Package ‘progress’
December 6, 2023

Title Terminal Progress Bars
Version 1.2.3

Description Configurable Progress bars, they may include percentage,
elapsed time, and/or the estimated completion time. They work in
terminals, in 'Emacs' 'ESS’, 'RStudio’, "Windows' 'Rgui' and the
'macOS' 'R.app'. The package also provides a 'C++' 'APT', that works
with or without 'Repp'.

License MIT + file LICENSE

URL https://github.com/r-1lib/progress#readme,
http://r-1lib.github.io/progress/

BugReports https://github.com/r-1lib/progress/issues
Depends R (>=3.6)

Imports crayon, hms, prettyunits, R6

Suggests Rcpp, testthat (>= 3.0.0), withr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Gébor Csardi [aut, cre],
Rich FitzJohn [aut],
Posit Software, PBC [cph, fnd]

Maintainer Gabor Csardi <csardi.gabor@gmail.com>
Repository CRAN
Date/Publication 2023-12-06 10:30:02 UTC

R topics documented:
progress_bar. e e e e

Index

https://github.com/r-lib/progress#readme
http://r-lib.github.io/progress/
https://github.com/r-lib/progress/issues

2 progress_bar

progress_bar Progress bar in the terminal

Description

Progress bars are configurable, may include percentage, elapsed time, and/or the estimated comple-
tion time. They work in the command line, in Emacs and in R Studio. The progress package was
heavily influenced by https://github.com/tj/node-progress

Creating the progress bar

A progress bar is an R6 object, that can be created with progress_bar$new(). It has the following
arguments:

format The format of the progress bar. A number of tokens can be used here, see them below. It
defaults to "[:bar] :percent”, which means that the progress bar is within brackets on the
left, and the percentage is printed on the right.

total Total number of ticks to complete. If it is unknown, use NA here. Defaults to 100.

width Width of the progress bar. Default is the current terminal width (see options() and width)
minus two.

stream This argument is deprecated, and message () is used to print the progress bar.
complete Completion character, defaults to =.

incomplete Incomplete character, defaults to -.

current Current character, defaults to >.

callback Callback function to call when the progress bar finishes. The progress bar object itself is
passed to it as the single parameter.

clear Whether to clear the progress bar on completion. Defaults to TRUE.

show_after Amount of time in seconds, after which the progress bar is shown on the screen. For
very short processes, it is probably not worth showing it at all. Defaults to two tenth of a
second.

force Whether to force showing the progress bar, even if the given (or default) stream does not
seem to support it.

message_class Extra classes to add to the message conditions signalled by the progress bar.

Using the progress bar

Three functions can update a progress bar. progress_bar$tick() increases the number of ticks by

one (or another specified value). progress_bar$update() sets a given ratio and progress_bar$terminate()
removes the progress bar. progress_bar$finished can be used to see if the progress bar has fin-

ished.

Note that the progress bar is not shown immediately, but only after show_after seconds. (Set this
to zero, and call tick(@) to force showing the progress bar.)

progress_bar$message() prints a message above the progress bar. It fails if the progress bar has
already finished.

progress_bar 3

Tokens
They can be used in the format argument when creating the progress bar.

:bar The progress bar itself.

:current Current tick number.

:total Total ticks.

:elapsed Elapsed time in seconds.

:elapsedfull Elapsed time in hh:mm:ss format.

:eta Estimated completion time in seconds.

:percent Completion percentage.

:rate Download rate, bytes per second. See example below.

:tick_rate Similar to :rate, but we don’t assume that the units are bytes, we just print the raw
number of ticks per second.

:bytes Shows :current, formatted as bytes. Useful for downloads or file reads if you don’t know
the size of the file in advance. See example below.

:spin Shows a spinner that updates even when progress is advanced by zero.

Custom tokens are also supported, and you need to pass their values to progress_bar$tick() or
progress_bar$update(), in a named list. See example below.

Options

The progress_enabled option can be set to FALSE to turn off the progress bar. This works for the
C++ progress bar as well.

Examples

We don't run the examples on CRAN, because they takes >10s
altogether. Unfortunately it is hard to create a set of
meaningful progress bar examples that also run quickly.

Not run:

Basic
pb <- progress_bar$new(total = 100)
for (i in 1:100) {
pb$tick()
Sys.sleep(1 / 100)
3

ETA
pb <- progress_bar$new(
format = " downloading [:bar] :percent eta: :eta”,
total = 100, clear = FALSE, width= 60)
for (i in 1:100) {
pb$tick()
Sys.sleep(1 / 100)
3

progress_bar

Elapsed time
pb <- progress_bar$new(
format = " downloading [:bar] :percent in :elapsed”,
total = 100, clear = FALSE, width= 60)
for (i in 1:100) {
pb$tick()
Sys.sleep(1 / 100)
3

Spinner
pb <- progress_bar$new(
format = "(:spin) [:bar] :percent”,
total = 30, clear = FALSE, width = 60)
for (i in 1:30) {
pb$tick()
Sys.sleep(3 / 100)
3

Custom tokens
pb <- progress_bar$new(
format = " downloading :what [:bar] :percent eta: :eta”,
clear = FALSE, total = 200, width = 60)
f <- function() {
for (i in 1:100) {
pb$tick(tokens = list(what = "foo "))
Sys.sleep(2 / 100)
3
for (i in 1:100) {
pb$tick(tokens = list(what = "foobar"))
Sys.sleep(2 / 100)
}
3
fO

Download (or other) rates
pb <- progress_bar$new(
format = " downloading foobar at :rate, got :bytes in :elapsed”,
clear = FALSE, total = NA, width = 60)
f <- function() {
for (i in 1:100) {
pb$tick(sample(1:100 * 1000, 1))
Sys.sleep(2/100)
}
pb$tick(1e7)
invisible()
3
fO

pb <- progress_bar$new(
format = " got :current rows at :tick_rate/sec”,
clear = FALSE, total = NA, width = 60)

f <~ function() {

progress_bar

for (i in 1:100) {
pb$tick(sample(1:100, 1))
Sys.sleep(2/100)
}
pb$terminate()
invisible()
}
fO

End(Not run)

Index

progress_bar, 2

	progress_bar
	Index

