre>
PV <- pvs.logreg(Xtest,Xtrain,Ytrain,tau.o=2,progress=TRUE)</pre>
analyze.pvs(Y=Ytest,pv=PV,pvplot=FALSE)
## End(Not run)
```

pvs.wnn

P-Values to Classify New Observations (Weighted Nearest Neighbors)

Description

Computes nonparametric p-values for the potential class memberships of new observations. The p-values are based on 'weighted nearest-neighbors'.

Usage

```
pvs.wnn(NewX, X, Y, wtype = c('linear', 'exponential'), W = NULL,
    tau = 0.3, distance = c('euclidean', 'ddeuclidean',
    'mahalanobis'), cova = c('standard', 'M', 'sym'))
```

Arguments

NewX	data matrix consisting of one or several new observations (row vectors) to be classified.
Х	matrix containing training observations, where each observation is a row vector.
Υ	vector indicating the classes which the training observations belong to.
wtype	type of the weight function (see section 'Details' below).
W	vector of the (decreasing) weights (see section 'Details' below).
tau	parameter of the weight function. If tau is a vector or tau = NULL, the program searches for the best tau. For more information see section 'Details'.
distance	the distance measure: 'euclidean': fixed Euclidean distance, 'ddeuclidean': data driven Euclidean distance (component-wise standardiza- tion), 'mahalanobis': Mahalanobis distance.
cova	estimator for the covariance matrix: 'standard': standard estimator, 'M': M-estimator, 'sym': symmetrized M-estimator.

Details

Computes nonparametric p-values for the potential class memberships of new observations. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

This p-value is based on a permutation test applied to an estimated Bayesian likelihood ratio, using 'weighted nearest neighbors' with estimated prior probabilities N(b)/n. Here N(b) is the number of observations of class b and n is the total number of observations.

The (decreasing) weights for the observation can be either indicated with a n dimensional vector W or (if W = NULL) one of the following weight functions can be used: linear:

$$W_i = \max(1 - \frac{i}{n}/\tau, 0),$$

exponential:

$$W_i = (1 - \frac{i}{n})^{\tau}.$$

If tau is a vector, the program searches for the best tau. To determine the best tau for the p-value PV[i,b], the new observation NewX[i,] is added to the training data with class label b and then for all training observations with Y[j] != b the sum of the weights of the observations belonging to class b is computed. Then the tau which minimizes the sum of these values is chosen.

If tau = NULL, it is set to seq(0.1, 0.9, 0.1) if wtype = "1" and to c(1, 5, 10, 20) if wtype = "e".

Value

PV is a matrix containing the p-values. Precisely, for each new observation NewX[i,] and each class b the number PV[i,b] is a p-value for the null hypothesis that Y[i] = b.

If tau is a vector or NULL (and W = NULL), PV has an attribute "opt.tau", which is a matrix and opt.tau[i,b] is the best tau for observation NewX[i,] and class b (see section 'Details'). opt.tau[i,b] is used to compute the p-value for observation NewX[i,] and class b.

pvs.wnn

Author(s)

Niki Zumbrunnen <niki.zumbrunnen@gmail.com>
Lutz Dümbgen <lutz.duembgen@stat.unibe.ch>
https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html

References

Zumbrunnen N. and Dümbgen L. (2017) pvclass: An R Package for p Values for Classification. *Journal of Statistical Software* **78(4)**, 1–19. doi:10.18637/jss.v078.i04

Dümbgen L., Igl B.-W. and Munk A. (2008) P-Values for Classification. *Electronic Journal of Statistics* 2, 468–493, available at doi:10.1214/08EJS245.

Zumbrunnen N. (2014) P-Values for Classification – Computational Aspects and Asymptotics. Ph.D. thesis, University of Bern, available at http://boris.unibe.ch/id/eprint/53585.

See Also

pvs, pvs.gaussian, pvs.knn, pvs.logreg

Examples

```
X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
```

pvs.wnn(NewX, X, Y, wtype = '1', tau = 0.5)

Index

* classif analyze.pvs, 3 cvpvs, 6 cvpvs.gaussian,7 cvpvs.knn,8 cvpvs.logreg, 10 cvpvs.wnn, 12 pvclass-package, 2 pvs, 14 pvs.gaussian, 16 pvs.knn, 17 pvs.logreg, 19 pvs.wnn, 21 * datasets buerk, 4 * package pvclass-package, 2

analyze.pvs, 2, 3, 7, 15

 $\mathsf{buerk}, \mathbf{4}$

cvpvs, 2–4, 6, 8, 10, 11, 14, 15 cvpvs.gaussian, 6, 7, 7, 10, 11, 14 cvpvs.knn, 6–8, 8, 11, 14 cvpvs.logreg, 6–8, 10, 10, 14 cvpvs.wnn, 6–8, 10, 11, 12

pvclass (pvclass-package), 2 pvclass-package, 2 pvs, 2-4, 7, 14, 17, 18, 20, 23 pvs.gaussian, 15, 16, 18, 20, 23 pvs.knn, 15, 17, 17, 20, 23 pvs.logreg, 15, 17, 18, 19, 23 pvs.wnn, 15, 17, 18, 20, 21