Package 'pempi'

July 23, 2025

Type Package

Title Proportion Estimation with Marginal Proxy Information

Version 1.0.0

Date 2023-09-15

LazyData true

Maintainer Stéphane Guerrier <stef.guerrier@gmail.com>

Description A system contains easy-to-use tools for the conditional estimation of the prevalence of an emerging or rare infectious diseases using the methods proposed in Guerrier et al. (2023) <doi:10.48550/arXiv.2012.10745>.

Depends R (>= 4.0.0)

License AGPL-3

RoxygenNote 7.2.3

Encoding UTF-8

Suggests knitr, rmarkdown

VignetteBuilder knitr

URL https://github.com/stephaneguerrier/pempi

BugReports https://github.com/stephaneguerrier/pempi/issues

NeedsCompilation no

Author Stéphane Guerrier [aut, cre], Maria-Pia Victoria-Feser [aut], Christoph Kuzmics [aut]

Repository CRAN

Date/Publication 2023-10-09 12:20:02 UTC

Contents

conditional_mle .																			•									•		2
covid19_austria .							•	•	•	•		•	•	•					•						•			•	•	4
get_prob	 •	•	•	•	 •	•	•	•	•	•		•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•		5

marginal_mle							 	•										6
moment_estimator							 											8
sim_Rs							 											10
survey_mle							 											11
update_prevalence							 											12
																		15

Index

conditional_mle *Compute MLE based on the full information R1, R2, R3 and R4.*

Description

Proportion estimated using the MLE and confidence intervals based the asymptotic distribution of the estimator.

Usage

```
conditional_mle(
    R1 = NULL,
    R2 = NULL,
    R3 = NULL,
    R4 = NULL,
    n = R1 + R2 + R3 + R4,
    pi0,
    gamma = 0.05,
    alpha0 = 0,
    alpha = 0,
    beta = 0,
    V = NULL,
    ...
)
```

R1	A numeric that provides the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
R2	A numeric that provides the number of participants in the survey sample that are tested positive only with the first testing device (and are, thus, members of the sub-population).
R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
R4	A numeric that provides the number of participants that are tested negative with the second testing device (and are either members of the sub-population and have tested negative with the first testing device or are not members of the sub- population).

n	A numeric that provides the sample size. Default value $R1 + R2 + R3 + R4$. If this value is provided it is used to verify that $R1 + R2 + R3 + R4 = n$.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a $(1 - gamma)$ confidence region for the proportion. Default value is 0.05 .
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
٧	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
	Additional arguments.

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case mle).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

Examples

```
# Samples without measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0)
# With measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha0 = 0.001,
alpha = 0.01, beta0 = 0.05, beta = 0.05, seed = 18)
conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0)
conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0,
alpha0 = 0.001, alpha = 0.01, beta = 0.05)
```

covid19_austria COVID-19 Data from Statistics Austria

Description

Data collected in Austria in 2020 (see e.g. SORA, 2020; Kowarik et al., 2021, for more details), allowing to estimate COVID-19 prevalence.

Usage

covid19_austria

Format

A matrix with 2290 rows and 3 variables:

Y Binary variable, 1 if participant i is tested positive in the survey sample, 0 otherwise.

Z Binary variable, 1 if participant i was declared positive with the official procedure, 0 otherwise.

weights Sampling weights.

Source

Statistics Austria. 2020. "Prävalenz von SARS-CoV-2-Infektionen liegt bei 0.031."

4

get_prob

Description

Compute joint probabilities of P(W = j, Y = k) for j, k = 0, 1.

Usage

get_prob(theta, pi0, alpha, beta, alpha0)

Arguments

theta	A numeric that provides the true prevalence of a given disease.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
alpha	A numeric that provides the False Negative (FN) rate for the sample R.
beta	A numeric that provides the False Positive (FP) rate for the sample R.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero.

Value

A vector containing tau1, tau2, tau3 and tau4.

Author(s)

Stephane Guerrier

Examples

```
prob1 = get_prob(theta = 0.02, pi0 = 0.01, alpha = 0, beta = 0, alpha0 = 0)
prob1
sum(prob1)
prob2 = get_prob(theta = 0.02, pi0 = 0.01, alpha = 0.001, beta = 0, alpha0 = 0.001)
prob2
sum(prob2)
```

marginal_mle

Description

Proportion estimated using the MLE and confidence intervals based the asymptotic distribution of the estimator.

Usage

```
marginal_mle(
    R1,
    R3,
    n,
    pi0,
    gamma = 0.05,
    alpha = 0,
    beta = 0,
    alpha0 = 0,
    V = NULL,
    ...
)
```

R1	A numeric that provides the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a $(1 - gamma)$ confidence region for the proportion. Default value is 0.05.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0 .
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0 .
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.

marginal_mle

V	A numeric that corresponds to the average of squared sampling weights. Default
	value is NULL and for the moment this method is currently only implemented for
	random sampling.
	Additional arguments.

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case marginal mle).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

Examples

```
# Samples without measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, n = X$n, pi0 = X$pi0)
# With measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha0 = 0.001,
alpha = 0.01, beta0 = 0.05, beta = 0.05, seed = 18)
marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0)
marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0,
alpha0 = 0.001, alpha = 0.01, beta0 = 0.05, beta = 0.05)
```

moment_estimator

Description

Proportion estimated using the moment-based estimator and confidence intervals based the asymptotic distribution of the estimator as well as the Clopper-Pearson approach.

Usage

```
moment_estimator(
    R3,
    n,
    pi0,
    gamma = 0.05,
    alpha = 0,
    beta = 0,
    alpha0 = 0,
    V = NULL,
    ...
)
```

R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a $(1 - \text{gamma})$ confidence region for the proportion. Default value is 0.05 .
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
V	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
	Additional arguments.

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- ci_cp: Confidence interval (1 gamma confidence level) based on the Clopper-Pearson approach.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case moment estimator).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

Examples

```
# Samples without measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
moment_estimator(R3 = X$R3, n = X$n, pi0 = X$pi0)
```

With measurement error X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, alpha0 = 0.001, alpha = 0.01, beta = 0.05, seed = 18) moment_estimator(R3 = X\$R3, n = X\$n, pi0 = X\$pi0) moment_estimator(R3 = X\$R3, n = X\$n, pi0 = X\$pi0, alpha0 = 0.001, alpha = 0.01, beta = 0.05) sim_Rs

Description

Simulation function for random variables of interest.

Usage

sim_Rs(theta, pi0, n, alpha0 = 0, alpha = 0, beta = 0, seed = NULL, ...)

Arguments

theta	A numeric that provides the true prevalence of a given disease.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
n	A numeric that corresponds to the sample size.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
seed	A numeric that provides the simulation seed. Default value is NULL.
	Additional arguments.

Value

A cpreval_sim object (list) with the structure:

- R: the number of participants in the survey sample that were tested positive.
- R0: the number of participants in the survey sample that were tested positive with the first testing device (and are, thus, members of the sub-population).
- R1: the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
- R2: the number of participants in the survey sample that are tested positive only with the first testing device (and are, thus, members of the sub-population).
- R3: the number of participants in the survey sample that are tested positive only with the second testing device.
- R4: the number of participants that are tested negative with the second testing device (and are either members of the sub-population and have tested negative with the first testing device or are not members of the sub-population).

survey_mle

- n: the sample size.
- alpha: the False Negative (FN) rate for the sample R.
- beta: the False Positive (FP) rate for the sample R.
- alpha0: the alpha0 probability (as defined above).
- ...: additional arguments.

Author(s)

Stephane Guerrier

Examples

```
# Samples without measurement error
sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
# With measurement error
sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, alpha0 = 0,
alpha = 0.01, beta = 0.05, seed = 18)
```

```
survey_mle
```

Compute proportion in the survey sample (standard estimator)

Description

Proportion estimated using the survey sample and confidence intervals based on the Clopper-Pearson and the standard asymptotic approach.

Usage

survey_mle(R, n, pi0 = 0, alpha = 0, beta = 0, gamma = 0.05, V = NULL, ...)

R	A numeric that provides the people of positive people in the sample.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection). Default value is 0 and in this case this information is not used in the estimation procedure.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
gamma	A numeric that is used to compute a $(1 - gamma)$ confidence region for the proportion. Default value is 0.05 .
V	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
	Additional arguments.

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case sample survey).
- measurement: A vector with (alpha0, alpha, beta).
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

Examples

```
# Samples without measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, seed = 18)
survey_mle(R = X$R, n = X$n)
# With measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha = 0.01, beta = 0.05, seed = 18)
survey_mle(R = X$R, n = X$n)
survey_mle(R = X$R, n = X$n)
```

update_prevalence Update prevalence using new case prevalence rates

Description

Updated prevalence and confidence intervals using new case prevalence rates

update_prevalence

Usage

```
update_prevalence(
    pi0_new,
    x,
    gamma = 0.05,
    print = NULL,
    plot = NULL,
    col_line = "#2e5dc1",
    col_ci = "#2E5DC133",
    ...
)
```

Arguments

pi0_new	A numeric or vector of new case prevalence rates
x	A cpreval object.
gamma	A numeric that used to compute a $(1 - \text{gamma})$ confidence region for the proportion. Default value is 0.05 .
print	A boolean indicating whether or not the output should be print.
plot	A boolean indicating whether or not a plot should be made.
col_line	Color of the estimated prevalence.
col_ci	Color of the estimated prevalence confidence interval.
	Additional arguments.

Value

A matrix object whose columns corresponds to pi0, estimate, sd and CI.

Author(s)

Stephane Guerrier

Examples

```
# Austrian data (November 2020)
pi0 = 93914/7166167
data("covid19_austria")
```

```
# Weighted sampling
n = nrow(covid19_austria)
R1w = sum(covid19_austria$weights[covid19_austria$Y == 1 & covid19_austria$Z == 1])
R2w = sum(covid19_austria$weights[covid19_austria$Y == 0 & covid19_austria$Z == 1])
R3w = sum(covid19_austria$weights[covid19_austria$Y == 1 & covid19_austria$Z == 0])
R4w = sum(covid19_austria$weights[covid19_austria$Y == 0 & covid19_austria$Z == 0])
# Assumed measurement errors
```

```
# Assumed measurement error
alpha0 = 0
alpha = 1/100
```

```
beta = 10/100
```

MME

mme

Update prevalence using a new pi0, say = 1.5%, instead of 1.31% update_prevalence(1.5/100, mme)

pi0_new = seq(from = 0.005, to = 0.03, length.out = 100)
update_prevalence(pi0_new, mme)

Index

* datasets
 covid19_austria, 4

conditional_mle, 2
covid19_austria, 4

 $get_prob, 5$

marginal_mle, 6
moment_estimator, 8

sim_Rs, 10
survey_mle, 11

update_prevalence, 12