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first_order_release First-Order Drug Release Kinetic Model
Description
Fits experimental cumulative drug release data to a first-order kinetic model using linear regression
on the log-transformed unreleased fraction. The function supports optional grouping (formula-
tion/batch) and pH-dependent analysis. It can generate plots with straight lines and annotations for
first-order rate constant (k1), intercept, coefficient of determination (R”*2), and time required for
50-percent drug release (t50).
Arguments
data A data frame containing experimental drug release data.
time_col Character string specifying the column name for time.

log_remain_col Column name for log cumulative percent drug remaining.

grou
pH_c
plot

p_col Optional character string specifying a column for grouping (e.g., formulation/batch).
ol Optional character string specifying a column containing pH values.
Logical; if TRUE, generates a plot of experimental data with first-order fitted

curves.
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annotate Logical; if TRUE, annotates the plot with k1, intercept, R*2, and t50 (only if <=
2 groups).

Value

A list containing:
fitted_parameters Data frame with kl, intercept, R*2, and t50 values for each group or pH
condition.

data The processed data used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Ostwald, W. (1884) <doi:10.1002/prac.18840290139> Studien zur chemischen Dynamik. Journal
fiir Praktische Chemie, 29(1), 385-408.

Noyes, A. A., & Whitney, W. R. (1897) <doi:10.1021/ja02086a003> The rate of solution of solid
substances in their own solutions. Journal of the American Chemical Society, 19(12), 930-934.

Examples

# Example I: Single formulation
df_1 <- data.frame(

time = c(@, 15, 30, 45, 60, 90, 120, 150, 180),

log_remain = c(2, 1.947, 1.899, 1.840, 1.780, 1.625, 1.447, 1.182, 0.813)
)

first_order_release(

data = df_1,
time_col = "time",
log_remain_col = "log_remain”

)

# Example II: Two formulations (grouped, not pH-dependent)
df_2 <- data.frame(
time = rep(c(0, 30, 60, 90, 120, 150), 2),
log_remain = c(
2.00, 1.84, 1.73, 1.53, 1.37, 1.25, # Formulation A
2.00, 1.88, 1.76, 1.67, 1.53, 1.39 # Formulation B

),

formulation = rep(c(”"Formulation A", "Formulation B"), each = 6)
)
first_order_release(

data = df_2,

time_col = "time",

log_remain_col = "log_remain”,

group_col = "formulation”

)



# Example III: pH-dependent first-order release
df_pH <- data.frame(
time = rep(c(0, 60, 120, 180), 2),
log_remain = c(
2.00, 1.74, 1.38, 1.11, # pH 7.4
2.00, 1.84, 1.66, 1.48 # pH 4.5
)

pH = rep(c(7.4, 4.5), each = 4)

)

first_order_release(
data = df_pH,
time_col = "time",
log_remain_col = "log_remain”,
pH_col = "pH"

)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
time = rep(c(0, 30, 60, 90, 120, 150, 180), 2),
log_remain = c(
2.000, 1.918, 1.842, 1.755, 1.685, 1.598, 1.520,
2.000, 1.865, 1.748, 1.612, 1.488, 1.352, 1.225
),
pH = rep(c(4.5, 7.6), each = 7)
)
df2 <- data.frame(
time = rep(c(@, 20, 40, 60, 80, 100, 120), 2),
log_remain = c(
2.000, 1.936, 1.872, 1.806, 1.742, 1.675, 1.610,
2.000, 1.882, 1.760, 1.645, 1.522, 1.408, 1.295
),
pH = rep(c(4.5, 7.6), each = 7)
)
df_all <- rbind(
cbind(formulation = "Dataset 1", df1),
cbind(formulation = "Dataset 2", df2)
)
first_order_release(
data = df_all,
time_col = "time",
log_remain_col = "log_remain”,
group_col = "formulation”,
pH_col = "pH"

higuchi_release

higuchi_release Higuchi Drug Release Kinetic Model
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Description

Fits experimental cumulative drug release data to the Higuchi square-root kinetic model using linear
regression of cumulative percent drug released versus square root of time. The function supports op-
tional grouping variables (e.g., formulation, batch) and optional pH-dependent analysis. It generates
publication-quality plots with experimental curves, fitted Higuchi straight lines, and annotations for
Higuchi release constant (kH), intercept, coefficient of determination (R*2), and the time required
for 50-percent drug release (t50).

Arguments

data A data frame containing experimental drug release data.

sqrt_time_col Character string specifying the column name for square root of time.

release_col Character string specifying the column name for cumulative percent drug re-
leased.

group_col Optional character string specifying a grouping variable (e.g., formulation, batch).
Default is NULL.

pH_col Optional character string specifying a column containing pH values. If provided,
Higuchi models are fitted separately for each pH.

plot Logical; if TRUE, generates a plot (default = TRUE).

annotate Logical; if TRUE, annotates the plot with kH, intercept, R"2, and t50 values

(only if <=2 groups).

Value
A list containing:

fitted_parameters A data frame with kH, intercept, R*2, and t50 values for each group or pH
condition.

data The processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Higuchi, T. (1963) <doi:10.1002/jps.2600521210> Mechanism of sustained-action medication. Jour-
nal of Pharmaceutical Sciences, 52(12), 1145-1149.

Examples

# Example I: Single Formulation

df <- data.frame(
sqrt_time = c(@, 3.873, 5.477, 6.708, 7.746, 9.487, 10.954, 12.247, 13.416),
release = c(@, 11.4, 20.8, 30.8, 39.8, 57.8, 72, 84.8, 93.5)

)

higuchi_release(
data = df,
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sqrt_time_col = "sqrt_time",
release_col = "release”

)

# Example II: Two formulations (grouped, not pH-dependent)
df_2 <- data.frame(
sqrt_time = c(@, 3.873, 5.477, 6.708, 7.746, 9.487, 10.954, 12.247, 13.416),
release = c(
0, 11.4, 20.8, 30.8, 39.8, 57.8, 72.0, 84.8, 93.5, # Formulation A
0, 10.2, 18.6, 29.7, 37.8, 56.5, 71.9, 83.7, 92.9 # Formulation B

),

formulation = rep(c(”"Formulation A", "Formulation B"), each = 9)
)
higuchi_release(

data = df_2,

sqrt_time_col = "sqrt_time",

release_col = "release”,

group_col = "formulation”
)

# Example III: pH-dependent Higuchi release
df_pH <- data.frame(
sqrt_time = rep(
c(0, 3.873, 5.477, 6.708, 7.746, 9.487, 10.954, 12.247, 13.416),
2
),
release = c(
0, 11.4, 20.8, 30.8, 39.8, 57.8, 72.0, 84.8, 93.5, # pH 7.4
@, 17.2, 23.8, 35.5, 41.5, 58.3, 73.6, 86.2, 93.1 # pH 4.5
),
pH = rep(c(7.4, 4.5), each = 9)
)
higuchi_release(
data = df_pH,
sqrt_time_col = "sqrt_time",
release_col = "release”,
pH_col = "pH"
)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
sqrt_time = rep(c(0.0, 2.5, 4.0, 5.2, 6.3, 7.4, 8.6, 9.8, 11.0, 12.2), 2),
release = c(
0.0, 12.5, 21.8, 31.2, 39.6, 50.8, 63.5, 74.2, 84.9, 92.8, # pH 7.4
0.0, 9.8, 18.6, 26.9, 34.7, 45.3, 56.8, 67.9, 77.4, 85.2 # pH 4.5
),
pH = rep(c(7.4, 4.5), each = 10)
)
df2 <- data.frame(
sqrt_time = rep(c(0.0, 2.5, 4.0, 5.2, 6.3, 7.4, 8.6, 9.8, 11.0, 12.2), 2),
release = c(
0.0, 11.3, 20.4, 29.1, 37.8, 48.6, 60.1, 71.0, 81.5, 89.6, # pH 7.4
0.0, 8.9, 16.7, 24.6, 32.1, 42.5, 53.4, 64.0, 73.1, 80.8 # pH 4.5
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),
pH = rep(c(7.4, 4.5), each = 10)
)
df_all <- rbind(
cbind(formulation = "Dataset 1", df1),
cbind(formulation = "Dataset 2", df2)

)

higuchi_release(
data = df_all,
sqrt_time_col = "sqrt_time",
release_col = "release”,
group_col = "formulation”,
pH_col = "pH"

)

hixson_crowell_model  Hixson-Crowell Drug Release Kinetic Model

Description

Fits experimental cumulative drug release data to the Hixson-Crowell cube-root model, which de-
scribes drug release from systems where dissolution occurs with a change in surface area and par-
ticle diameter over time. The model is based on a linear regression of (VVO1 /3 _ th/ 3) versus
time.

The function assumes that the initial drug amount (W) is known and that the remaining drug
amount (1) can be calculated from cumulative percent drug remaining data. It supports optional
grouping variables (e.g., formulation, batch) and optional pH-dependent analysis. The function gen-
erates publication-quality plots with experimental data points, fitted Hixson-Crowell straight lines,
and annotations for the Hixson-Crowell rate constant (kHC), intercept, coefficient of determination
(R"2), and the time required for 50-percent drug release (t50).

Model: , ,
Wo/? — W} = ke *t

where: - W) is the initial amount of drug - W; is the remaining amount of drug at time ¢ - k¢ is
the Hixson-Crowell dissolution rate constant

The Hixson-Crowell model is applicable to dosage forms where drug release is governed by erosion
or dissolution with a decreasing surface area (e.g., tablets, pellets).

Arguments
data A data frame containing experimental drug release data.
time_col Character string specifying the column name for time (minutes).
remain_col Character string specifying the column name for cumulative percent drug re-
maining.
group_col Optional character string specifying a grouping variable (e.g., formulation, batch).

pH_col Optional character string specifying a column containing pH values.
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plot Logical; if TRUE, generates a plot with fitted Hixson-Crowell lines.
annotate Logical; if TRUE, annotates the plot with KHC, intercept, R"2, and t50 (only if
<=2 groups).
Value

A list containing:

fitted_parameters Data frame with Hixson-Crowell parameters (kHC, intercept), coefficient of
determination (R”2), and t50 for each group.

data Processed data used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Hixson, A. W., & Crowell, J. H. (1931) <doi:10.1021/ie50260a018> Dependence of reaction veloc-
ity upon surface and agitation. Industrial & Engineering Chemistry, 23(8), 923-931.

Examples

# Example I: Single formulation
df <- data.frame(
time = c(@, 15, 30, 45, 60, 90, 120, 150, 180),
remain = c(100, 88.6, 79.2, 69.2, 60.2, 42.2, 28.0, 15.2, 6.5)

)

hixson_crowell_model(
data = df,
time_col = "time",
remain_col = "remain”

)

# Example II: Two formulations (grouped, not pH-dependent)
df2 <- data.frame(
time = rep(c(@, 20, 40, 60, 80, 100, 120, 140, 160, 180), 2),
remain = c(
100, 90, 81, 72, 63, 54, 45, 36, 27, 18, +# Formulation A
100, 92, 84, 76, 68, 60, 52, 44, 36, 28 # Formulation B

),

formulation = rep(c("Formulation A", "Formulation B"), each = 10)
)
hixson_crowell_model(

data = df2,

time_col = "time",

remain_col = "remain”,

group_col = "formulation”
)

# Example III: pH-dependent release
df_pH <- data.frame(
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time = rep(c(@, 20, 40, 60, 80, 100, 120, 140, 160, 180), 2),
remain = c(

100, 90, 80, 70, 60, 50, 40, 30, 20, 10, # pH 7.4
100, 92, 84, 76, 68, 60, 52, 44, 36, 28 # pH 4.5
)7
pH = rep(c(7.4, 4.5), each = 10)
)
hixson_crowell_model (
data = df_pH,
time_col = "time",
remain_col = "remain”,
pH_col = "pH"
)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
time = rep(c(0, 20, 40, 60, 80, 100, 120, 140, 160, 180), 2),
remain = c(
100, 88, 75, 62, 50, 38, 28, 18, 10, 5, # pH 4.5
100, 90, 78, 65, 52, 40, 30, 20, 12, 6 # pH 7.6
),
pH = rep(c(4.5, 7.6), each = 10)
)
df2 <- data.frame(
time = rep(c(@, 15, 30, 45, 60, 75, 90, 105, 120, 135), 2),
remain = c(
100, 90, 78, 66, 54, 44, 34, 25, 16, 8, # pH 4.5
100, 92, 80, 68, 56, 44, 34, 24, 15, 7 # pH 7.6
),
pH = rep(c(4.5, 7.6), each = 10)
)
df_all <- rbind(
cbind(formulation = "Dataset 1", df1),
cbind(formulation = "Dataset 2", df2)
)
hixson_crowell_model(
data = df_all,
time_col = "time",
remain_col = "remain”,
group_col = "formulation”,
pH_col = "pH"

korsmeyer_peppas_model
Korsmeyer-Peppas Drug Release Kinetic Model

Description

Fits experimental cumulative drug release data to the Korsmeyer-Peppas model using log10-transformed
fraction released vs. loglO-transformed time. The function automatically normalizes cumulative
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percent drug release to fraction (0-1) by default and removes t = 0. In addition, the function sup-
ports optional grouping variables (e.g., formulation, batch) and optional pH-dependent analysis.
It generates publication-quality plots with experimental curves, fitted Korsmeyer-Peppas straight
lines, mechanism table, and annotations for Korsmeyer-Peppas release constant (kKP), release ex-
ponent (n), intercept, coefficient of determination (R”2), and the time required for 50-percent drug
release (t50).

Users can toggle ‘normalize = TRUE/FALSE’ to use fraction (0-1) or raw percent drug release.
Model: logl0(Mt/MInf) = log10(k) + n * log10(t)

The release exponent, n, indicates the drug release mechanism: - n = 0.5 : Fickian diffusion - 0.5 <
n < 1 : Non-Fickian (anomalous) diffusion - n = 1 : Case II transport (zero-order release) -n > 1 :
Super Case II transport

Arguments
data A data frame containing experimental cumulative percent drug release.
time_col Character string specifying the column name for time (minutes).
release_col Character string specifying the column name for cumulative percent drug re-
lease.
group_col Optional character string specifying a grouping variable (e.g., formulation, batch).
pH_col Optional character string specifying a column containing pH values.
plot Logical; if TRUE, generates a plot with fitted Korsmeyer-Peppas lines.
annotate Logical; if TRUE, annotates the plot with kKP, n, intercept, R*2, and t50 (only
if <=2 groups).
normalize Logical; if TRUE (default), normalizes cumulative percent release to fraction
(0-1). If FALSE, retains original percent values.
Value

A list containing:

fitted_parameters Data frame with kKP, n, intercept, R*2, and t50 for each group.

data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983) <doi:10.1016/0378-
5173(83)90064-9> Mechanisms of solute release from porous hydrophilic polymers. International
Journal of Pharmaceutics, 15(1), 25-35.
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Examples

# Example I: Single formulation
df1 <- data.frame(

time = c(@, 15, 30, 45, 60, 90, 120, 150, 180),

release = c(@, 11.4, 20.8, 30.8, 39.8, 57.8, 72, 84.8, 93.5)
)

korsmeyer_peppas_model (

data = df1,

time_col = "time",

release_col = "release”,

normalize = TRUE # default
)

# Example II: Two formulations (grouped, not pH-dependent)
df2 <- data.frame(
time = rep(c(0, 30, 60, 90, 120, 150), 2),
release = c(
o, 18, 35, 55, 72, 88, # Formulation A
0, 12, 26, 40, 58, 70 # Formulation B

),

formulation = rep(c(”"Formulation A", "Formulation B"), each = 6)
)
korsmeyer_peppas_model (

data = df2,

time_col = "time",

release_col = "release”,

group_col = "formulation”
)

# Example III: pH-dependent release
df_pH <- data.frame(
time = rep(c(0, 60, 120, 180), 2),
release = c(@, 40, 75, 95, @, 30, 60, 80),
pH = rep(c(7.4, 4.5), each = 4)
)
korsmeyer_peppas_model (
data = df_pH,
time_col = "time",
release_col = "release”,
pH_col = "pH"
)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
time = rep(c(Q, 20, 40, 60, 80, 100, 120, 140, 160, 180), 2),
release = c(
o, 12, 25, 38, 50, 62, 73, 82, 89, 95, # pH 4.5
9, 15, 30, 45, 59, 70, 79, 86, 91, 97 # pH 7.6
),
pH = rep(c(4.5, 7.6), each = 10)
)
df2 <- data.frame(
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time = rep(c(@, 15, 30, 45, 60, 75, 90, 105, 120, 135), 2),
release = c(

0, 10, 22, 34, 46, 57, 67, 76, 84, 91, # pH 4.5
e, 13, 27, 41, 55, 67, 77, 85, 92, 98 # pH 7.6
)Y
pH = rep(c(4.5, 7.6), each = 10)
)
df_all <- rbind(
cbind(formulation = "Dataset 1", df1),
cbind(formulation = "Dataset 2", df2)
)
korsmeyer_peppas_model (
data = df_all,
time_col = "time",
release_col = "release”,
group_col = "formulation”,
pH_col = "pH"
)
1d50_model Lethal Dose 50 (LD50) Pharmacodynamic Model
Description

Fits quantal mortality data to a logistic dose-response model to estimate the Lethal Dose 50 (LD50),
defined as the dose expected to cause death in 50

The model uses binomial logistic regression and supports optional grouping (e.g., species, sex,
strain, formulation) and stratification by experimental conditions (e.g., exposure route, duration).

In addition to LD50 estimation, the model provides the following interpretable parameters:

» Slope: Represents the steepness of the dose-mortality relationship. A larger slope indicates
a rapid transition from survival to lethality with increasing dose (high sensitivity and narrow
safety margin), whereas a smaller slope reflects a more gradual increase in mortality, suggest-
ing greater inter-individual variability in response.

 Intercept: Represents the baseline log-odds of mortality at zero dose. A strongly negative
intercept indicates negligible background mortality, while a positive intercept suggests mor-
tality occurring in the absence of administered dose, which may reflect experimental bias,
underlying disease, or study design limitations.

* LD50 95% Confidence Interval: An approximate 95 interval for the LD50, computed using
the delta method. This provides an uncertainty range around the estimated dose causing 50

» McFadden Pseudo-R?: A likelihood-based measure of model goodness-of-fit that quantifies
the improvement of the fitted model over a null (intercept-only) model. Values between 0.1
and 0.2 indicate acceptable biological fit, while values above 0.3 suggest a strong and reliable
dose-mortality relationship.

The function can generate dose-response plots with fitted curves and annotate LD50, slope, inter-
cept, LD50 confidence intervals, and McFadden pseudo-R2 values.
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Arguments
data A data frame containing mortality response data.
dose_col Character string specifying the administered dose column.

response_col Character string specifying the binary mortality outcome (0 = alive, 1 = dead).
group_col Optional character string specifying a grouping variable.

condition_col Optional character string specifying an experimental condition.

plot Logical; if TRUE, generates dose-mortality plots.

annotate Logical; if TRUE, annotates the plot with LD50, confidence intervals, and model
parameters (only if <=2 groups).

Value
A list containing:

fitted_parameters Dataframe with LD50, 95% confidence intervals, slope, intercept, and pseudo-
R2 values for each group.

data The processed data used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Bliss, C. I. (1935) <doi:10.1111/j.1744-7348.1935.tb07713.x> The calculation of the dosage-mortality
curve. Annals of Applied Biology, 22(1), 134-167.

Finney, D. J. (1971) <isbn:9780521080415> Probit Analysis, 3rd Edition. Cambridge University
Press, Cambridge.

Examples

# Example I: Single-species acute toxicity study
df1 <- data.frame(
dose = c(10, 25, 50, 100, 200),
dead = c(@, 0, 1, 1, 1)
)
1d50_model (
data = df1,
dose_col = "dose",
response_col = "dead”

)

# Example II: Sex-dependent LD5@ analysis
df2 <- data.frame(

dose = rep(c(10, 25, 50, 100), 2),

dead = c(0, 0, 1, 1, 0, 0, 0, 1),

sex = rep(c(”"Male”, "Female"), each = 4)

)
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1d50_model (

data = df2,

dose_col = "dose",
response_col = "dead”,
group_col = "sex"

)

# Example III: Species and exposure route comparison
df3 <- data.frame(
dose = rep(c(20, 40, 80, 160), 4),
dead = c(0, 0, 1, 1, 0, 1, 1, 1, 0, @0, 0, 1, @, @, 1, 1),

species = rep(c(”"Rat”, "Mouse"), each = 8),
route = rep(c("Oral”, "IP"), each = 4, times = 2)
)
1d50_model (
data = df3,
dose_col = "dose",
response_col = "dead"”,
group_col = "species”,
condition_col = "route”
)
logistic_4pl 4PL Logistic Dose-Response Model (Emax/Imax)
Description

Fits pharmacodynamic dose-response data to a 4-parameter logistic (4PL) model using nonlinear
least squares regression.

The model can handle **both increasing (Stimulatory / Emax)** and **decreasing (Inhibitory /
Imax)** dose-response curves automatically.

The 4PL model generalizes the Hill/Sigmoid model:

Ema:}c - Emzn . .
F=F,;, + —————— for increasing curves
L+ (ECso/D)" :

Emam - Emin .
E=FE,; —————— ford
min + 1+ (D/ICs)" or decreasing curves
Key features: * Automatically detects increasing vs decreasing responses * F,,;, = minimum re-
sponse (floor) * E,, .. = maximum response (ceiling) * ECsq/1C5o = dose producing half-maximal
effect * n = Hill coefficient (steepness) * Symmetric sigmoid curve about midpoint

Arguments
data A data frame containing dose-response experimental data.
dose_col Character string specifying the column name for dose.

response_col  Character string specifying the column name for measured response.
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group_col Optional character string specifying a column for grouping.

log_dose Logical; if TRUE, dose values are log10-transformed for plotting.

plot Logical; if TRUE, generates a dose-response plot with fitted 4PL curves.

annotate Logical; if TRUE, annotates the plot with model parameters and fit metrics.
Value

A list containing:

fitted_parameters Data frame with E_min, E_max, EC50, n, RMSE, AIC, and BIC for each
group.
data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Holford, N. H. G. & Sheiner, L. B. (1981) <doi:10.2165/00003088-198106060-00002> Under-
standing the dose-effect relationship. Clinical Pharmacokinetics, 6(6), 429—453.

Finney, D. J. (1971) <isbn:9780521080415> Probit Analysis, 3rd Edition. Cambridge University
Press, Cambridge.

Examples

# Example I: Single increasing curve (Emax)
df_emax <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(5, 12, 28, 55, 75, 90, 98)
)
logistic_4pl(
data = df_emax,
dose_col = "dose”,
response_col = "response”

)

# Example II: Single decreasing curve (Imax)
df_imax <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(95, 88, 70, 50, 30, 15, 5)
)
logistic_4pl(
data = df_imax,
dose_col = "dose",
response_col = "response”

)

# Example III: Two treatment groups, mixed Emax/Imax
df_groups <- data.frame(



16 logistic_5pl

dose = rep(c(0.1, 0.3, 1, 3, 10, 30), 2),
response = c(
4, 10, 25, 55, 78, 92, # Group A: increasing (Emax)
90, 75, 55, 35, 20, 10 # Group B: decreasing (Imax)
),
treatment = rep(c("Group A", "Group B"), each = 6)
)
logistic_4pl(
data = df_groups,

dose_col = "dose",
response_col = "response”,
group_col = "treatment”,
log_dose = TRUE
)
logistic_5pl SPL Logistic Dose-Response Model (Emax/Imax, Asymmetric)
Description

Fits pharmacodynamic dose-response data to a S-parameter logistic (SPL) model using nonlinear
least squares regression.

The model can handle **both increasing (Stimulatory / Emax)** and **decreasing (Inhibitory /
Imax)** dose-response curves automatically.

The SPL model extends 4PL by adding an asymmetry factor s:

Emam - Emzn

(1+ (ECs0/D)")*

for increasing curves

Emam - Emln
(11 (D/IC50)")"

E=F,,+ for decreasing curves

Key features: * Automatically detects increasing vs decreasing responses * FE,,;, = minimum re-
sponse (floor) * E,, .. = maximum response (ceiling) * ECsq/1C5o = dose producing half-maximal
effect * n = Hill coefficient (steepness) * s = asymmetry factor (skew) * Skewed sigmoidal curve;
reduces bias when the rising and falling slopes are not symmetric around EC50

Arguments
data A data frame containing dose-response experimental data.
dose_col Character string specifying the column name for dose.

response_col  Character string specifying the column name for measured response.

group_col Optional character string specifying a column for grouping.
log_dose Logical; if TRUE, dose values are log10-transformed for plotting.
plot Logical; if TRUE, generates a dose-response plot with fitted SPL curves.

annotate Logical; if TRUE, annotates the plot with model parameters and fit metrics.



logistic_5pl 17

Value

A list containing:

fitted_parameters Data frame with E_min, E_max, EC50, n, s, RMSE, AIC, and BIC for each
group.
data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Richards, F. J. (1959) <doi:10.1093/jxb/10.2.290> A flexible growth function for empirical use.
Journal of Experimental Botany, 10(2), 290-301.

Examples

# Example I: Single increasing curve (Emax)
df_emax_5pl <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(5, 12, 28, 55, 75, 90, 98)
)
logistic_5pl(
data = df_emax_5pl,
dose_col = "dose",
response_col = "response”

)

# Example II: Single decreasing curve (Imax)
df_imax_5pl <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(95, 88, 70, 50, 30, 15, 5)
)
logistic_5pl(
data = df_imax_5pl,
dose_col = "dose",
response_col = "response”

)

# Example III: Two treatment groups, mixed Emax/Imax
df_groups_5pl <- data.frame(
dose = rep(c(0.1, 0.3, 1, 3, 10, 30), 2),
response = c(
4, 10, 25, 55, 78, 92, # Group A: increasing (Emax)
90, 75, 55, 35, 20, 10 # Group B: decreasing (Imax)
),
treatment = rep(c("Group A", "Group B"), each = 6)
)
logistic_5pl(
data = df_groups_5pl,
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dose_col = "dose",
response_col = "response”,
group_col = "treatment”,
log_dose = TRUE
)
michaelis_menten Michaelis-Menten Kinetics (Linear Form) with Inhibition Comparison
Description

Performs Michaelis-Menten kinetic analysis using linearized transformations (Lineweaver-Burk by
default) to compare multiple datasets and infer inhibition type.

The function fits linear regressions to transformed data and compares slopes and intercepts across
conditions.

Interpretation of inhibition patterns (Lineweaver-Burk):

» Competitive inhibition: Same y-intercept (1/Vmax), increased slope -> apparent Km increases

* Noncompetitive inhibition: Same x-intercept (-1/Km), increased y-intercept -> Vmax de-
creases

* Uncompetitive inhibition: Parallel lines -> both Km and Vmax decrease proportionally

Arguments
data A data.frame containing concentration and rate data.
conc_col Column name for substrate or drug concentration.
rate_col Column name for reaction rate or elimination rate.
group_col Column indicating different conditions (e.g., inhibitor levels).
transform Linearization method: "Lineweaver-Burk" (default), "Eadie-Hofstee", or "Hanes-

Woolf".

inhibition_type
Expected inhibition type: "competitive", "noncompetitive", "uncompetitive",
"multi-inhibition" or "none".

plot Logical; if TRUE, generates linearized comparison plot.

Value
A list containing:

fitted_parameters A data frame summarizing linear regression results for each group or condi-
tion, including the estimated slope, intercept, coefficient of determination (R?), and derived
Michaelis-Menten parameters (Km and Vmax) computed according to the selected linear trans-
formation.

transformed_data A data frame containing the processed and linearized concentration and rate
data (x and y) used for model fitting and visualization, along with the original group labels.

interpretation A character string describing the expected inhibition pattern based on the speci-
fied inhibition_type and the comparison of slopes and intercepts across groups.
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Author(s)

Paul Angelo C. Manlapaz

References

Michaelis, L. and Menten, M. (1913) Die kinetik der invertinwirkung. Biochemistry Zeitung, 79,
333-3609.

Examples

# Example I: Single Michaelis-Menten dataset (no inhibition)
df1 <- data.frame(
concentration = c(0.5, 1, 2, 4, 6, 8, 10),
rate = c(0.48, 0.85, 1.45, 2.20, 2.70, 3.05, 3.25),
group = "No Inhibitor”
)
# Lineweaver-Burk
michaelis_menten(

data = df1,
conc_col = "concentration”,
rate_col = "rate"”,
group_col = "group”,
transform = "Lineweaver-Burk”,
inhibition_type = "none"”,
plot = TRUE
)

# Eadie-Hofstee
michaelis_menten(

data = df1,

conc_col = "concentration”,
rate_col = "rate",

group_col = "group”,
transform = "Eadie-Hofstee",
inhibition_type = "none"”,
plot = TRUE

)
# Hanes-Woolf

michaelis_menten(

data = df1,

conc_col = "concentration”,
rate_col = "rate”,
group_col = "group”,
transform = "Hanes-Woolf",
inhibition_type = "none"”,
plot = TRUE

)

# Example II: Two datasets compared (inhibition analysis)
df2 <- data.frame(
concentration = rep(c(0.5, 1, 2, 4, 6, 8, 10), 2),
rate = c(
# Reference (no inhibitor)



20

),
group = rep(c(”"No Inhibitor"”, "Inhibitor"), each = 7)
)
# Lineweaver-Burk
michaelis_menten(
data = df2,
conc_col = "concentration”,
rate_col = "rate",
group_col = "group”,
transform = "Lineweaver-Burk"”,
inhibition_type = "uncompetitive”,
plot = TRUE
)
# Eadie-Hofstee
michaelis_menten(
data = df2,
conc_col = "concentration”,
rate_col = "rate",
group_col = "group”,
transform = "Eadie-Hofstee",
inhibition_type = "competitive”,
plot = TRUE
)
# Hanes-Woolf
michaelis_menten(
data = df2,
conc_col = "concentration”,
rate_col = "rate"”,
group_col = "group”,
transform = "Hanes-Woolf",
inhibition_type = "competitive”,
plot = TRUE

)

# Example III: Six datasets compared (one reference, five test

0.50, 0.90, 1.50, 2.30, 2.80, 3.10, 3.30,
# Condition B (possible inhibitor)
0.35, 0.65, 1.10, 1.70, 2.10, 2.40, 2.55

df3 <- data.frame(

concentration = rep(c(0.5, 1, 2, 4, 6, 8, 10), 6),
rate = c(

# Reference
.50, 0.90, 1.50, 2.30, 2.80, 3.10, 3.30,
Mixed Noncompetitive inhibitor A
.35, 0.65, 1.10, 1.70, 2.10, 2.40, 2.55,
Uncompetitive inhibitor
.40, 0.70, 1.15, 1.75, 2.15, 2.45, 2.60,
Mixed Noncompetitive inhibitor B
.30, 0.55, 0.95, 1.45, 1.85, 2.10, 2.20,
Mixed Noncompetitive + higher dose
.28, 0.50, 0.85, 1.30, 1.65, 1.85, 1.95,
Uncompetitive + higher dose
.38, 0.65, 1.10, 1.65, 2.05, 2.30, 2.40

O H O HO HO HFOHO
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),

group = rep(c(
"Reference”,
"Noncompetitive (Mixed) A",
"Uncompetitive”,
"Noncompetitive (Mixed) B",
"Noncompetitive (Mixed) High",
"Uncompetitive High"”

), each = 7)

)

# Lineweaver-Burk
michaelis_menten(

data = df3,

conc_col = "concentration”,

rate_col = "rate"”,

group_col = "group”,

transform = "Lineweaver-Burk”,
inhibition_type = "multi-inhibition”,
plot = TRUE

)
# Eadie-Hofstee

michaelis_menten(

data = df3,

conc_col = "concentration”,

rate_col = "rate"”,

group_col = "group”,

transform = "Eadie-Hofstee"”,
inhibition_type = "multi-inhibition”,
plot = TRUE

)
# Hanes-Woolf

michaelis_menten(

data = df3,

conc_col = "concentration”,

rate_col = "rate",

group_col = "group”,

transform = "Hanes-Woolf",
inhibition_type = "multi-inhibition”,
plot = TRUE

michaelis_menten_nl Michaelis-Menten Kinetics (Nonlinear Form) with Inhibition Compar-
ison

Description

Performs Michaelis-Menten kinetic analysis using nonlinear least squares fitting to estimate Km
and Vmax for one or more datasets.
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This function fits the standard Michaelis-Menten equation:
rate = (Vmazx % concentration) /(Km + concentration)

to each group separately and allows comparison of kinetic parameters across conditions (e.g., in-
hibitors).

Interpretation of inhibition patterns:

» Competitive inhibition: Km increases, Vmax unchanged
* Noncompetitive inhibition: Vmax decreases, Km unchanged

* Uncompetitive inhibition: both Km and Vmax decrease

Arguments
data A data.frame containing concentration and rate data.
conc_col Column name for substrate or drug concentration.
rate_col Column name for reaction rate or elimination rate.
group_col Column indicating different conditions (e.g., inhibitor levels).

inhibition_type
Expected inhibition type: "competitive", "noncompetitive", "uncompetitive",
"multi-inhibition" or "none".

plot Logical; if TRUE, generates nonlinear fit comparison plot.

Value

A list containing:

fitted_parameters A data frame with estimated nonlinear Michaelis-Menten parameters (Km and
Vmax) for each group or condition, obtained via nonlinear least squares fitting.

raw_data A data frame containing the processed concentration and rate data used for model fitting
and plotting, including group labels.

interpretation A character string summarizing the expected inhibition pattern based on the spec-
ified inhibition_type and the comparison of Km and Vmax values across groups.
Author(s)

Paul Angelo C. Manlapaz

References

Michaelis, L. and Menten, M. (1913) Die kinetik der invertinwirkung. Biochemistry Zeitung, 79,
333-369.
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Examples

# Example I: Single Michaelis-Menten dataset (no inhibition)
df1 <- data.frame(

concentration = c(0.5, 1, 2, 4, 6, 8, 10),

rate = c(0.48, 0.85, 1.45, 2.20, 2.70, 3.05, 3.25),

group = "No Inhibitor”

)

michaelis_menten_nl(
data = dff1,
conc_col = "concentration”,
rate_col = "rate"”,
group_col = "group”,
inhibition_type = "none"”,
plot = TRUE

)

# Example II: Two datasets compared (inhibition analysis)
df2 <- data.frame(
concentration = rep(c(0.5, 1, 2, 4, 6, 8, 10), 2),
rate = c(
# Reference (no inhibitor)
0.50, 0.90, 1.50, 2.30, 2.80, 3.10, 3.30,
# Condition B (possible inhibitor)
0.35, 0.65, 1.10, 1.70, 2.10, 2.40, 2.55
),
group = rep(c(”"No Inhibitor"”, "Inhibitor"), each = 7)
)
michaelis_menten_nl(
data = df2,
conc_col = "concentration”,
rate_col = "rate",
group_col = "group”,
inhibition_type = "uncompetitive”,
plot = TRUE
)

# Example III: Six datasets compared (one reference, five test conditions)
df3 <- data.frame(
concentration = rep(c(@.5, 1, 2, 4, 6, 8, 10), 6),
rate = c(
# Reference
.50, ©.95, 1.80, 2.90, 3.60, 4.00, 4.30,
Competitive inhibitor
.35, 0.70, 1.35, 2.40, 3.05, 3.40, 3.65,
Mixed Noncompetitive inhibitor A
.30, 0.55, 1.00, 1.65, 2.05, 2.35, 2.50,
Uncompetitive inhibitor
.25, 0.50, ©.90, 1.40, 1.75, 2.00, 2.10,
Mixed Noncompetitive inhibitor high dose
.20, 0.40, 0.80, 1.50, 1.95, 2.25, 2.40,
Mixed Noncompetitive inhibitor B
.25, 0.45, 0.85, 1.35, 1.70, 1.95, 2.05

O H O HO HO HOHO
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),
group = rep(c(
"Reference”,
"Competitive"”,
"Noncompetitive (Mixed) A",
"Uncompetitive”,
"Noncompetitive (Mixed) High",
"Noncompetitive (Mixed) B”
), each = 7)
)
michaelis_menten_nl(
data = df3,
conc_col = "concentration”,
rate_col = "rate",
group_col = "group”,
inhibition_type = "multi-inhibition”,
plot = TRUE

non_compartmental Non-Compartmental Analysis (NCA) of Plasma Concentration-Time
Data (Linear Form)

Description

Performs non-compartmental analysis (NCA) on plasma concentration-time data assuming linear
pharmacokinetics. Computes area under the curve (AUC) using trapezoidal rule, estimates terminal
elimination rate constant (kel) by linear regression on the log-linear terminal phase, calculates half-
life (t1/2), clearance (CL), and volume of distribution (Vd).

Arguments
data A data.frame containing plasma concentration-time data.
time_col Character string indicating the column name for time.
conc_col Character string indicating the column name for concentration.
dose Numeric value for the administered dose.
group_col Optional character string specifying a grouping variable for multiple groups.

terminal_points
Number of last points to use for terminal slope estimation (default = 3).

plot Logical; if TRUE, plots concentration-time profile and terminal phase regres-
sion.
annotate Logical; if TRUE, annotates plot with PK parameters (only for <=2 groups).
Value

A list containing:

fitted_parameters Data frame with kel, t1/2, AUC, CL, Vd, and R*2 for each group.
data Processed data used for fitting and plotting.
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Author(s)

Paul Angelo C. Manlapaz

References

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.

Examples

# Example I: Single-subject non-compartmental analysis
df <- data.frame(
time = c(0.25, 0.5, 1, 2, 4, 6, 8, 12),
concentration = c(18.6, 16.9, 14.2, 10.8, 6.9, 4.6, 3.1, 1.9)

)
non_compartmental (
data = df,
time_col = "time",
conc_col = "concentration”,
dose = 100, # mg
terminal_points = 3, # last 3 points (6, 8, 12 h)
plot = TRUE,
annotate = TRUE
)

# Example II: Two-group comparison (reference vs test formulation)
df_groups <- data.frame(
time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),
concentration = c(
17.9, 16.2, 13.7,

10.1, 6.3, 4.1, 2.8, # Reference

20.4, 18.9, 16.1, 12.4, 8.1, 5.6, 3.9 # Test

),

formulation = rep(c("Reference”, "Test"”), each = 7)
)
non_compartmental (

data = df_groups,

time_col = "time",

conc_col = "concentration”,

dose = 100, # same dose in both groups

group_col = "formulation”,

terminal_points = 3,

plot = TRUE,

annotate = TRUE

)

# Example III: Multiple subjects with extended terminal phase
df_subjects <- data.frame(
time = rep(c(0.5, 1, 2, 4, 8, 12, 24), 3),
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concentration =
15.2, 13.9, 11.4,
14.8, 13.2, 10.9,
16.0, 14.6, 12.0
),
subject = rep(paste@(”S", 1:3), each = 7)
)
non_compartmental (
data = df_subjects,
time_col = "time",
conc_col = "concentration”,
dose = 150,
group_col = "subject”,
terminal_points = 4,
plot = TRUE,
annotate = FALSE

c(

, 1.3, # Subject 1
.2, # Subject 2
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non_compartmental_nl  Non-Compartmental Analysis (NCA) of Plasma Concentration-Time
Data (Nonlinear Form)

Description

Performs non-compartmental analysis (NCA) on plasma concentration-time data, fitting the termi-
nal elimination phase using nonlinear regression of an exponential decay. Computes area under
the curve (AUC) using trapezoidal rule, estimates terminal elimination rate constant (kel), half-life
(t1/2), clearance (CL), and volume of distribution (Vd).

Arguments
data A data.frame containing plasma concentration-time data.
time_col Character string indicating the column name for time.
conc_col Character string indicating the column name for concentration.
dose Numeric value for the administered dose.
group_col Optional character string specifying a grouping variable for multiple groups.

terminal_points
Number of last points to use for terminal phase estimation (default = 3).

plot Logical; if TRUE, plots concentration-time profile and terminal phase fit.
annotate Logical; if TRUE, annotates plot with PK parameters (only for <=2 groups).
Value

A list containing:

fitted_parameters Data frame with kel, t1/2, AUC, CL, Vd, and R*2 for each group.
data Processed data used for fitting and plotting.
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Author(s)

Paul Angelo C. Manlapaz

References

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.

Examples

# Example I: Single-subject nonlinear non-compartmental analysis
df <- data.frame(

time = c(0.25, 0.5, 1, 2, 4, 6, 8, 12),

concentration = c(18.4, 16.9, 14.3, 10.9, 7.1, 4.7, 3.2, 2.0)
)
non_compartmental_nl(

data = df,

time_col = "time",

conc_col = "concentration”,

dose = 100,

terminal_points = 3,

plot = TRUE,

annotate = TRUE
)

# Example II: Two-group nonlinear NCA (e.g., formulation comparison)
df_groups <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),

concentration = c(

17.8, 16.3, 13.9, 10.5, 6.6, 4.3, 3.0, # Group A
20.1, 18.7, 16.2, 12.7, 8.4, 5.9, 4.1 # Group B
)Y
formulation = rep(c(”"Reference”, "Test"), each = 7)
)

non_compartmental_nl(
data = df_groups,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "formulation”,
terminal_points = 3,

plot = TRUE,

annotate = TRUE

)

# Example III: Six-subject nonlinear NCA
df_subjects <- data.frame(
time = rep(c(0.5, 1, 2, 4, 8, 12, 24), 6),
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concentration = c(
15.6, 14.1, 11.7, 7.9, 4.3, 2.8, 1.4, # S1
14.9, 13.5, 11.1, 7.4, 4.0, 2.6, 1.3, # S2
16.3, 14.9, 12.4, 8.4, 4.7, 3.1, 1.6, # S3
15.1, 13.7, 11.3, 7.6, 4.2, 2.7, 1.3, # S4
14.6, 13.2, 10.8, 7.2, 3.9, 2.5, 1.2, # S5
16.0, 14.6, 12.0, 8.1, 4.5, 3.0, 1.5 # S6

),

subject = rep(paste@(”S", 1:6), each = 7)

)
non_compartmental_nl(
data = df_subjects,

time_col = "time",

conc_col = "concentration”,
dose = 150,

group_col = "subject”,
terminal_points = 4,

plot = TRUE,

annotate = FALSE

one_compartment_iv_bolus
One-Compartment IV Bolus Pharmacokinetic Model (Linear)

Description

Fits plasma concentration-time data to the one-compartment intravenous (IV) bolus pharmacoki-
netic model. The model assumes instantaneous drug distribution throughout a single, well-mixed
compartment and first-order elimination kinetics.

The function performs linear regression on log-transformed plasma concentration versus time to
estimate the elimination rate constant (k_el), elimination half-life (t1/2), initial concentration (CO0),
apparent volume of distribution (Vd), and clearance (CL). Optional grouping (e.g., formulation,
subject) and pH-dependent analysis are supported. Publication-quality plots with fitted regression
lines and parameter annotations are generated.

Model: C(t) = CO * exp(-k_el * t)
Linearized form: log(C) = log(CO0) - k_el * t
where:

e C(t) is plasma concentration at time t

* (O is the initial plasma concentration

e k_el is the elimination rate constant
Pharmacokinetic parameters:

e Elimination half-life: t1/2 = In(2) / k_el
e Clearance: CL = Dose / AUC
¢ Volume of distribution: Vd = CL / k_el
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Arguments

data A data frame containing plasma concentration-time data.

time_col Character string specifying the column name for time.

conc_col Character string specifying the column name for plasma concentration.

dose Numeric value specifying the administered IV bolus dose.

group_col Optional character string specifying a grouping variable (e.g., formulation, sub-

ject).

plot Logical; if TRUE, generates a concentration-time plot with fitted lines.

annotate Logical; if TRUE, annotates the plot with PK parameters (only if <=2 groups).
Value

A list containing:

fitted_parameters Data frame with CO, k_el, t1/2, Vd, CL, and R2.
data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Widmark, E. M. P. (1919) Studies in the concentration of indifferent narcotics in blood and tissues.
Acta Medica Scandinavica, 52(1), 87-164.

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.

Examples

# Example I: Single subject IV bolus data
df <- data.frame(
time = c(0.25, 0.5, 1, 2, 4, 6, 8, 12),
concentration = ¢(18.2, 16.1, 13.5, 10.2, 6.8, 4.9, 3.6, 2.1)
)
one_compartment_iv_bolus(
data = df,
time_col = "time",
conc_col = "concentration”,
dose = 100
)

# Example II: Condition-dependent pharmacokinetics (e.g., pH or physiological state)
df_cond <- data.frame(
time = rep(c(0.25, 0.5, 1, 2, 4, 6), 2),
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9.8, 6.4, 4.8, # Condition A
8.0, 5.2, 3.9 # Condition B

rep(c("Condition A", "Condition B"), each = 6)

one_compartment_iv_bolus(
data = df_cond,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "condition”

# Example III: Multiple subjects (population-style IV bolus pharmacokinetics)
df_subjects <- data.frame(
= rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 6),

time

concentration = c(
18.6, 16.3, 13.9,
17.9, 15.7, 13.2,
17.1, 15.0, 12.6,
16.4, 14.4, 12.0,
15.8, 13.9, 11.6,
15.2, 13.3, 11.0,

),

subject =

)

Subject
Subject
Subject
Subject
Subject
Subject

O =N MO
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rep(paste@(”"S", 1:6), each = 7)

one_compartment_iv_bolus(
data = df_subjects,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "subject”

one_compartment_iv_bolus_nl

One-Compartment 1V Bolus Pharmacokinetic Model (Nonlinear)

Description

Fits plasma concentration-time data to a one-compartment intravenous (IV) bolus pharmacokinetic
model using nonlinear regression. The model assumes instantaneous drug distribution throughout a
single, well-mixed compartment and first-order elimination kinetics.

Model parameters are estimated by nonlinear least squares: - Elimination rate constant (k_el) -
Initial plasma concentration (CO) - Apparent volume of distribution (Vd = Dose / C0)

Secondary pharmacokinetic parameters are derived: - Elimination half-life (t1/2 = In(2)/k_el) -
Clearance (CL =k_el * Vd)
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The function supports optional grouping (e.g., subjects, conditions). Publication-quality plots with
fitted curves are generated, and annotations summarizing key PK parameters appear in the upper-
right corner when <= 2 groups.

Model: C(t) = CO * exp(-k_el * t)

Arguments

data A data frame containing plasma concentration-time data.

time_col Character string specifying the column name for time.

conc_col Character string specifying the column name for plasma concentration.

dose Numeric value specifying the administered IV bolus dose.

group_col Optional character string specifying a grouping variable (e.g., subject, condi-

tion).

plot Logical; if TRUE, generates a concentration-time plot with fitted curves.

annotate Logical; if TRUE, annotates the plot with PK parameters (only if <=2 groups).
Value

A list containing:

fitted_parameters Data frame with CO, k_el, t1/2, Vd, CL, RMSE, AIC, and BIC.
data Processed data used for fitting and plotting.

Author(s)
Paul Angelo C. Manlapaz

References

Widmark, E. M. P. (1919) Studies in the concentration of indifferent narcotics in blood and tissues.
Acta Medica Scandinavica, 52(1), 87-164.

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.

Examples

# Example I: Single subject one-compartment IV bolus data
df <- data.frame(
time = c(0.08, 0.25, 0.5, 1, 2, 4, 6, 8, 12),
concentration = ¢(18.2, 16.1, 13.5, 10.2, 6.8, 4.9, 3.6, 2.1, 1.2)

)
one_compartment_iv_bolus_nl(
data = df,
time_col = "time",
conc_col = "concentration”,
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dose = 100
)

# Example II: Condition-dependent pharmacokinetics (e.g., pH or physiological state)
df_cond <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6), 2),

concentration = c(

17.8, 15.6, 13.1, 9.8, 6.4, 4.8, # Condition A
14.9, 13.0, 10.9, 8.0, 5.2, 3.9 # Condition B
),
condition = rep(c("Condition A", "Condition B"), each = 6)

)
one_compartment_iv_bolus_nl(
data = df_cond,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "condition”

# Example III: Multiple subjects (population-style one-compartment IV bolus pharmacokinetics)
df_subjects <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 6),

concentration = c(

18.6, 16.3, 13.9, 10.5, 7.0, 5.1, 3.8, # Subject 1
17.9, 15.7, 13.2, 9.9, 6.6, 4.9, 3.6, # Subject 2
17.1, 15.0, 12.6, 9.4, 6.3, 4.7, 3.4, # Subject 3
16.4, 14.4, 12.0, 9.0, 6.0, 4.4, 3.2, # Subject 4
15.8, 13.9, 11.6, 8.7, 5.8, 4.2, 3.1, # Subject 5
15.2, 13.3, 11.0, 8.3, 5.5, 4.0, 2.9 # Subject 6

),

subject = rep(paste@("”S", 1:6), each = 7)

)
one_compartment_iv_bolus_nl(
data = df_subjects,

time_col = "time",
conc_col = "concentration”,
dose = 100,
group_col = "subject”
)

one_compartment_oral  One-Compartment Oral Pharmacokinetic Model (Linear, First-Order
Absorption)

Description

Fits plasma concentration-time data to the one-compartment oral pharmacokinetic model using a
linearized approach. The model assumes first-order absorption and first-order elimination.

Model: C(t) = (F * Dose * ka/ (Vd * (ka - kel))) * (exp(-kel * t) - exp(-ka * t))
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Linearized approximation: Using log-transformed data in the elimination phase (t » t_max), log(C)
~=1og(CO0) - kel * t

Parameters:

* ka: absorption rate constant

* kel: elimination rate constant

* CO0: apparent initial concentration for elimination phase
¢ t_half: elimination half-life

* Vd: apparent volume of distribution

e CL: clearance

Arguments

data A data frame containing plasma concentration-time data.

time_col Character string specifying the column name for time.

conc_col Character string specifying the column name for plasma concentration.

dose Numeric value specifying the administered oral dose.

group_col Optional character string specifying a grouping variable (e.g., formulation, sub-

ject).

plot Logical; if TRUE, generates a concentration-time plot with fitted lines.

annotate Logical; if TRUE, annotates the plot with PK parameters (only if <=2 groups).
Value

A list containing:

fitted_parameters Data frame with CO, kel, t_half, Vd, CL, and R"2.

data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.
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Examples

# Example I: Single subject oral data
df <- data.frame(

time = c(0.25, 0.5, 1, 2, 4, 6, 8, 12),

concentration = ¢(5.1, 9.8, 14.2, 13.5, 10.2, 6.8, 4.5, 2.1)
)

one_compartment_oral(

data = df,

time_col = "time",

conc_col = "concentration”,
dose = 100

# Example II: Condition-dependent kinetics
df_cond <- data.frame(
time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),
concentration = c(
4.8, 9.5, 13.7, 12.8, 9.2, 6.4, 3.9, # Condition A
5.2, 10.1, 14.0, 12.5, 8.7, 5.8, 3.5 # Condition B
),
condition = rep(c(”"Condition A", "Condition B"), each = 7)
)
one_compartment_oral(
data = df_cond,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "condition”

)

# Example III: Multiple subjects

df_subjects <- data.frame(
time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 10),
concentration = c(

5.0, 9.7, 14.0, 13.2, 10.0, 6.6, 4.2, # Subject 1
4.9, 9.5, 13.8, 12.9, 9.5, 6.3, 4.0, # Subject 2
5.1, 9.9, 14.1, 13.5, 10.3, 6.9, 4.3, # Subject 3
4.8, 9.6, 13.9, 13.1, 9.8, 6.5, 4.1, # Subject 4
5.2, 10.0, 14.3, 13.6, 10.5, 7.1, 4.4, # Subject 5
5.1, 9.8, 14.0, 13.3, 10.1, 6.7, 4.3, # Subject 6
4.9, 9.6, 13.7, 12.8, 9.4, 6.2, 3.9, # Subject 7
5.0, 9.9, 14.2, 13.4, 10.2, 6.8, 4.1, # Subject 8
5.2, 10.1, 14.5, 13.7, 10.7, 7.2, 4.5, # Subject 9
4.8, 9.5, 13.6, 12.7, 9.1, 6.0, 3.8 # Subject 10

),

subject = rep(paste@(”S", 1:10), each = 7)

)

one_compartment_oral(
data = df_subjects,
time_col = "time",
conc_col = "concentration”,
dose = 100,

one_conqxvnnentgnal
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group_col = "subject"

)

one_compartment_oral_nl
One-Compartment Oral Pharmacokinetic Model (Nonlinear, First-
Order Absorption)

Description

Fits plasma concentration-time data to a one-compartment pharmacokinetic model following oral
administration with first-order absorption and first-order elimination. The model assumes that drug
absorption from the gastrointestinal tract and systemic elimination are both proportional to the
amount of drug present (linear kinetics), and that the body can be represented as a single, well-
mixed compartment.

Model parameters are estimated by nonlinear least squares regression for each group (if speci-
fied). The primary parameters include the absorption rate constant (k_a), elimination rate constant
(k_el), and apparent volume of distribution (Vd/F). Model-consistent secondary pharmacokinetic
parameters are derived, including time to maximum concentration (Tmax), maximum concentra-
tion (Cmax), area under the concentration-time curve (AUC), and apparent clearance (CL/F), where
AUC =Dose / (k_el * Vd/F) and CL/F = k_el * Vd/F.

The function includes safeguards against numerical instability when k_a and k_el are similar, en-
forces positive parameter bounds during fitting, and performs validity checks for the computation
of Tmax and Cmax. Model performance is summarized using root mean squared error (RMSE) and
information criteria (AIC and BIC), which are more appropriate than R*2 for nonlinear pharma-
cokinetic models.

If grouping is specified (e.g., by subject or formulation), the model is fit independently to each
group. Groups with insufficient observations trigger a warning, as parameter estimates may be
unreliable.

When plotting is enabled, the function generates publication-quality concentration-time plots show-
ing observed data and the corresponding model-predicted curves based on the fitted parameters.
Annotations summarizing key pharmacokinetic parameters and model diagnostics are optionally
added for one group.

An optional LOESS (locally estimated scatterplot smoothing) curve may be overlaid on the ob-
served data for exploratory visualization only. This smoother is purely descriptive, does not repre-
sent any pharmacokinetic mechanism, and should not be interpreted as part of the fitted model. For
this reason, LOESS smoothing is disabled by default.

Model: C(t) = ((F * Dose * k_a) / (Vd * (k_a - k_el))) * [exp(-k_el * t) - exp(-k_a * t)]

Arguments
data A data frame containing plasma concentration-time data.
time_col Character string specifying the column name for time.

conc_col Character string specifying the column name for plasma concentration.
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dose Numeric value specifying the administered oral dose.
group_col Optional character string specifying a grouping variable (e.g., formulation, sub-
ject).
plot Logical; if TRUE, generates a concentration-time plot with fitted curves.
annotate Logical; if TRUE, annotates the plot with PK parameters (only if <= 2 groups).
Value
A list containing:
fitted_parameters Data frame with k_a, k_el, Tmax, Cmax, Vd/F, CL/F, and R"2.
data Processed data used for fitting and plotting.
Author(s)
Paul Angelo C. Manlapaz
References
Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.
Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.
Examples

# Example I: Single subject oral dosing
df <- data.frame(
time = c(0.25, 0.5, 1, 2, 4, 6, 8, 12),
concentration = c¢(1.2, 2.8, 5.1, 6.4, 5.2, 4.1, 3.0, 1.8)
)
one_compartment_oral_nl(
data = df,
time_col = "time",
conc_col = "concentration”,
dose = 100
)

# Example II: Condition-dependent oral pharmacokinetics (e.g., formulation or pH effect)
df_cond <- data.frame(
time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),

concentration = c(
1.4, 3.1, 5.6, 6.8, 5.9, 4.7, 3.6, # Condition A
0.9, 2.2, 4.1, 5.3, 4.8, 3.9, 3.0 # Condition B
)7
condition = rep(c("Condition A", "Condition B"), each = 7)

)

one_compartment_oral_nl(
data = df_cond,
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time_col = "time",
conc_col = "concentration”,
dose = 100,
group_col = "condition”

)

# Example III: Multiple subjects (population-style oral
df_subjects <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8, 12), 6),

concentration = c(
1.3, 3.9, 5.4, 6.7, 5.8, 4.6, 3.5, 2.3, # Subject
1.1, 2.7, 5.0, 6.3, 5.5, 4.4, 3.3, 2.2, # Subject
1.0, 2.5, 4.7, 6.0, 5.3, 4.2, 3.2, 2.1, # Subject
0.9, 2.3, 4.4, 5.7, 5.0, 4.0, 3.0, 2.0, # Subject
0.8, 2.1, 4.1, 5.4, 4.8, 3.8, 2.9, 1.9, # Subject
0.7, 2.0, 3.9, 5.2, 4.6, 3.7, 2.8, 1.8 # Subject

),

subject = rep(paste@(”S", 1:6), each = 8)

)

one_compartment_oral_nl(
data = df_subjects,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "subject"

37

pharmacokinetics)

o Ul A W N =

sigmoid_emax

Sigmoid Emax (Stimulatory Hill Model) for Dose-Response Analysis

Description

Fits pharmacodynamic dose-response data to the stimulatory Hill (Sigmoid Emax) model using

nonlinear least squares regression.

The stimulatory Hill model describes increasing pharmacological effects with increasing dose (or

concentration) according to:

Emam - D"
E=F —_
" " ECy, 1 D

where Fj is the baseline effect, F,,,,, is the maximum stimulatory effect, EF'C'5 is the dose produc-

ing 50 Ey,q., and n is the Hill coefficient.

This model is appropriate when the observed response increases monotonically with dose.

Arguments
data A data frame containing dose-response experimental data.
dose_col Character string specifying the column name for dose or concentration.



38

response_col

sigmoid_emax

Character string specifying the column name for measured response.
Optional character string specifying a column for grouping.

Logical; if TRUE, dose values are log10-transformed for plotting (model fitting

Logical; if TRUE, generates a dose-response plot with fitted Hill curves.

Logical; if TRUE, annotates the plot with model parameters and fit metrics (only

group_col
log_dose
uses original dose values).
plot
annotate
if <=1 group).
Value

A list containing:

fitted_parameters Data frame with EO, Emax, EC50, Hill coefficient (n), RMSE, AIC, and BIC
values for each group.

data The processed dataset used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Hill, A. V. (1910) The possible effects of the aggregation of the molecules of h&moglobin on its
dissociation curves. The Journal of Physiology, 40(4), iv—vii.

Holford, N. H. G. & Sheiner, L. B. (1981) <doi:10.2165/00003088-198106060-00002> Under-
standing the dose-effect relationship. Clinical Pharmacokinetics, 6(6), 429—453.

Examples

# Example I: Single dose-response dataset
df <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(5, 10, 25, 55, 80, 92, 98)
)
sigmoid_emax(
data = df,
dose_col = "dose”,
response_col = "response”

)

# Example II: Two treatment groups
df2 <- data.frame(
dose = rep(c(@.1, 0.3, 1, 3, 10, 30), 2),
response = c(
3, 8, 20, 45, 70, 85, # Group A
2, 6, 15, 35, 60, 78 # Group B
),

treatment = rep(c(”"Group A", "Group B"), each = 6)

)

sigmoid_emax(
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data = df2,

dose_col = "dose",
response_col = "response”,
group_col = "treatment”,

log_dose = TRUE
)

# Example III: Multiple subjects (population-style dose-response pharmacodynamics)
df_subjects <- data.frame(
dose = rep(c(0.1, 0.3, 1, 3, 10, 30), 5),
response = c(
5, 13, 30, 56, 80, 92, # Subject
4, 12, 28, 54, 78, 90, # Subject
6, 15, 33, 59, 83, 95, # Subject
5, 14, 31, 57, 81, 93, # Subject
3, 11, 26, 52, 76, 88 # Subject

g w N =

)Y

subject = rep(paste@(”S", 1:5), each = 6)
)
sigmoid_emax(

data = df_subjects,

dose_col = "dose",
response_col = "response”,
group_col = "subject”,
log_dose = TRUE
)
sigmoid_imax Sigmoid Imax (Inhibitory Hill Model) for Dose-Response Analysis
Description

Fits pharmacodynamic dose-response data to the inhibitory Hill (Sigmoid Imax) model using non-
linear least squares regression.

The inhibitory Hill model describes decreasing pharmacological effects with increasing dose (or
concentration) according to:

B = EO _ Im’aa: - D"
ICy) + D
An equivalent parameterization is:

(Eo — Epin) - ICE,
105 + D"

where Fj is the baseline response, [, is the maximum inhibitory effect, /(5 is the dose pro-
ducing 50 inhibition, and n is the Hill coefficient.

This model is appropriate when the observed response decreases monotonically with increasing
dose.
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Arguments
data A data frame containing dose-response experimental data.
dose_col Character string specifying the column name for dose or concentration.

response_col Character string specifying the column name for measured response.

group_col Optional character string specifying a column for grouping.

log_dose Logical; if TRUE, dose values are log10-transformed for plotting (model fitting
uses original dose values).

plot Logical; if TRUE, generates a dose-response plot with fitted Hill curves.

annotate Logical; if TRUE, annotates the plot with model parameters and fit metrics (only

if <=1 group).

Value
A list containing:

fitted_parameters Data frame with EO, Imax, IC50, Hill coefficient (n), RMSE, AIC, and BIC
values for each group.

data The processed dataset used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Holford, N. H. G. & Sheiner, L. B. (1981) <doi:10.2165/00003088-198106060-00002> Under-
standing the dose-effect relationship. Clinical Pharmacokinetics, 6(6), 429-453.

Examples

# Example I: Single inhibitory dose-response dataset
df <- data.frame(
dose = c(0.1, 0.3, 1, 3, 10, 30, 100),
response = c(95, 90, 75, 45, 20, 8, 3)
)
sigmoid_imax(
data = df,
dose_col = "dose",
response_col = "response”

)

# Example II: Two treatment groups (e.g., two inhibitors or conditions)
df2 <- data.frame(
dose = rep(c(0.1, 0.3, 1, 3, 10, 30), 2),
response = c(
92, 85, 65, 40, 18, 7, # Group A (stronger inhibitor)
95, 88, 72, 50, 30, 15 # Group B (weaker inhibitor)

)Y
treatment = rep(c("Group A", "Group B"), each = 6)
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)

sigmoid_imax(
data = df2,
dose_col = "dose",
response_col = "response”,
group_col = "treatment”,
log_dose = TRUE

)

# Example III: Multiple subjects (population-style inhibitory pharmacodynamics)
df_subjects <- data.frame(
dose = rep(c(@.1, 0.3, 1, 3, 10, 30), 5),
response = c(
94, 86, 68, 42, 20, 9, # Subject 1
96, 88, 70, 45, 22, 10, # Subject 2
93, 84, 65, 40, 18, 8, # Subject 3
95, 87, 69, 44, 21, 9, # Subject 4
97, 89, 72, 48, 25, 12 # Subject 5
),
subject = rep(paste@("S", 1:5), each = 6)
)
sigmoid_imax(
data = df_subjects,

dose_col = "dose",
response_col = "response”,
group_col = "subject”,
log_dose = TRUE
)
td50_model Toxic Dose 50 (TD50) Pharmacodynamic Model
Description

Fits quantal toxicity response data to a logistic dose-response model to estimate the Toxic Dose 50
(TD50), defined as the dose producing toxicity in 50

The model uses binomial logistic regression and supports optional grouping (e.g., sex, species,
formulation) and stratification by experimental conditions (e.g., exposure route).

In addition to TD50 estimation, the model provides the following interpretable parameters:

* Slope: Represents the steepness of the dose-response curve. A larger slope indicates a rapid
increase in toxicity with small increases in dose (narrow tolerance or high population sen-
sitivity), whereas a smaller slope reflects a more gradual response, suggesting greater inter-
individual variability in susceptibility.

* Intercept: Represents the baseline log-odds of observing toxicity at zero dose. A strongly
negative intercept indicates minimal background toxicity, while a positive intercept suggests
appreciable toxicity in the absence of administered dose, which may indicate experimental
bias or background risk.
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* TD50 95% Confidence Interval: An approximate 95 interval for the TD50, computed using
the delta method. This provides an uncertainty range around the estimated dose causing 50

+ McFadden Pseudo-R?: A likelihood-based measure of model goodness-of-fit that quantifies
how much better the fitted model explains the data compared to a null (intercept-only) model.
Values between 0.1 and 0.2 indicate acceptable biological fit, while values above 0.3 suggest
a strong and reliable dose-response relationship.

The function can generate dose-response plots with fitted curves and annotate TD50, slope, inter-
cept, TD50 confidence intervals, and McFadden pseudo-R2.

Arguments
data A data frame containing toxicity response data.
dose_col Character string specifying the dose column.

response_col  Character string specifying the binary toxicity response (0 = no toxicity, 1 =
toxic response).

group_col Optional character string specifying a grouping variable.

condition_col Optional character string specifying an experimental condition.

plot Logical; if TRUE, generates dose-response plots.

annotate Logical; if TRUE, annotates the plot with TD50, confidence intervals, and model

parameters (only if <=2 groups).
Value
A list containing:

fitted_parameters Data frame with TDS50, 95 slope, intercept, and pseudo-R2 values for each
group.
data The processed data used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Bliss, C. I. (1935) <doi:10.1111/j.1744-7348.1935.tb07713.x> The calculation of the dosage-mortality

curve. Annals of Applied Biology, 22(1), 134-167.

Finney, D. J. (1971) <isbn:9780521080415> Probit Analysis, 3rd Edition. Cambridge University
Press, Cambridge.

Examples

# Example I: Single population toxicity study
df1 <- data.frame(

dose = c(5, 10, 20, 40, 80, 160),

toxic = c(0, 0, @, 1, 1, 1)
)



two_compartment_iv_bolus 43

td50_model(
data = df1,
dose_col = "dose",
response_col = "toxic"

)

# Example II: Grouped analysis (Male vs Female)
df2 <- data.frame(

dose = rep(c(5, 10, 20, 40, 80), 2),

toxic = ¢(0,0,1,1,1, 0,0,0,1,1),

sex = rep(c(”"Male”,"Female"), each = 5)

)

td50_model(
data = df2,
dose_col = "dose",
response_col = "toxic",
group_col = "sex"

)

# Example III: Grouped by formulation and exposure route
df3 <- data.frame(
dose = rep(c(10, 25, 50, 100), 4),
toxic = c(0,0,1,1, ©,1,1,1, 0,0,0,1, 0,0,1,1),
formulation = rep(c("A","B"), each = 8),
route = rep(c(”"Oral”,"IV"), each = 4, times = 2)

)

td50_model (
data = df3,
dose_col = "dose",
response_col = "toxic",
group_col = "formulation”,
condition_col = "route”

)

two_compartment_iv_bolus
Two-Compartment 1V Bolus Pharmacokinetic Model (Linear)

Description

Fits plasma concentration-time data following an intravenous (IV) bolus dose using a **log-linear
approximation of a two-compartment pharmacokinetic model**.

This function applies linear regression to the logarithm of plasma concentrations versus time to esti-
mate the **terminal elimination phase** parameters. The approach provides an empirical approxi-
mation to a biexponential decline but does **not explicitly decompose** the curve into distribution
and elimination exponentials.

Under the two-compartment IV bolus model, concentration-time profiles are classically described
by:
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C(t) = Ae™* + Be™ P

In this implementation, the terminal log-linear phase is approximated as:

log(C) =log(Co) — ke t

where C is the extrapolated initial concentration and k.; is the apparent elimination rate constant.

From the fitted log-linear model, secondary pharmacokinetic parameters are derived, including ter-
minal half-life, apparent volume of distribution, and clearance.

Arguments
data A data frame with plasma concentration-time data.
time_col Character string for the time column.
conc_col Character string for plasma concentration column.
dose Numeric value specifying IV bolus dose.
group_col Optional character string specifying grouping variable.
plot Logical; if TRUE, generates concentration-time plots.
annotate Logical; if TRUE, annotates plot (only if <=2 groups).
Value

A list containing:

fitted_parameters Data frame with CO, kel, t_half, Vd, CL, and R*2 for each group.

data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.
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Examples

# Example I: Single subject two-compartment IV bolus data
df <- data.frame(

time = c(0.08, 0.25, 0.5, 1, 2, 4, 6, 8, 12),

concentration = c(40.0, 30.5, 25.0, 17.5, 10.2, 6.4, 4.1, 2.8, 1.5)
)

two_compartment_iv_bolus(

data = df,
time_col = "time",
conc_col = "concentration”,
dose = 100
)

# Example II: Condition-dependent pharmacokinetics (e.g., physiological state)
df_cond <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),

concentration = c(

25.3, 22.1, 18.5, 13.2, 8.5, 5.6, 3.8, # Condition A
20.7, 18.0, 14.9, 11.3, 7.1, 4.7, 3.2 # Condition B
),
condition = rep(c("Condition A", "Condition B"), each = 7)
)

two_compartment_iv_bolus(
data = df_cond,

time_col = "time",
conc_col = "concentration”,
dose = 100,
group_col = "condition”
)

# Example III: Multiple subjects (population-style two-compartment IV bolus pharmacokinetics)
df_subjects <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 5),

concentration = c(

26.1, 23.2, 19.6, 14.0, 9.0, 6.0, 4.0, # Subject 1
24.8, 21.8, 18.4, 13.3, 8.8, 5.8, 3.9, # Subject 2
25.5, 22.5, 19.0, 13.8, 8.7, 5.7, 3.7, # Subject 3
23.9, 20.9, 17.7, 12.8, 8.4, 5.5, 3.5, # Subject 4
24.4, 21.5, 18.0, 13.0, 8.5, 5.6, 3.6  # Subject 5
),
subject = rep(paste@("S", 1:5), each = 7)

)
two_compartment_iv_bolus(
data = df_subjects,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "subject”
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two_compartment_iv_bolus_nl
Two-Compartment IV Bolus Pharmacokinetic Model (Nonlinear)

Description

Fits plasma concentration-time data to a two-compartment intravenous (IV) bolus pharmacokinetic
model. The model assumes instantaneous drug administration and distribution between central and
peripheral compartments, with first-order elimination.

Model: C(t) = A * exp(-alpha * t) + B * exp(-beta * t)
where:
* A, B: intercept coefficients

* alpha: distribution rate constant (alpha > beta)

¢ beta: elimination rate constant

Arguments

data A data frame containing plasma concentration-time data.

time_col Character string specifying the column name for time.

conc_col Character string specifying the column name for plasma concentration.

dose Numeric value specifying the administered IV bolus dose.

group_col Optional character string specifying a grouping variable (e.g., formulation, sub-

ject).

plot Logical; if TRUE, generates a concentration-time plot with fitted curves.

annotate Logical; if TRUE, annotates the plot with PK parameters (only if <=2 groups).
Value

A list containing:

fitted_parameters Dataframe with biexponential coefficients (A and B), alpha, beta, t_half_alpha,
t_half_beta, and R”2 for each group.

data Processed data used for fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References
Gibaldi, M. & Perrier, D. (1982) <isbn:9780824710422> Pharmacokinetics, 2nd Edition. Marcel
Dekker, New York.

Gabrielsson, J. & Weiner, D. (2000) <isbn:9186274929> Pharmacokinetic/Pharmacodynamic Data
Analysis: Concepts and Applications, 3rd Edition, Revised and Expanded. Swedish Pharmaceutical
Press, Stockholm.
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Examples

# Example I: Single subject two-compartment IV bolus data
df <- data.frame(

time = c(0.08, 0.25, 0.5, 1, 2, 4, 6, 8, 12),

concentration = c(40.0, 30.5, 25.0, 17.5, 10.2, 6.4, 4.1, 2.8, 1.5)
)

two_compartment_iv_bolus_nl(

data = df,
time_col = "time",
conc_col = "concentration”,
dose = 100
)

# Example II: Condition-dependent pharmacokinetics (e.g., physiological state)
df_cond <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 2),

concentration = c(

25.3, 22.1, 18.5, 13.2, 8.5, 5.6, 3.8, # Condition A
20.7, 18.0, 14.9, 11.3, 7.1, 4.7, 3.2 # Condition B
),
condition = rep(c("Condition A", "Condition B"), each = 7)
)

two_compartment_iv_bolus_nl(
data = df_cond,

time_col = "time",
conc_col = "concentration”,
dose = 100,
group_col = "condition”
)

# Example III: Multiple subjects (population-style two-compartment IV bolus pharmacokinetics)
df_subjects <- data.frame(

time = rep(c(0.25, 0.5, 1, 2, 4, 6, 8), 5),

concentration = c(

26.1, 23.2, 19.6, 14.0, 9.0, 6.0, 4.0, # Subject 1
24.8, 21.8, 18.4, 13.3, 8.8, 5.8, 3.9, # Subject 2
25.5, 22.5, 19.0, 13.8, 8.7, 5.7, 3.7, # Subject 3
23.9, 20.9, 17.7, 12.8, 8.4, 5.5, 3.5, # Subject 4
24.4, 21.5, 18.0, 13.0, 8.5, 5.6, 3.6  # Subject 5
),
subject = rep(paste@("S", 1:5), each = 7)

)
two_compartment_iv_bolus_nl(
data = df_subjects,

time_col = "time",

conc_col = "concentration”,
dose = 100,

group_col = "subject”
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weibull_model Weibull Drug Release Kinetic Model

Description

Fits experimental cumulative drug release data to the Weibull model using a linearized regression of
log(-log(1 - Mt/MlInf)) versus log(time).The function automatically normalizes cumulative percent
drug release to fraction (0-1) by default and removes t = 0. In addition, the function supports op-
tional grouping variables (e.g., formulation, batch) and optional pH-dependent analysis. It generates
publication-quality plots with experimental curves, fitted Weibull straight lines, a shape-parameter
interpretation table, and annotations for the scale parameter (alpha), shape parameter (beta), coeffi-
cient of determination (R*2), and the time required for 50-percent drug release (t50).

Users can toggle 'normalize = TRUE/FALSE’ to use fraction (0-1) or raw percent drug release.
Normalization is recommended (fraction release) because the model assumes 0 <= Mt/MlInf <= 1.

Model: log(-log(1 - Mt/MInf)) = beta * log(t) - beta * log(alpha)

The shape parameter beta indicates release kinetics: - beta = 1 : Exponential (first-order release) -
beta < 1 : Parabolic (decelerating release) - beta > 1 : Sigmoidal (accelerating then decelerating)

Arguments
data A data frame containing experimental cumulative percent drug release data.
time_col Character string specifying the column name for time (minutes).
release_col Character string specifying the column name for cumulative percent drug release
or fraction released.
group_col Optional character string specifying a grouping variable (e.g., formulation, batch).
pH_col Optional character string specifying a column containing pH values.
plot Logical; if TRUE, generates a plot with fitted Weibull release curves.
annotate Logical; if TRUE, annotates the plot with alpha, beta, R*2, and t50 (only if <=
2 groups).
normalize Logical; if TRUE (default), normalizes cumulative percent drug release to frac-
tion released (0-1). If FALSE, assumes the input release data are already ex-
pressed as fraction released.
Value

A list containing:

fitted_parameters Data frame with Weibull parameters (alpha, beta), R*2, and t50 for each
group.
data Processed data used for model fitting and plotting.
Author(s)

Paul Angelo C. Manlapaz
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References

Weibull, W. (1951) <doi:10.1115/1.4010337> A statistical distribution function of wide applicabil-
ity. Journal of Applied Mechanics, 18(3), 293-297.

Examples

# Example I: Single formulation
df1 <- data.frame(
time = c(@, 15, 30, 45, 60, 90, 120, 150, 180),
release = c(0, 11.4, 20.8, 30.8, 39.8, 57.8, 72, 84.8, 93.5)
)
weibull_model(
data = df1,
time_col = "time",
release_col = "release”,
normalize = TRUE

)

# Example II: Two formulations (grouped, not pH-dependent)
df2 <- data.frame(
time = rep(c(@, 15, 30, 45, 60, 75, 90, 105, 120, 150), 2),
release = c(
0, 10, 22, 35, 48, 60, 72, 80, 86, 92, # Formulation A

o, 8, 18, 28, 38, 48, 58, 64, 68, 72 # Formulation B

),

formulation = rep(c("Formulation A", "Formulation B"), each = 10)
)
weibull_model(

data = df2,

time_col = "time",

release_col = "release”,

group_col = "formulation”
)

# Example III: pH-dependent release

df_pH <- data.frame(
time = rep(c(@, 27, 60, 88, 95, 120, 138, 155, 175, 180), 2),
release = c(

e, 12, 25, 38, 52, 63, 72, 80, 88, 95, # pH 7.4
o, 10, 20, 30, 42, 53, 63, 70, 77, 85 # pH 4.5
),
pH = rep(c(7.4, 4.5), each = 10)
)
weibull_model(
data = df_pH,
time_col = "time",
release_col = "release”,
pH_col = "pH"
)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
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time = rep(c(0, 20, 40, 60, 80, 100, 120, 140, 160, 180), 2),
release = c(
o, 12, 25, 38, 50, 62, 73, 82, 89, 95, # pH 4.5
o, 15, 30, 45, 59, 70, 79, 86, 91, 97 # pH 7.6
)Y
pH = rep(c(4.5, 7.6), each = 10)
)
df2 <- data.frame(
time = rep(c(0, 15, 30, 45, 60, 75, 90, 105, 120, 135), 2),
release = c(

o, 10, 22, 34, 46, 57, 67, 76, 84, 91, # pH 4.5
o, 13, 27, 41, 55, 67, 77, 85, 92, 98 # pH 7.6
),
pH = rep(c(4.5, 7.6), each = 10)
)
df_all <- rbind(
cbind(formulation = "Dataset 1", df1),
cbind(formulation = "Dataset 2", df2)
)
weibull_model(
data = df_all,
time_col = "time",
release_col = "release”,
group_col = "formulation”,
pH_col = "pH"
)
zero_order_release Zero-Order Drug Release Kinetic Model
Description

Fits experimental cumulative drug release data to a zero-order kinetic model using linear regres-
sion. The function supports optional grouping variables (e.g., formulation, batch) and optional
pH-dependent analysis. It can generate publication-quality plots with fitted straight lines and an-
notations for zero-order rate constant (k0O), intercept, coefficient of determination (R*2), and time
required for 50-percent drug release (t50).

Arguments

data A data frame containing experimental drug release data.

time_col Character string specifying the column name for time (e.g., minutes or hours).

release_col Character string specifying the column name for cumulative drug release (typi-
cally percentage).

group_col Optional character string specifying a column name used for grouping (e.g.,
formulation, batch). Default is NULL.

pH_col Optional character string specifying a column name containing pH values. If

provided, zero-order models are fitted separately for each pH.
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plot Logical; if TRUE, generates a plot of experimental data with zero-order fitted
straight lines (default is TRUE).

annotate Logical; if TRUE, annotates the plot with k0, intercept, R*2, and t50 values for
each group (default is TRUE).

Value

A list containing:

fitted_parameters A data frame with kO, intercept, R"2, and t50 values for each group or pH
condition.

data The processed data used for model fitting and plotting.

Author(s)

Paul Angelo C. Manlapaz

References

Higuchi, T. (1961) <doi:10.1002/jps.2600501018> Rate of release of medicaments from ointment
bases containing drugs in suspension. Journal of Pharmaceutical Sciences, 50(10), 874-875.

Examples

# Example I: Single formulation
df_1 <- data.frame(
time = c(0, 15, 30, 45, 60, 90, 120, 150, 180),
release = c(0, 11.4, 20.8, 30.8, 39.8, 57.8, 72, 84.8, 93.5)
)
zero_order_release(
data = df_1,
time_col = "time",
release_col = "release”

)

# Example II: Two formulations (grouped, not pH-dependent)
df_2 <- data.frame(
time = rep(c(0, 30, 60, 90, 120, 150), 2),
release = c(
o, 18, 35, 55, 72, 88, # Formulation A
0, 12, 26, 40, 58, 70 # Formulation B

),

formulation = rep(c(”"Formulation A", "Formulation B"), each = 6)
)
zero_order_release(

data = df_2,

time_col = "time",

release_col = "release”,

group_col = "formulation”
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# Example III: pH-dependent release
df_pH <- data.frame(
time = rep(c(0, 60, 120, 180), 2),
release = c(0, 40, 75, 95, 0, 30, 60, 80),
pH = rep(c(7.4, 4.5), each = 4)
)
zero_order_release(
data = df_pH,
time_col = "time",
release_col = "release”,
pH_col = "pH"
)

# Example IV: Two formulations under two pH conditions
df1 <- data.frame(
time = rep(c(@, 30, 60, 90, 120, 150, 180), 2),
release = c(

0, 12, 25, 38, 52, 65, 78, # pH 4.5
0, 15, 30, 47, 63, 78, 90 # pH 7.6
)Y
pH = rep(c(4.5, 7.6), each = 7)
)

df2 <- data.frame(
time = rep(c(Q, 20, 40, 60, 80, 100, 120), 2),
release = c(
0, 10, 22, 35, 50, 64, 77, #
0, 14, 28, 45, 61, 76, 88 #
),
pH = rep(c(4.5, 7.6), each = 7)
)
df_all <- rbind(
cbind(dataset = "Dataset 1", df1),
cbind(dataset = "Dataset 2", df2)
)
zero_order_release(
data = df_all,
time_col = "time",
release_col = "release”,
group_col = "dataset”,
pH_col = "pH"

zero_order release
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