---
title: "Explore and Compare Further"
output: rmarkdown::html_vignette
description: >
Advanced choice-level analyses using **projoint**: direct trade-offs, level collapsing,
and subgroup comparisons (MMs). Designed to complement the main "Analyze and Visualize Important QOIs" vignette.
vignette: >
%\VignetteIndexEntry{Explore and Compare Further}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
library(projoint)
library(dplyr)
library(ggplot2)
library(patchwork)
```
## 🌟 Explore and Compare Further
Choice-level analysis opens the door to many **new research questions** that traditional profile-level analysis often overlooks. Below, we demonstrate how to estimate **deeper quantities** and **compare subgroups** effectively.
Depending on your objectives, you may want to reorganize the data in a `projoint_data` object. The helper function below is internal to the package, but you can call it explicitly in your script.”
```{r}
projoint_data <- function(labels, data) {
structure(
list(labels = labels, data = data),
class = "projoint_data"
)
}
```
---
## 📦 Setup
We use the already wrangled and cleaned data `out1_arranged`.
```{r}
data("out1_arranged")
out1_arranged$labels
```
---
## ⚖️ Explore: Compare Trade-offs Directly
Example: Low Housing Costs vs. Low Crime Rates
**Goal.** Compare choices between two *joint* profiles:
- **Low housing cost** but **high violent‑crime rate**, versus
- **High housing cost** but **low violent‑crime rate**.
```{r, message=FALSE, warning=FALSE}
# 1) Data: keep only the two joint profiles of interest
data("out1_arranged")
d1 <- out1_arranged$data
d2 <- d1 |>
mutate(y1 = case_when(
# Low housing cost, high crime
att1 == "att1:level1" & att6 == "att6:level2" ~ 1,
TRUE ~ 0
),
y0 = case_when(
# High housing cost, low crime
att1 == "att1:level3" & att6 == "att6:level1" ~ 1,
TRUE ~ 0
)) |>
filter(y1 == 1 | y0 == 1)
# 2) Labels: rename only the two att1 levels to reflect the joint trade-offs
labels1 <- out1_arranged$labels
labels2 <- labels1 |>
mutate(level = case_when(level_id == "att1:level1" ~ "Housing Cost (Low)\nCrime Rate(High)",
level_id == "att1:level3" ~ "Housing Cost (High)\nCrime Rate(Low)",
TRUE ~ level_id))
```
**(Optional) Sanity checks**
```{r}
d1 |> count(att1, att6)
d2 |> count(att1, att6) # only the two joint profiles remain
labels1 |> filter(attribute_id == "att1")
labels2 |> filter(attribute_id == "att1" & level_id %in% c("att1:level1", "att1:level3"))
```
**Recreate a `projoint_data` object, set the QOI, and plot.**
```{r, fig.width = 6, fig.height = 3}
# 3) Build a new projoint_data object
pj_data_wrangled <- projoint_data("labels" = labels2,
"data" = d2)
# 4) Quantity of interest: Low vs High housing cost under the specified crime conditions (choice-level MM)
qoi <- set_qoi(
.att_choose = "att1",
.lev_choose = "level1", # Low housing cost (with high crime in this subset)
.att_notchoose = "att1",
.lev_notchoose = "level3" # High housing cost (with low crime in this subset)
)
# 5) Estimate and plot (horizontal layout)
out <- projoint(pj_data_wrangled, qoi)
plot(out)
```
---
## đź§© Explore: Compare Multiple Levels Simultaneously
Example: Urban vs. Suburban Preferences
**Goal.** Collapse `att7` into two buckets—City (levels 1–2) vs. Suburban (levels 5–6)—then re‑estimate and plot.
```{r, message=FALSE, warning=FALSE}
# 1) Data: collapse levels for att7
d1 <- out1_arranged$data
d2 <- d1 |>
mutate(
att7 = case_when(
att7 %in% c("att7:level1", "att7:level2") ~ "att7:level7", # City
att7 %in% c("att7:level5", "att7:level6") ~ "att7:level8", # Suburban
TRUE ~ att7
)
)
# 2) Labels: create matching level IDs and readable names
labels1 <- out1_arranged$labels
labels2 <- labels1 |>
mutate(
level_id = case_when(
level_id %in% c("att7:level1", "att7:level2") ~ "att7:level7",
level_id %in% c("att7:level5", "att7:level6") ~ "att7:level8",
TRUE ~ level_id
),
level = case_when(
level_id == "att7:level7" ~ "City",
level_id == "att7:level8" ~ "Suburban",
TRUE ~ level
)
) |>
distinct()
```
**(Optional) Sanity checks**
```{r}
d1 |> count(att7)
d2 |> count(att7)
labels1 |> filter(attribute_id == "att7")
labels2 |> filter(attribute_id == "att7")
```
**Recreate a `projoint_data` object, set the QOI, and plot.**
```{r, fig.width = 6, fig.height = 3}
# 3) Build a new projoint_data object
pj_data_wrangled <- projoint_data("labels" = labels2,
"data" = d2)
# 4) Quantity of interest: City vs. Suburban (choice-level MM)
qoi <- set_qoi(
.structure = "choice_level",
.att_choose = "att7",
.lev_choose = "level7", # City
.att_notchoose = "att7",
.lev_notchoose = "level8" # Suburban
)
# 5) Estimate and plot (horizontal layout)
out <- projoint(pj_data_wrangled, qoi)
plot(out)
```
---
## 📊 Compare: Subgroup Differences
Choice-Level Subgroup Comparison: Party Differences
```{r, fig.width = 6, fig.height = 3}
data("exampleData1")
outcomes <- c(paste0("choice", 1:8), "choice1_repeated_flipped")
df_D <- exampleData1 |> filter(party_1 == "Democrat") |> reshape_projoint(outcomes)
df_R <- exampleData1 |> filter(party_1 == "Republican") |> reshape_projoint(outcomes)
df_0 <- exampleData1 |> filter(party_1 %in% c("Something else", "Independent")) |> reshape_projoint(outcomes)
qoi <- set_qoi(
.structure = "choice_level",
.estimand = "mm",
.att_choose = "att2",
.lev_choose = "level3",
.att_notchoose = "att2",
.lev_notchoose = "level1"
)
out_D <- projoint(df_D, qoi)
out_R <- projoint(df_R, qoi)
out_0 <- projoint(df_0, qoi)
out_merged <- bind_rows(
out_D$estimates |> mutate(party = "Democrat"),
out_R$estimates |> mutate(party = "Republican"),
out_0$estimates |> mutate(party = "Independent")
) |> filter(estimand == "mm_corrected")
# Plot
ggplot(out_merged, aes(y = party, x = estimate)) +
geom_vline(xintercept = 0.5, linetype = "dashed", color = "gray") +
geom_pointrange(aes(xmin = conf.low, xmax = conf.high)) +
geom_text(aes(label = format(round(estimate, 2), nsmall = 2)), vjust = -1) +
labs(y = NULL, x = "Choice-level Marginal Mean",
title = "Preference for Democratic-majority areas") +
theme_classic()
```
---
🏠**Home:** [Home](https://yhoriuchi.github.io/projoint/index.html)