pdcor: Fast and Light-Weight Partial Distance Correlation
Fast and memory-less computation of the partial distance correlation for vectors and matrices. Permutation-based and asymptotic hypothesis testing for zero partial distance correlation are also performed. References include: Szekely G. J. and Rizzo M. L. (2014). "Partial distance correlation with methods for dissimilarities". The Annals Statistics, 42(6): 2382–2412. <doi:10.1214/14-AOS1255>. Shen C., Panda S. and Vogelstein J. T. (2022). "The Chi-Square Test of Distance Correlation". Journal of Computational and Graphical Statistics, 31(1): 254–262. <doi:10.1080/10618600.2021.1938585>. Szekely G. J. and Rizzo M. L. (2023). "The Energy of Data and Distance Correlation". Chapman and Hall/CRC. <ISBN:9781482242744>. Kontemeniotis N., Vargiakakis R. and Tsagris M. (2025). On independence testing using the (partial) distance correlation. <doi:10.48550/arXiv.2506.15659>.  
| Version: | 1.2 | 
| Depends: | R (≥ 4.0) | 
| Imports: | dcov, Rfast, Rfast2, stats | 
| Published: | 2025-07-02 | 
| DOI: | 10.32614/CRAN.package.pdcor | 
| Author: | Michail Tsagris [aut, cre],
  Nikolaos Kontemeniotis [aut] | 
| Maintainer: | Michail Tsagris  <mtsagris at uoc.gr> | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| CRAN checks: | pdcor results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=pdcor
to link to this page.