Package ‘pbdMPI’

April 13, 2025
Version 0.5-3

Title R Interface to MPI for HPC Clusters (Programming with Big Data
Project)

Date 2025-04-12

Depends R (>= 3.6.0), methods
Imports float, parallel
LazyLoad yes

Description A simplified, efficient, interface to MPI for HPC clusters. It is
a derivation and rethinking of the Rmpi package. ppdMPI embraces the
prevalent parallel programming style on HPC clusters. Beyond the
interface, a collection of functions for global work with
distributed data and resource-independent RNG reproducibility is
included. It is based on S4 classes and methods.

SystemRequirements OpenMPI (>= 1.5.4) on Linux, Mac, and FreeBSD.
MS-MPI (Microsoft MPI v7.1 (SDK) and Microsoft HPC Pack 2012 R2
MS-MPI Redistributable Package) on Windows.

License Mozilla Public License 2.0
URL https://pbdr.org/

BugReports https://github.com/snoweye/pbdMPI/issues
NeedsCompilation yes
Maintainer Wei-Chen Chen <wccsnow@gmail.com>

Author Wei-Chen Chen [aut, cre],
George Ostrouchov [aut],
Drew Schmidt [aut],
Pragneshkumar Patel [aut],
Hao Yu [aut],
Christian Heckendorf [ctb] (FreeBSD),
Brian Ripley [ctb] (Windows HPC Pack 2012),
R Core team [ctb] (some functions are modified from the base packages),
Sebastien Lamy de la Chapelle [aut] (fix check type for send/recv long
vectors)

https://pbdr.org/
https://github.com/snoweye/pbdMPI/issues

2 Contents

Repository CRAN
Date/Publication 2025-04-13 05:00:11 UTC

Contents
pbdMPI-package 3
allgather-methods e 5
allreduce-method 7
alltoall e 9
applyandlapply L 10
bcast-method 13
comm.chunk oL 14
COMMUNICALOr v ot vttt e ettt e e e e e e e e 16
gather-methods 19
Get Configures Used at Compiling Time 21
getjobid L e e 22
globalallpairs. e 24
globalany andall 25
globalas.gbd 27
globalbalanc L 28
globalbase e e 30
global distance function o 31
global match.arg 33
global pairwise e e 34
global printandcat 36
global range, max, and min L. 38
globalreading e e 39
global Rprof e 42
global sort 43
global stopand warning e e 45
global timer 47
global which, which.max, and whichmin 47
global writing L e e e 49
INfO . . e e e 51
irecv-method e e 52
is.comm.null . ..o 54
isend-method e e 55
MPI array pointers oo e e e e e e e 57
Package Tools e e 58
Probe e 59
recv-method L L e e e 60
reduce-method 62
scatter-method L e e e e 63
seed for RNG e e 65
send-method 68
sendrecv-method 70

sendrecv.replace-methodo 72

pbdMPI-package 3

Setglobal pbd options e e 74
SOUTCELAZ + « v v v v v e 76
SPMD Control e e e e 77
SPMD Control Functions it e e e 79
Task Pull e e e 79
Utility @XECMPl . . .« v v v o e e e e e e e e e e e e e e e e e e e 81
WALl . . . e e 83
Index 85
pbdMPI-package R Interface to MPI (Programming with Big Data in R Project)
Description

A simplified, efficient, interface to MPI for HPC clusters. It is a derivation and rethinking of the
Rmpi package that embraces the prevalent parallel programming style on HPC clusters. Beyond the
interface, a collection of functions for global work with distributed data is included. It is based on
S4 classes and methods.

Details

This package requires an MPI library (OpenMPI, MPICH2, or LAM/MPI). Standard installation in
an R session with

> install.packages("pbdMPI")

should work in most cases.

On HPC clusters, it is strongly recommended that you check with your HPC cluster docu-
mentation for specific requirements, such as module software environments. Some module
examples relevant to R and MPI are

$ module load openmpi

$ module load openblas

$ module load flexiblas

$ module load r

possibly giving specific versions and possibly with some upper case letters. Although module soft-
ware environments are widely used, the specific module names and their dependence structure are
not standard across cluster installations. The command

$ module avail

usually lists the available software modules on your cluster.

To install on the Unix command line after downloading the source file, use R CMD INSTALL.

If the MPI library is not found, after checking that you are loading the correct module environ-
ments, the following arguments can be used to specify its non-standard location on your system

Argument Default
-with-mpi-type OPENMPI
-with-mpi-include ${MPI_ROOT}/include
-with-mpi-libpath ${MPI_ROOT}/lib

https://en.wikipedia.org/wiki/Environment_Modules_(software)

4 pbdMPI-package

—with-mpi ${MPI_ROOT}

where ${MPI_ROOT} is the path to the MPI root. See the package source file ppbdMPI/configure
for details.

Loading library(pbdMPI) sets a few global variables, including the environment . pbd_env, where
many defaults are set, and initializes MPI. In most cases, the defaults should not be modified.
Rather, the parameters of the functions that use them should be changed. All codes must end with
finalize() to cleanly exit MPL.

Most functions are assumed to run as Single Program, Multiple Data (SPMD), i.e. in batch mode.
SPMD is based on cooperation between parallel copies of a single program, which is more scalable
than a manager-workers approach that is natural in interactive programming. Interactivity with an
HPC cluster is more efficiently handled by a client-server approach, such as that enabled by the
remoter package.

On most clusters, codes run with mpirun or mpiexec and Rscript, such as

> mpiexec -np 2 Rscript some_code.r

where some_code.r contains the entire SPMD program. The MPI Standard 4.0 recommends
mpiexec over mpirun. Some MPI implementations may have minor differences between the two
but under OpenMPI 5.0 they are synonyms that produce the same behavior.

The package source files provide several examples based on pbdMPI, such as

Directory Examples
pbdMPI/inst/examples/test_spmd/ main SPMD functions
pbdMPI/inst/examples/test_rmpi/ analogues to Rmpi
pbdMPI/inst/examples/test_parallel/ analogues to parallel
pbdMPI/inst/examples/test_performance/ performance tests
pbdMPI/inst/examples/test_s4/ S4 extension
pbdMPI/inst/examples/test_cs/ client/server examples

pbdMPI/inst/examples/test_long_vector/ long vector examples

where test_long_vector needs a recompile with setting
#define MPI_LONG_DEBUG 1
in pbdMPI/src/pkg_constant.h.
The current version is mainly written and tested under OpenMPI environments on Linux systems
(CentOS 7, RHEL 8, Xubuntu). Also, it is tested on macOS with Homebrew-installed OpenMPI
and under MPICH2 environments on Windows systems, although the primary target systems are
HPC clusters running Linux OS.

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://cran.r-project.org/package=remoter
https://pbdr.org/

allgather-methods 5

See Also

allgather(), allreduce(), bcast(), gather(), reduce(), scatter().

Examples

Not run:

On command line, run each demo with 2 processors by

(Use Rscript.exe on Windows systems)

mpiexec -np 2 Rscript -e "demo(allgather, 'pbdMPI', ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(allreduce, 'pbdMPI', ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(bcast, 'pbdMPI', ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(gather, 'pbdMPI', ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(reduce, 'pbdMPI',ask=F,echo=F)"
mpiexec -np 2 Rscript -e "demo(scatter, 'pbdMPI',ask=F,echo=F)"
Or

execmpi(”demo(allgather, 'pbdMPI',ask=F,echo=F)", nranks = 2L)
execmpi("demo(allreduce, 'pbdMPI', ask=F,echo=F)", nranks = 2L)
execmpi("demo(bcast, 'pbdMPI',ask=F,echo=F)", nranks = 2L)
execmpi("demo(gather, 'pbdMPI' ask=F,echo=F)", nranks = 2L)
execmpi("demo(reduce, 'pbdMPI', ask=F,echo=F)", nranks = 2L)
execmpi("demo(scatter, 'pbdMPI',ask=F,echo=F)", nranks = 2L)

#
#
#
#
#
#

NN DN NN

End(Not run)

allgather-methods All Ranks Gather Objects from Every Rank

Description

This method lets all ranks gather objects from every rank in the same communicator. The default
return is a list of length equal to comm. size(comm).

Usage

allgather(x, x.buffer = NULL, x.count = NULL, displs = NULL,
comm = .pbd_env$SPMD.CT$comm,
unlist = .pbd_env$SPMD.CT$unlist)

Arguments
X an object to be gathered from all ranks.
x.buffer a buffer to hold the return object which probably has ‘size of x’ times ‘comm. size(comm)’
with the same type as x.
x.count a vector of length ‘comm.size(comm)’ containing all object lengths.
displs c(oL, cumsum(x.count)) by default.
comm a communicator number.

unlist apply unlist function to the gathered list before return.

6 allgather-methods

Details
The arguments x.buffer, x.count, and displs can be left unspecified or NULL and are computed
for you.

If x.buffer is specified, its type should be one of integer, double, or raw according to the type of
x. Serialization and unserialization is avoided for atomic vectors if they are all the same size and
x.buffer is specified, or if different sizes and both x.buffer and x.count are specified. A single
vector instead of a list is returned in these cases.

Class array objects are gathered without serialization.

Complex objects can be gathered as serialization and unserialization is used on objects that are not
of class "array" or atomic vectors.

The allgather is efficient due to the underlying MPI parallel communication and recursive dou-
bling gathering algorithm that results in a sublinear (1og2 (comm. size (comm))) number of commu-
nication steps. Also, serialization is applied only locally and in parallel.

See methods{"allgather"} for S4 dispatch cases and the source code for further details.

Value

A list of length comm. size(comm), containing the gathered objects from each rank, is returned to
all ranks by default. An exception is for atomic vectors, when x.buffer is specified, where a list is
never formed and a single vector is returned. In other cases, the unlist = TRUE parameter simply
applies the unlist () function to this list before returning.

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

gather(), allreduce(), reduce().

Examples

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples
N <-5

https://pbdr.org/

allreduce-method 7

x <= (1:N) + N * .comm.rank
y <- allgather(matrix(x, nrow = 1))
comm.print(y)

y <- allgather(x, double(N * .comm.size))
comm.print(y)

Finish
finalize()

"

pbdMPI: :execmpi(spmd.code, nranks = 2L)

allreduce-method All Ranks Receive a Reduction of Objects from Every Rank

Description

This method lets all ranks receive a reduction of objects from every rank in the same communicator
based on a given operation. The default return is an object like the input and the default operation
is the sum.

Usage

allreduce(x, x.buffer = NULL, op = .pbd_env$SPMD.CT$op,
comm = .pbd_env$SPMD.CT$comm)

Arguments
X an object to be reduced from all ranks.
X.buffer for atomic vectors, a buffer to hold the return object which has the same size and
the same type as x.
op the reduction operation to apply to x across all comm ranks. The default is nor-
mally sum.
comm a communicator number.
Details

All ranks are presumed to have x of the same size and type.

Normally, x. buffer is NULL or unspecified, and is computed for you. If specified for atomic vectors,
the type should be one of integer, double, or raw and be the same type as x.

The allgather is efficient due to the underlying MPI parallel communication and recursive dou-
bling reduction algorithm that results in a sublinear (log2(comm.size(comm))) number of reduc-
tion and communication steps.

See methods{"allreduce”} for S4 dispatch cases and the source code for further details.

8 allreduce-method

Value

The reduced object of the same type as x is returned to all ranks by default.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

allgather(), gather(), reduce().

Examples

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.

N<-5

x <= (1:N) + N * .comm.rank

y <- allreduce(matrix(x, nrow = 1), op = \"sum\")
comm.print(y)

y <- allreduce(x, double(N), op = \"prod\")
comm.print(y)

comm.set.seed(1234, diff = TRUE)

x <- as.logical(round(runif(N)))

y <- allreduce(x, logical(N), op = \"land\")
comm.print(y)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code = spmd.code, nranks = 2L)

https://pbdr.org/

alltoall 9

alltoall All to All

Description

These functions make calls to MPI_Alltoall() and MPI_Alltoallv().

Usage

spmd.alltoall.integer(x.send, x.recv, send.count, recv.count,
comm = .pbd_env$SPMD.CT$comm)
spmd.alltoall.double(x.send, x.recv, send.count, recv.count,
comm = .pbd_env$SPMD.CT$comm)
spmd.alltoall.raw(x.send, x.recv, send.count, recv.count,
comm = .pbd_env$SPMD.CT$comm)

spmd.alltoallv.integer(x.send, x.recv, send.count, recv.count,
sdispls, rdispls, comm = .pbd_env$SPMD.CT$comm)
spmd.alltoallv.double(x.send, x.recv, send.count, recv.count,
sdispls, rdispls, comm = .pbd_env$SPMD.CT$comm)
spmd.alltoallv.raw(x.send, x.recv, send.count, recv.count,
sdispls, rdispls, comm = .pbd_env$SPMD.CT$comm)

Arguments
x.send an object to send.
X.recv an object to receive
send.count send counter
recv.count recv counter
sdispls send dis pls
rdispls recv dis pls
comm a communicator number.
Details
These are very low level functions. Use with cautions. Neigher S4 method nor long vector is
supported.
Value

These are very low level functions. Use with cautions. Neigher S4 method nor long vector is
supported.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

10

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

allgather(), allgatherv().

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by

SHELL> mpiexec -np 2 Rscript --vanilla [...].r

spmd.

n

code <-

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.

n <-
X <-
comm

X <=
y <-

comm.
.print(y, all.rank = TRUE)

comm

as.integer(2)
1:(.comm.size * n)

.cat(\"Original x:\n\", quiet = TRUE)
comm.

print(x, all.rank = TRUE)

as.integer(x)
spmd.alltoall.integer(x, integer(length(x)), n, n)
cat(\"\nAlltoall y:\n\", quiet = TRUE)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

apply and lapply

apply

and lapply Parallel Apply and Lapply Functions

Description

The functions are parallel versions of apply and lapply functions.

Usage

pbdApply (X, MARGIN, FUN, ..., pbd.mode = c("mw", "spmd”, "dist"),

rank.source = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,

https://pbdr.org/

apply and lapply 11

barrier = TRUE)
pbdLapply(X, FUN, ..., pbd.mode = c("mw"”, "spmd”, "dist"),
rank.source = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
bcast = FALSE, barrier = TRUE)
pbdSapply (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE,
pbd.mode = c("mw", "spmd”, "dist"),
rank.source = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
bcast = FALSE, barrier = TRUE)

Arguments
X a matrix or array in pbdApply () or a list in pbdLapply () and pbdSapply ().
MARGIN MARGIN as in the apply().
FUN as in the apply ().
optional arguments to FUN.
simplify as in the sapply().
USE . NAMES as in the sapply().
pbd.mode mode of distributed data X.
rank.source a rank of source where X broadcast from.
comm a communicator number.
bcast if beast to all ranks.
barrier if barrier for all ranks.
Details

All functions are majorly called in manager/workers mode (pbd.model = "mw"), and just work the
same as their serial version.

If pbd.mode = "mw", the X in rank. source (manager) will be distributed to the workers, then FUN
will be applied to the new data, and results gathered to rank.source. “In SPMD, the manager is
one of workers.” ... is also scatter() from rank. source.

If pbd.mode = "spmd”, the same copy of X is expected on all ranks, and the original apply(),
lapply(), or sapply() will operate on part of X. An explicit allgather() or gather() will be
needed to aggregate the results.

If pbd.mode = "dist", different X are expected on all ranks, i.e. ‘distinct or distributed’ X, and
original apply (), lapply(), or sapply() will operate on the distinct X. An explicit allgather()
or gather () will be needed to aggregate the results.

In SPMD, it is better to split data into pieces, so that X is a local piece of a global matrix. If the
"apply" dimension is local, the base apply () function can be used.

Value

A list or a matrix will be returned.

12 apply and lapply

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

#i## Initialize
suppressMessages(library(pbdMPI, quietly

TRUE))

.comm.size <- comm.size()
.comm.rank <- comm.rank()

#i## Example for pbdApply.

N <- 100

x <= matrix((1:N) + N x .comm.rank, ncol = 10)
y <- pbdApply(x, 1, sum, pbd.mode = \"mw\")
comm.print(y)

y <- pbdApply(x, 1, sum, pbd.mode = \"spmd\")
comm.print(y)

y <- pbdApply(x, 1, sum, pbd.mode = \"dist\")
comm.print(y)

Example for pbdApply for 3D array.
N <- 60
x <= array((1:N) + N x .comm.rank, c(3, 4, 5))

dimnames(x) <- list(lat = paste(\"lat\”, 1:3, sep = \"\"),
lon = paste(\"lon\", 1:4, sep = \"\"),
time = paste(\"time\"”, 1:5, sep = \"\"))

comm.print(x[,, 1:21)

\ "mW\”)

y <- pbdApply(x, c(1, 2), sum, pbd.mode
comm.print(y)

y <- pbdApply(x, c(1, 2), sum, pbd.mode = \"spmd\")
comm.print(y)

y <- pbdApply(x, c(1, 2), sum, pbd.mode = \"dist\")
comm.print(y)

Example for pbdLapply.

https://pbdr.org/

bcast-method 13

N <- 100

x <= split((1:N) + N x .comm.rank, rep(1:10, each = 10))
y <- pbdLapply(x, sum, pbd.mode = \"mw\")
comm.print(unlist(y))

y <- pbdLapply(x, sum, pbd.mode
comm.print(unlist(y))

\"spmd\")

y <- pbdLapply(x, sum, pbd.mode = \"dist\")
comm.print(unlist(y))

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

bcast-method A Rank Broadcast an Object to Every Rank

Description

This method lets a rank broadcast an object to every rank in the same communicator. The default
return is the object.

Usage

bcast(x, rank.source = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

Arguments
X an object to be broadcast from all ranks.
rank.source a rank of source where x broadcast from.
comm a communicator number.

Details

The same copy of x is sent to all ranks.

See methods{"bcast"} for S4 dispatch cases and the source code for further details.

Value

Every rank has x returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

14 comm.chunk

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

scatter().

Examples

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

n

spmd. code <-
Initialize
suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.
x <- matrix(1:5, nrow = 1)
y <- bcast(x)
comm.print(y)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

comm. chunk comm.chunk

Description

Given a total number of items, N, comm.chunk splits the number into chunks. Tailored especially
for situations in SPMD style programming, potentially returning different results to each rank.
Optionally, results for all ranks can be returned to all.

Usage
comm. chunk (
N,
form = "number”,

type = "balance”,

lo.side = "right",

rng = FALSE,

all.rank = FALSE,

p = NULL,

rank = NULL,

comm = .pbd_env$SPMD.CT$comm,

https://pbdr.org/

comm.chunk

Arguments

N

form

type

lo.side

rng

all.rank

rank

comm

Details

15

The number of items to split into chunks.

Output a chunk as a single "number", as a "vector" of items from 1:N, or as a
"seq" three parameters ‘c(from, to, by)‘ of the base ‘seq()‘ function (replaced
deprecated "iopair" for offset and length in a file). Forms "Idim" and "bldim"
are available only with type "equal" and are intended for setting "ddmatrix" (see
package pbdDMAT) slots.

Is the primary load and location balance specification. The choices are: "bal-
ance" the chunks so they differ by no more than 1 item (used most frequently
and default); "cycle" is the same as "balance" in terms of load but differs on
location in that chunks are not contiguous, rather are assigned in a cycled way
to ranks (note that "balance" and "cycle" are the same if ‘form‘ is "number");
"equal” maximizes the number of same size chunks resulting in one or more
smaller or even zero size chunks carrying the leftover (required by ppdDMAT
block-cyclic layouts).

If exact balance is not possible, put the smaller chunks on the "left" (low ranks)
or on the "right" (high ranks).

If TRUE, set up different L’Ecuyere random number generator streams. Switch
to stream i with comm.set.stream(i), where i is a global index. If form
= "vector” random streams are set up for each index in the vector and only
those needed by each rank are kept. If form = "number”, each rank will use
a different stream, set by default (so comm.set.stream does not need to be
used). Additional ... parameter seed, passed to comm.set.seed, can be set for
reproducibility.

FALSE returns only the chunk for rank r. TRUE returns a vector of length
p (when form="number"), and a list of length p (when form="vector") each
containing the output for the corresponding rank.

The number of chunks (processors). Normally, it is NOT specified and defaults
to NULL, which assigns comm.size(comm).

The rank of returned chunk. Normally, it is NOT specified and defaults to
NULL, which assigns comm.rank(comm)). Note that ranks are numbered from
0 to p-1, whereas the list elements for all.rank=TRUE are numbered 1 to p.

The communicator that determines MPI rank numbers.

If rng = TRUE, then a seed parameter should be provided for comm.set.seed.

Various chunking options are possible when the number does not split evenly into equal chunks.
The output form can be a number, a vector of items, or a few other special forms intended for pbdR

components.

Value

A numeric value from 0:N or a vector giving a subset of 1:N (depending on form) for the rank. If
all.rank is TRUE, a vector or a list of vectors, respectively.

16 communicator

Examples

Not run:

Note that the p and rank parameters are provided by comm.size() and

comm.rank(), respectively, when running SPMD in parallel. Normally, they
are not specified unless testing in serial mode (as in this example).
library(pbdIO)

comm.chunk(16, all.rank = TRUE, p = 5)

comm.chunk(16, type = "equal”, all.rank = TRUE, p = 5)

comm.chunk(16, type = "equal”, lo.side = "left”, all.rank = TRUE, p = 5)
comm.chunk(16, p = 5, rank = 0)

comm.chunk(16, p = 5, lo.side = "left”, rank = @)

End(Not run)

communicator Communicator Functions

Description

The functions provide controls to communicators.

Usage

barrier(comm = .pbd_env$SPMD.CT$comm)
comm.is.null(comm = .pbd_env$SPMD.CT$comm)
comm.rank(comm = .pbd_env$SPMD.CT$comm)

comm. localrank(comm = .pbd_env$SPMD.CT$comm)
comm.size(comm = .pbd_env$SPMD.CT$comm)

comm. dup(comm, newcomm)

comm. free(comm = .pbd_env$SPMD.CT$comm)

init(set.seed = TRUE)

finalize(mpi.finalize = .pbd_env$SPMD.CT$mpi.finalize)
is.finalized()

comm. abort(errorcode = 1, comm = .pbd_env$SPMD.CT$comm)
comm.split(comm = .pbd_env$SPMD.CT$comm, color = OL, key = oL,
newcomm = .pbd_env$SPMD.CT$newcomm)
comm.disconnect(comm = .pbd_env$SPMD.CT$comm)
comm.connect(port.name, info = .pbd_env$SPMD.CT$info,
rank.root = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
newcomm = .pbd_env$SPMD.CT$newcomm)
comm.accept(port.name, info = .pbd_env$SPMD.CT$info,
rank.root = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
newcomm = .pbd_env$SPMD.CT$newcomm)

communicator 17

port.open(info = .pbd_env$SPMD.CT$info)
port.close(port.name)
serv.publish(port.name, serv.name = .pbd_env$SPMD.CT$serv.name,
info = .pbd_env$SPMD.CT$info)
serv.unpublish(port.name, serv.name = .pbd_env$SPMD.CT$serv.name,
info = .pbd_env$SPMD.CT$info)
serv.lookup(serv.name = .pbd_env$SPMD.CT$serv.name,
info = .pbd_env$SPMD.CT$info)

intercomm.merge(intercomm = .pbd_env$SPMD.CT$intercomm,
high = oL, comm = .pbd_env$SPMD.CT$comm)
intercomm.create(local.comm = .pbd_env$SPMD.CT$comm,
local.leader = .pbd_env$SPMD.CT$rank.source,
peer.comm = .pbd_env$SPMD.CT$intercomm,
remote.leader = .pbd_env$SPMD.CT$rank.dest,
tag = .pbd_env$SPMD.CT$tag,
newintercomm = .pbd_env$SPMD.CT$newcomm)

comm. c2f(comm = .pbd_env$SPMD.CT$comm)

Arguments

comm

mpi.finalize

a communicator number.

if MPI should be shutdown.

set.seed if a random seed preset.

port.name a port name with default maximum length 1024 characters for OpenMPI.
info a info number.

rank.root a root rank.

newcomm a new communicator number.

color control of subset assignment.

key control of rank assigment.

serv.name a service name.

errorcode an error code to abort MPL.
intercomm a intercommunicator number.

high used to order the groups within comm.
local.comm a local communicator number.

local.leader
peer.comm
remote.leader
newintercomm

tag

the leader number of local communicator.

a peer communicator number.

the remote leader number of peer communicator.
a new intercommunicator number.

a tag number.

18 communicator

Details

Another functions are direct calls to MPI library.
barrier() blocks all processors until everyone call this.

comm.is.null() returns -1 if the array of communicators is not allocated, i.e. init() is not called
yet. It returns 1 if the communicator is not initialized, i.e. NULL. It returns @ if the communicator is
initialized.

comm. rank () returns the processor’s rank for the given comm.

comm. size() returns the total processes for the given comm.

comm. dup () duplicate a newcomm from comm.

comm. free() free a comm.

init() initializes a MPI world, and set two global variables .comm.size and .comm.rank in
.GlobalEnv. A random seed will be preset by default (Sys.getpid() + Sys.time()) to the pack-
age rlecuyer.

finalize() frees memory and finishes a MPI world if mpi.finalize = TRUE. is.finalized()
checks if MPI is already finalized.

comm. abort() aborts MPL

comm.split() create a newcomm by color and key.
comm.disconnect() frees a comm.

comm. connect () connects a newcomm.

comm. accept () accepts a newcomm.

port.open() opens a port and returns the port name.
port.close() closes a port by name.

serv.publish() publishs a service via port.name.
serv.unpublish() unpublishs a service via port.name.
serv.lookup() lookup the serv.name and returns the port name.
intercomm.merge() merges the intercomm to intracommunicator.
intercomm.create() creates a new intercomm from two peer intracommunicators.

comm. c2f () returns an integer for Fortran MPI support.

Value

Most function return an invisible state of MPI call.

Author(s)
Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

gather-methods 19

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

#i## Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples .

comm.print(.comm.size)
comm.print(.comm.rank, all.rank = TRUE)
comm.print(comm.rank(), rank.print = 1)
comm.print(comm.c2f())

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

gather-methods A Rank Gathers Objects from Every Rank

Description

This method lets one rank gather objects from every rank in the same communicator. The default
return is a list of length equal to comm size.

Usage

gather(x, x.buffer = NULL, x.count = NULL, displs = NULL,
rank.dest = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
unlist = .pbd_env$SPMD.CT$unlist)

Arguments
X an object to be gathered from all ranks.
x.buffer a buffer to hold the return object which probably has ‘size of x’ times ‘comm. size(comm)’
with the same type of x.
x.count a vector of length ‘comm. size(comm)’ containing all object lengths.
displs c(oL, cumsum(x.count)) by default.
rank.dest a rank of destination where all x gather to.
comm a communicator number.

unlist apply unlist function to the gathered list before return.

20 gather-methods

Details

The arguments x.buffer, x.count, and displs can be left unspecified or NULL and are computed
for you.

If x.buffer is specified, its type should be one of integer, double, or raw according to the type of
x. Serialization and unserialization is avoided for atomic vectors if they are all the same size and
x.buffer is specified, or if different sizes and both x.buffer and x.count are specified. A single
vector instead of a list is returned in these cases.

Class array objects are gathered without serialization.

Complex objects can be gathered as serialization and unserialization is used on objects that are not
of class "array" or atomic vectors.

The gather is efficient due to the underlying MPI parallel communication and recursive doubling
gathering algorithm that results in a sublinear (Log2(comm.size(comm))) number of communica-
tion steps. Also, serialization is applied only locally and in parallel.

See methods{"gather"} for S4 dispatch cases and the source code for further details.

Value

Only rank.dest (by default rank 0) receives the gathered object. All other ranks receive NULL. See
allgather () for a description of the gathered object.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also
allgather(), allreduce(), reduce().

Examples

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.

N <-5

x <= (1:N) + N * .comm.rank

y <- gather(matrix(x, nrow = 1))
comm.print(y)

https://pbdr.org/

Get Configures Used at Compiling Time 21

y <- gather(x, double(N * .comm.size))
comm.print(y)

Finish.
finalize()

"

pbdMPI: :execmpi(spmd.code, nranks = 2L)

Get Configures Used at Compiling Time

Functions to Get MPI and/or pbdMPI Configures Used at Compiling
Time

Description
These functions are designed to get MPI and/or pbdMPI configures that were usually needed at the
time of pbdMPI installation. In particular, to configure, link, and compile with ‘libmpi*.so° or so.
Usage

get.conf(arg, arch = '', package = "pbdMPI"”, return = FALSE)
get.lib(arg, arch, package = "pbdPROF")
get.sysenv(flag)

Arguments

arg an argument to be searched in the configuration file

arch system architecture

package pakge name

return to return (or print if FALSE) the search results or not

flag a system flag that is typically used in windows environment set.
Details

get.conf() and get.lib() are typically used by ‘pbd*/configure.ac, ‘pbd*/src/Makevars.in‘,
and/or ‘pbd*/src/Makevar.win‘ to find the default configurations from ‘pbd*/etc${R_ARCH }/Makconf".

get.sysenv() is only called by ‘pbdMPI/src/Makevars.win‘ to obtain possible MPI dynamic/static
library from the environment variable ‘MPI_ROQOT" preset by users.

Value

Typically, there are no return values, but the values are cat () to scrrn or stdin.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

22 get job id

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:

library(pbdMPI)

if(Sys.info()["sysname”] != "Windows"){
get.conf ("MPI_INCLUDE_PATH"); cat("\n")
get.conf ("MPI_LIBPATH"); cat("\n")
get.conf("MPI_LIBNAME"); cat(”\n")
get.conf("MPI_LIBS"); cat(”"\n")

} elsef
get.conf("MPI_INCLUDE", "/i386"); cat("\n")
get.conf("MPI_LIB", "/i386"); cat("\n")

get.conf("MPI_INCLUDE", "/x64"); cat("\n")
get.conf("MPI_LIB", "/x64"); cat("\n")
}

End(Not run)

get job id Divide Job ID by Ranks

Description

This function obtains job id which can be used to divide jobs.

Usage

get.jid(n, method = .pbd_env$SPMD.CT$divide.method[1], all = FALSE,
comm = .pbd_env$SPMD.CT$comm, reduced = FALSE)

Arguments
n total number of jobs.
method a way to divide jobs.
all indicate if return all id for each processor.
comm a communicator number.

reduced indicate if return should be a reduced representation.

https://pbdr.org/

get job id 23

Details

n is total number of jobs needed to be divided into all processors (comm.size(comm), i.e. 1:n will
be split according to the rank of processor (comm. rank (comm)) and method. Job id will be returned.
Currently, three possible methods are provided.

"block” will use return id’s which are nearly equal size blocks. For example, 7 jobs in 4 processors
will have jid=1 for rank O, jid=2, 3 for rank 1, jid=4,5 for rank 2, and jid=6,7 for rank 3.

"block@"” will use return id’s which are nearly equal size blocks, in the opposite direction of
"block”. For example, 7 jobs in 4 processors will have jid=1,2 for rank 0, jid=3,4 for rank
1, jid=5, 6 for rank 2, and jid=7 for rank 3.

"cycle” will use return id’s which are nearly equal size in cycle. For example, 7 jobs in 4 processors
will have jid=1,5 for rank 0, jid=2,6 for rank 1, jid=3,7 for rank 2, and jid=4 for rank 3.

Value

get.jid() returns a vector containing job id for each individual processor if all = FALSE. While
it returns a list containing all job id for all processor if all = TRUE. The list has length equal to
comm. size.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

task.pull() and comm.chunk().

Examples

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.

comm.cat(\">>> block\n\", quiet = TRUE)
jid <- get.jid(7, method = \"block\")
comm.print(jid, all.rank = TRUE)

comm.cat(\">>> cycle\n\", quiet = TRUE)
jid <- get.jid(7, method = \"cycle\")
comm.print(jid, all.rank = TRUE)

https://pbdr.org/

24 global all pairs

comm.cat(\">>> block (all)\n\", quiet = TRUE)
alljid <- get.jid(7, method = \"block\"”, all = TRUE)
comm.print(alljid)

comm.cat(\">>> cycle (all)\n\", quiet = TRUE)
alljid <- get.jid(7, method = \"cycle\"”, all = TRUE)
comm.print(alljid)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

global all pairs Global All Pairs

Description

This function provide global all pairs.

Usage

comm.allpairs(N, diag = FALSE, symmetric = TRUE,
comm = .pbd_env$SPMD.CT$comm)

Arguments
N number of elements for matching, (i, j) forall 1<=1,j <=N.
diag if matching the same elements, (i, i) for all i.
symmetric if matching upper triangular elements. TRUE for i >= j only, otherwise for all
(i, ».
comm a communicator number.
Details

The function generates all combinations of N elements.

Value

The function returns a gbd matrix in row blocks with 2 columns named i and j. The number of
rows is dependent on the options diag and symmetric. If diag = TRUE and symmetric = FALSE,
then this case has the maximum number of rows, N*2.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

global any and all

References

25

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm.dist().

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <-

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.

id.matrix <- comm.allpairs(comm.size() + 1)
comm.print(id.matrix, all.rank = TRUE)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global any and all Global Any and All Functions

Description

These functions are global any and all applying on distributed data for all ranks.

Usage

comm.any(x, na.rm = FALSE, comm
comm.all(x, na.rm

.pbd_env$SPMD. CT$comm)
FALSE, comm = .pbd_env$SPMD.CT$comm)

comm.allcommon(x, comm = .pbd_env$SPMD.CT$comm,

Arguments

X
na.rm

comm
lazy.check

lazy.check = .pbd_env$SPMD.CT$lazy.check)

a vector.
if NA removed or not.
a communicator number.

if TRUE, then allreduce is used to check all ranks, otherwise, allgather is
used.

https://pbdr.org/

26 global any and all

Details

These functions will apply any () and all() locally, and apply allgather () to get all local results
from other ranks, then apply any () and all() on all local results.

comm.allcommon() is to check if x is exactly the same across all ranks. This is a vectorized op-
eration on x where the input and output have the same length of vector, while comm.any() and
comm.all() return a scaler.

Note that 1lazy.check = TRUE is faster as number of cores is large, but it may cause some inconsis-
tence in some cases. lazy.check = FALSE is much slower, but it provides more accurate checking.

Value

The global check values (TRUE, FALSE, NA) are returned to all ranks.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.
if(comm.rank() == 0){
a <- c(T, F, NA)

} elsef
a<-T

}

comm.any(a)
comm.all(a)
comm.any(a, na.rm = TRUE)
comm.all(a, na.rm = TRUE)

comm.allcommon(1:3)
if(comm.rank() == 0){

a<-1:3
} elsef
a <- 3:1

}

https://pbdr.org/

global as.gbd 27

comm.allcommon.integer(a)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global as.gbd Global As GBD Function

Description

This function redistributes a regular matrix existed in rank.soure and turns it in a gbd matrix in row
blocks.

Usage

comm.as.ghd(X, balance.method = .pbd_env$SPMD.IO%$balance.method,
rank.source = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

Arguments

X aregular matrix in rank. source and to be redistributed as a gbd.

balance.method a balance method.

rank.source a rank of source where elements of x scatter from.
comm a communicator number.
Details

X matrix in rank. source will be redistributed as a gbd matrix in row blocks.

This function will first set NULL to X if it is not located in rank. source, then called comm. load.balance()
to redistributed the one located in rank. source to all other ranks.
Value

A X.gbd will be returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

28 global balanc

See Also

comm. load.balance(), comm.read. table() and comm.write.table().

Examples

#i## Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.

X <= matrix(1:15, ncol = 3)

X.gbhd <- comm.as.ghd(X)
comm.print(X.gbd, all.rank = TRUE)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

global balanc Global Balance Functions

Description

These functions are global balance methods for gbd data.frame (or matrix) distributed in row
blocks.

Usage

comm.balance.info(X.gbd, balance.method = .pbd_env$SPMD.I0O$balance.method[1],
comm = .pbd_env$SPMD.CT$comm)
comm. load.balance(X.gbhd, bal.info = NULL,
balance.method = .pbd_env$SPMD.IO$balance.method[1],
comm = .pbd_env$SPMD.CT$comm)
comm.unload.balance(new.X.gbd, bal.info, comm = .pbd_env$SPMD.CT$comm)

Arguments

X.ghd a gbd data. frame (or matrix).
balance.method a balance method.

bal.info a balance information returned from comm.balance.info(). If NULL, then this
will be generated inside comm. load.balance().

new.X.ghd anew gbd of X. gbhd (may be generated from comm. load.balance().

comm a communicator number.

global balanc 29

Details

A typical use is to balance an input dataset X.gbd from comm.read.table(). Since by default,
a two dimension data.frame is distributed in row blocks, but each processor (rank) may not (or
closely) have the same number of rows. These functions redistribute the data.frame (and maybe
matrix) according to the specified way in bal.info.

Currently, there are three balance methods are supported, block (uniform distributed but favor
higher ranks), block® (as block but favor lower ranks), and block.cyclic (as block cyclic with
one big block in one cycle).

Value

comm.balance.info() returns a list containing balance information based on the input X.gbd
and balance.method.

comm. load.balance() returns a new gbd data. frame (or matrix).

comm.unload.balance() also returns the new gbd data. frame back to the original X. ghd.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm.read.table(), comm.write.table(), and comm.as.gbhd().

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Get two gbd row-block data.frame.
da.block <- iris[get.jid(nrow(iris), method = \"block\"),]
da.block@ <- iris[get.jid(nrow(iris), method = \"blocke\"),]

Load balance one and unload it.

bal.info <- comm.balance.info(da.block®)
da.new <- comm.load.balance(da.block®)

da.org <- comm.unload.balance(da.new, bal.info)

Check if all are equal.
comm.print(c(sum(da.new != da.block), sum(da.org != da.block®)),

https://pbdr.org/

30 global base

all.rank = TRUE)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global base Global Base Functions

Description

These functions are global base functions applying on distributed data for all ranks.

Usage
comm.length(x, comm = .pbd_env$SPMD.CT$comm)
comm.sum(..., na.rm = TRUE, comm = .pbd_env$SPMD.CT$comm)
comm.mean(x, na.rm = TRUE, comm = .pbd_env$SPMD.CT$comm)
comm.var(x, na.rm = TRUE, comm = .pbd_env$SPMD.CT$comm)

comm.sd(x, na.rm = TRUE, comm = .pbd_env$SPMD.CT$comm)

Arguments
X a vector.
as in sum().
na.rm logical, if remove NA and NaN.
comm a communicator number.
Details

These functions will apply globally length(), sum(), mean(), var(), and sd().

Value

The global values are returned to all ranks.

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

global distance function

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

#i## Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

if(comm.size() != 2){
comm.cat(\"2 processors are requried.\n\", quiet = TRUE)
finalize()

}

Examples.
a <- 1:(comm.rank() + 1)

b <- comm.length(a)
comm.print(b)

b <- comm.sum(a)
comm.print(b)

b <- comm.mean(a)
comm.print(b)

b <- comm.var(a)
comm.print(b)

b <- comm.sd(a)
comm.print(b)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global distance function
Global Distance for Distributed Matrices

Description

These functions globally compute distance for all ranks.

Usage

comm.dist(X.gbd, method = "euclidean”, diag = FALSE, upper = FALSE,
p =2, comm = .pbd_env$SPMD.CT$comm,
return.type = c("common”, "ghd"))

32 global distance function

Arguments

X.ghd a gbd matrix.

method asindist().

diag asindist().

upper asindist().

p asindist().

comm a communicator number.

return.type returning type for the distance.
Details

The distance function is implemented for a distributed matrix.

The return type common is only useful when the number of rows of the matrix is small since the
returning matrix is N * N for every rank where N is the total number of rows of X. ghd of all ranks.

The return type gbhd returns a gbd matrix (distributed across all ranks, and the gbd matrix has 3
columns, named "i", "j", and "value", where (i, j) is the global indices of the i-th and j-th rows of
X.gbd, and value is the corresponding distance. The (i, j) is ordered as a distance matrix.

Value

A full distance matrix is returned from the common return type. Suppose N.gbd is total rows of
X.gbd, then the distance will have N.gbd * (N.gbd - 1) / 2 elements and the distance matrix will
have N. ghd”2 elements.

A gbd distance matrix with 3 columns is returned from the gbd return type.

Warning

The distance or distance matrix could be huge.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm.allpairs() and comm.pairwise().

https://pbdr.org/

global match.arg

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.
comm. set.seed (123456, diff = TRUE)

X.ghd <- matrix(runif(6), ncol = 3)
dist.X.common <- comm.dist(X.gbd)
dist.X.ghd <- comm.dist(X.gbd, return.type = \"gbd\")

#i## Verify.
dist.X <- dist(do.call(\"rbind\"”, allgather(X.gbd)))
comm.print(all(dist.X == dist.X.common))

Verify 2.

dist.X.df <- do.call(\"rbind\", allgather(dist.X.gbd))
comm.print(all(dist.X == dist.X.df[, 31))
comm.print(dist.X)

comm.print(dist.X.df)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

33

global match.arg Global Argument Matching

Description

A binding for match.arg() that uses comm. stop() rather so that the error message (if there is one)

is managed according to the rules of . pbd_env$SPMD.CT.

Usage

comm.match.arg(arg, choices, several.ok=FALSE, ...,
all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm,
mpi.finalize = .pbd_env$SPMD.CT$mpi.finalize,
quit = .pbd_env$SPMD.CT$quit)

34 global pairwise

Arguments

arg, choices, several.ok
see match.arg()

ignored.
all.rank if all ranks print (default = FALSE).
rank.print rank for printing if not all ranks print (default = 0).
comm communicator for printing (default = 1).

mpi.finalize if MPI should be shutdown.

quit if quit R when errors happen.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

global pairwise Global Pairwise Evaluations

Description

This function provides global pairwise evaluations.

Usage

comm.pairwise(X, pairid.gbd = NULL,
FUN = function(x, y, ...){ return(as.vector(dist(rbind(x, y), ...))) 3},
., diag = FALSE, symmetric = TRUE, comm = .pbd_env$SPMD.CT$comm)

Arguments
X a common matrix across ranks, or a gbd matrix. (See details.)
pairid.ghd a pair-wise id in a gbd format. (See details.)
FUN a function to be evaluated for given pairs.
extra variables for FUN.
diag if matching the same elements, (i, i) for all i.
symmetric if matching upper triangular elements. TRUE for i >= j only, otherwise for all

(i, .

comm a communicator number.

https://pbdr.org/

global pairwise 35

Details

This function evaluates the objective function FUN(X[i,], X[j, 1) (usually distance of two ele-
ments) on any given pair (i, j) of a matrix X.

The input X should be in common across all ranks if pairid. ghd is provided, e.g. from comm.pairwise().
i.e. X is exactly the same in every ranks, but pairid.gbd is different and in gbd format indicating

the row pair (i, j) should be evaluated. The returning gbd matrix is ordered and indexed by
pairid.gbd.

Note that checking consistence of X across all ranks is not implemented within this function since
that drops performance and may be not accurate.

The input X should be a gbd format in row major blocks (i.e. X.gbd) if pairid.gbd is NULL. A
internal pair indices will be built implicitly for evaluation. The returning gbd matrix is ordered and
indexed by X. gbd.

Value

This function returns a common matrix with 3 columns named i, j, and value. Each value is the
returned value and computed by FUN(X[i,], X[j, 1) where (i, j) is the global index as ordered
in a distance matrix for i-th row and j-th columns.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm.pairwise(), and comm.dist().

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.

comm.set.seed(123456, diff = FALSE)
X <- matrix(rnorm(10), ncol = 2)
id.matrix <- comm.allpairs(nrow(X))

Method original.
dist.org <- dist(X)

https://pbdr.org/

36 global print and cat

Method 1.
dist.common <- comm.pairwise(X, pairid.ghd = id.matrix)

Method 2.

if(comm.rank() != @){

X <- matrix(@, nrow = @, ncol = 4)

3

X.gbd <- comm.as.gbhd(X) ### The other way.
dist.gbhd <- comm.pairwise(X.gbd)

Verify.

d.org <- as.vector(dist.org)

d.1 <- do.call(\"c\", allgather(dist.common[, 31))
d.2 <- do.call(\"c\", allgather(dist.ghd[, 31))
comm.print(all(d.org == d.1))

comm.print(all(d.org == d.2))

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global print and cat Global Print and Cat Functions

Description

The functions globally print or cat a variable from specified processors, by default messages is
shown on screen.

Usage

comm.print(x, all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm,
quiet = .pbd_env$SPMD.CT$print.quiet,
flush = .pbd_env$SPMD.CT$msg. flush,
barrier = .pbd_env$SPMD.CT$msg.barrier,
con = stdout(), ...)

comm.cat(..., all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm,
quiet = .pbd_env$SPMD.CT$print.quiet, sep = " ", fill = FALSE,
labels = NULL, append = FALSE, flush = .pbd_env$SPMD.CT$msg.flush,
barrier = .pbd_env$SPMD.CT$msg.barrier, con = stdout())

global print and cat 37

Arguments
X a variable to be printed.
e variables to be cat.
all.rank if all ranks print (default = FALSE).
rank.print rank for printing if not all ranks print (default = 0).
comm communicator for printing (default = 1).
quiet FALSE for printing rank number.
sep sep argument as in the cat () function.
fill fill argument as in the cat() function.
labels labels argument as in the cat () function.
append labels argument as in the cat () function.
flush if flush con.
barrier if barrier con.
con stdout () is the default to print message.
Details

Warning: These two functions use barrier () to make sure the well printing process on screen, SO
should be called by all processors to avoid a deadlock. A typical misuse is called inside a condition
check, such as if (.comm.rank == @) comm.cat(...).

rank.print can be a integer vector containing the ranks of processors which print messages.

Value

A print() or cat() is called for the specified processors and the messages of the input variables
is shown on screen by default.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

https://pbdr.org/

38 global range, max, and min

#i## Example.
comm.print(comm.rank(), rank.print = 1)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global range, max, and min
Global Range, Max, and Min Functions

Description

These functions are global range, max and min applying on distributed data for all ranks.

Usage
comm.range(..., na.rm = FALSE, comm = .pbd_env$SPMD.CT$comm)
comm.max(..., na.rm = FALSE, comm = .pbd_env$SPMD.CT$comm)
comm.min(..., na.rm = FALSE, comm = .pbd_env$SPMD.CT$comm)
Arguments
an ‘numeric’ objects.
na.rm if NA removed or not.
comm a communicator number.
Details

These functions will apply range (), max() and min() locally, and apply allgather to get all local
results from other ranks, then apply range (), max() and min() on all local results.
Value

The global values (range, max, or min) are returned to all ranks.

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

global reading

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

#i## Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

if(comm.size() != 2){
comm.cat(\"2 processors are requried.\n\", quiet = TRUE)
finalize()

}

Examples.
a <= 1:(comm.rank() + 1)

b <- comm.range(a)
comm.print(b)

b <- comm.max(a)
comm.print(b)

b <- comm.min(a)
comm.print(b)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global reading Global Reading Functions

Description

These functions are global reading from specified file.

Usage
comm.read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = "."
na.strings = "NA", colClasses = NA, nrows = -1, skip = 0,

check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#",
allowEscapes = FALSE,
flush = FALSE,
fileEncoding =

nn

, encoding = "unknown",

40 global reading

read.method = .pbd_env$SPMD.I0$read.method[1],
balance.method = .pbd_env$SPMD.IO$balance.method[1],
comm = .pbd_env$SPMD.CT$comm)

comm.read.csv(file, header = TRUE, sep = ",", quote = "\"",
dec = ".", fill = TRUE, comment.char = "", ...,
read.method = .pbd_env$SPMD.I0$read.method[1],
balance.method = .pbd_env$SPMD.IO$balance.method[1],
comm = .pbd_env$SPMD.CT$comm)

comm.read.csv2(file, header = TRUE, sep = ";", quote = "\"",
dec = ",", fill = TRUE, comment.char = "", ...,
read.method = .pbd_env$SPMD.IO$read.method[1],
balance.method = .pbd_env$SPMD.I0$balance.method[1],
comm = .pbd_env$SPMD.CT$comm)

Arguments
file as in read. table().
header as in read. table().
sep as in read. table().
quote as in read. table().
dec as in read. table().
na.strings as in read. table().
colClasses as in read. table().
Nrows as in read. table().
skip as in read. table().
check.names as in read. table().
fill as in read. table().
strip.white as in read. table().

blank.lines.skip
as in read. table().

comment . char as in read. table().

allowEscapes as in read. table().

flush as in read. table().

fileEncoding as in read. table().

encoding as in read. table().

as in read.csv*().
read.method either "gbd" or "common".
balance.method balance method for read.method = "gbd"” as nrows = -1 and skip = @ are set.

comm a communicator number.

global reading 41

Details

These functions will apply read. table() locally and sequentially from rank O, 1, 2, ...

By default, rank 0 reads the file only, then scatter to other ranks for small datasets (. pbd_env$SPMD.I0$max.read.size)
in read.method = "gbd". (bcast to others in read.method = "common".)

As dataset size increases, the reading is performed from each ranks and read portion of rows in
"gbd" format as described in ppdDEMO vignettes and used in pmclust.

comm. load.balance() is called for "gbd" method as as nrows = -1 and skip = @ are set. Note that
the default method "block" is the better way for performance in general that distributes equally and
leaves residuals on higher ranks evenly. "block0" is the other way around. "block.cyclic" is only
useful for converting to ddmatrix as in ppdDMAT.

Value

A distributed data.frame is returned.

All factors are disable and read as characters or as what data should be.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm. load.balance() and comm.write.table()

Examples

Not run:
Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

"”

spmd.code <-
Initialize
suppressMessages(library(pbdMPI, quietly = TRUE))

Check.
if(comm.size() != 2){
comm.stop(\"2 processors are requried.\")

}

Manually distributed iris.
da <- iris[get.jid(nrow(iris)),]

Dump data.
comm.write.table(da, file = \"iris.txt\"”, quote = FALSE, sep = \"\\t\",

https://pbdr.org/

42 global Rprof

row.names = FALSE)

Read back in.

da.ghd <- comm.read.table(\"iris.txt\", header = TRUE, sep = \"\\t\",
quote = \"\")

comm.print(c(nrow(da), nrow(da.gbd)), all.rank

TRUE)

Read in common.

da.common <- comm.read.table(\"iris.txt\", header = TRUE, sep = \"\\t\",
quote = \"\", read.method = \"common\")

comm.print(c(nrow(da.common), sum(da.common != iris)))

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

global Rprof A Rprof Function for SPMD Routines

Description

A Rprof function for use with parallel codes executed in the batch SPMD style.

Usage

comm.Rprof(filename = "Rprof.out”, append = FALSE, interval = 0.02,
memory.profiling = FALSE, gc.profiling = FALSE,
line.profiling = FALSE, numfiles = 100L, bufsize
all.rank = .pbd_env$SPMD.CT$Rprof.all.rank,
rank.Rprof = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

10000L

Arguments
filename as in Rprof ().
append as in Rprof ().
interval as in Rprof ().

memory.profiling
as in Rprof ().

gc.profiling as in Rprof ().
line.profiling asinRprof().
numfiles as in Rprof ().

bufsize as in Rprof ().

global sort 43

all.rank if calling Rprof on all ranks (default = FALSE).
rank.Rprof rank for calling Rprof if all.rank = FALSE (default = 0).
comm a communicator number.

Details

as in Rprof ().

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

global sort Global Quick Sort for Distributed Vectors or Matrices

Description

This function globally sorts distributed data for all ranks.

Usage

comm.sort(x, decreasing = FALSE, na.last = NA,
comm = .pbd_env$SPMD.CT$comm,
status = .pbd_env$SPMD.CT$status)

Arguments
X a vector.
decreasing logical. Should the sort order be increasing or decreasing?
na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.
comm a communicator number.
status a status number.
Details

The distributed quick sort is implemented for this functions.

Value

The returns are the same size of x but in global sorting order.

https://pbdr.org/

44 global sort

Warning

All ranks may not have a NULL x.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

.comm.size <- comm.size()
.comm.rank <- comm.rank()

Examples.

comm. set.seed (123456, diff = TRUE)

x <= c(rnorm(5 + .comm.rank * 2), NA)

x <- sample(1:5, 5 + .comm.rank * 2, replace = TRUE)
comm. end. seed()

if(.comm.rank == 1){
x <- NULL ### Test for NULL or @ vector

y <- allgather(x)
comm.print(y)

y <- comm.sort(x)
y <- allgather(y)
comm.print(y)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

https://pbdr.org/

global stop and warning 45

global stop and warning
Global Stop and Warning Functions

Description

These functions are global stop and warning applying on distributed data for all ranks, and are
called by experts only. These functions may lead to potential performance degradation and system
termination.

Usage

comm.stop(..., call. = TRUE, domain = NULL,
all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm,
mpi.finalize = .pbd_env$SPMD.CT$mpi.finalize,
quit = .pbd_env$SPMD.CT$quit)

comm.warning(..., call. = TRUE, immediate. = FALSE, domain = NULL,
all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

comm.warnings(...,
all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

comm.stopifnot(..., call. = TRUE, domain = NULL,
all.rank = .pbd_env$SPMD.CT$print.all.rank,
rank.print = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm,
mpi.finalize = .pbd_env$SPMD.CT$mpi.finalize,
quit = .pbd_env$SPMD.CT$quit)

Arguments
variables to be cat.
call. see stop() and warnings().
immediate. see stop() and warnings().
domain see stop() and warnings().
all.rank if all ranks print (default = FALSE).
rank.print rank for printing if not all ranks print (default = 0).

comm communicator for printing (default = 1).

46 global stop and warning

mpi.finalize if MPI should be shutdown.

quit if quit R when errors happen.

Details

These functions will respectively apply stop(), warning(), warnings(), and stopifnot() lo-
cally.

Value

comm. stop() and comm.stopifnot() terminate all ranks, comm.warning() returns messages, and
comm.warnings() print the message.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

if(comm.size() != 2){
comm.cat(\"2 processors are requried.\n\", quiet = TRUE)
finalize()

3

Examples.

comm.warning(\"test warning.\n\")
comm.warnings()

comm.stop(\"test stop.\n\")
comm.stopifnot(1 == 2)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

https://pbdr.org/

global timer 47

global timer A Timing Function for SPMD Routines

Description

A timing function for use with parallel codes executed in the batch SPMD style.

Usage

comm.timer(timed, comm = .pbd_env$SPMD.CT$comm)
Arguments

timed expression to be timed.

comm a communicator number.
Details

Finds the min, mean, and max execution time across all independent processes executing the oper-
ation timed.

Author(s)

Drew Schmidt.

References

Programming with Big Data in R Website: https://pbdr.org/

global which, which.max, and which.min
Global Which Functions

Description

These functions are global which, which.max and which.min applying on distributed data for all
ranks.

Usage

comm.which(x, arr.ind = FALSE, useNames = TRUE,
comm = .pbd_env$SPMD.CT$comm)

comm.which.max(x, comm = .pbd_env$SPMD.CT$comm)

comm.which.min(x, comm = .pbd_env$SPMD.CT$comm)

https://pbdr.org/

48 global which, which.max, and which.min

Arguments
X a’logical’ vector or array as in which(), or an 'numeric’ objects in which.max()
and which.min().
arr.ind logical, as in which().
useNames logical, as in which().
comm a communicator number.
Details

These functions will apply which(),which.max() and which.min() locally, and apply allgather ()
to get all local results from other ranks.

Value

The global values (which(), which.max (), or which.min()) are returned to all ranks.
comm.which() returns with two columns, 'rank id” and ’index of TRUE’.

comm.which.max () and comm.which.min() return with three values, "the _smallest_ rank id’, ’in-
dex of the _first_ maximum or minimum’, and max/min value of x’.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm. read. table()

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

if(comm.size() !'= 2){
comm.cat(\"2 processors are requried.\n\", quiet = TRUE)
finalize()

}

Examples.
a <= 1:(comm.rank() + 1)

https://pbdr.org/

global writing

b <- comm.which(a == 2)
comm.print(b)
b <- comm.which.max(a)
comm.print(b)
b <- comm.which.min(a)
comm.print(b)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

49

global writing Global Writing Functions

Description

These functions are global writing applying on distributed data for all ranks.

Usage
comm.write(x, file = "data”, ncolumns = if(is.character(x)) 1 else 5,
append = FALSE, sep = " ", comm = .pbd_env$SPMD.CT$comm)
comm.write.table(x, file = "", append = FALSE, quote = TRUE, sep = " "
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, gmethod = c("escape”, "double"),
fileEncoding = "", comm = .pbd_env$SPMD.CT$comm)
comm.write.csv(..., comm = .pbd_env$SPMD.CT$comm)
comm.write.csv2(..., comm = .pbd_env$SPMD.CT$comm)
Arguments
X asinwrite() orwrite.table().
file asinwrite() orwrite.table().
ncolumns asinwritex().
append asinwritex().
sep asinwritex().
quote asinwritex().
eol asinwritex().
na asinwritex().
dec asinwritex().

’

50 global writing

row.names asinwritex().
col.names asinwritex().
gmethod asinwritex().

fileEncoding asinwritex().
asinwritex().

comm a communicator number.

Details

These functions will apply write*() locally and sequentially from rank O, 1, 2, ...

By default, rank 0 makes the file, and rest of ranks append the data.

Value

A file will be returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

comm. load.balance() and comm.read. table()

Examples

Not run:
Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r
spmd.code <- "
Initialize
suppressMessages(library(pbdMPI, quietly = TRUE))
if(comm.size() != 2){
comm.cat(\"2 processors are requried.\n\", quiet = TRUE)
finalize()

}

Examples.
comm.write((1:5) + comm.rank(), file = \"test.txt\")

Finish.
finalize()

n

https://pbdr.org/

info 51

execmpi(spmd.code, nranks = 2L)

End(Not run)

info Info Functions

Description

The functions call MPI info functions.

Usage

info.create(info = .pbd_env$SPMD.CT$info)
info.set(info = .pbd_env$SPMD.CT$info, key, value)
info.free(info = .pbd_env$SPMD.CT$info)
info.c2f(info = .pbd_env$SPMD.CT$info)

Arguments

info a info number.

key a character string to be set.

value a character string to be set associate with key.
Details

These functions are for internal functions. Potentially, they set information for initialization of
manager and workers.
Value

An invisible state of MPI call is returned.

Author(s)
Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

52 irecv-method

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

#i## Examples.

info.create(QL)

info.set(OL, \"file\"”, \"appschema\")
info.free(QL)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

irecv-method A Rank Receives (Nonblocking) an Object from the Other Rank

Description

This method lets a rank receive (nonblocking) an object from the other rank in the same communi-
cator. The default return is the object sent from the other rank.

Usage

irecv(x.buffer = NULL, rank.source = .pbd_env$SPMD.CT$rank.source,
tag = .pbd_env$SPMD.CT$tag, comm = .pbd_env$SPMD.CT$comm,
request = .pbd_env$SPMD.CT$request,
status = .pbd_env$SPMD.CT$status)

Arguments
x.buffer a buffer to store x sent from the other rank.
rank.source a source rank where x sent from
tag a tag number.
comm a communicator number.
request a request number.

status a status number.

irecv-method 53

Details

A corresponding send()/isend() should be evoked at the corresponding rank rank. source.

Warning: irecv() is not safe for R since R is not a thread safe package that a dynamic returning
object requires certain blocking or barrier at some where. Current, the default method is equivalent
to the default method of recv().

Value

An object is returned by default.

Methods
For calling spmd.irecv.*():

signature(x = "ANY")
signature(x = "integer")
signature(x = "numeric")

signature(x ="raw")

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

recv(), send(), isend().

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.
N<-5
x <= (1:N) + N * .comm.rank
if(.comm.rank == 0){

y <- send(matrix(x, nrow = 1))
} else if(.comm.rank == 1){

https://pbdr.org/

54 is.comm.null

y <- irecv()
3

comm.print(y, rank.print = 1)

Finish.
finalize()

"

execmpi(spmd.code, nranks = 2L)

End(Not run)

is.comm.null Check if a MPI_COMM_NULL

Description

The functions check MPI_COMM_NULL.

Usage

is.comm.null(comm = .pbd_env$SPMD.CT$comm)

Arguments

comm a comm number.

Details

These functions are for internal uses.

Value

TRUE if input comm is MPI_COMM_NULL, otherwise FALSE.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

isend-method 55

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.
is.comm.null(@L)
is.comm.null(1L)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

isend-method A Rank Send (Nonblocking) an Object to the Other Rank

Description

This method lets a rank send (nonblocking) a object to the other rank in the same communicator.
The default return is NULL.

Usage

isend(x, rank.dest = .pbd_env$SPMD.CT$rank.dest,
tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm,
request = .pbd_env$SPMD.CT$request,
check.type = .pbd_env$SPMD.CT$check. type)

Arguments
X an object to be sent from a rank.
rank.dest a rank of destination where x send to.
tag a tag number.
comm a communicator number.
request a request number.

check. type if checking data type first for handshaking.

56 isend-method

Details

A corresponding recv() or irecv() should be evoked at the corresponding rank rank.dest.

See details of send() for the arugments check. type.

Value

A NULL is returned by default.

Methods
For calling spmd.isend.*():

signature(x = "ANY")
signature(x = "integer")

signature(x = "numeric”)

signature(x ="raw")

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

send(), recv(), irecv().

Examples

Not run:

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.
N <-5
X <= (1:N) + N * .comm.rank
if(.comm.rank == 0){

y <- isend(matrix(x, nrow = 1))
} else if(.comm.rank == 1){

y <- recv()

}

https://pbdr.org/

MPI array pointers 57

comm.print(y, rank.print = 1)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

MPI array pointers Set or Get MPI Array Pointers in R

Description

The function set/get a point address in R where the point point to a structure containing MPI arrays.

Usage

arrange.mpi.apts()

Details

Since Rmpi/pbdMPI pre-allocate memory to store comm, status, datatype, info, request, this func-
tion provides a variable in R to let different APIs share the same memory address.

If the package loads first, then this sets ‘. __MPI_APTS__’ in the .GlobalEnv of R. If the pack-
age does not load before other MPI APIs, then this gives a structure pointer to external memory
according to ‘. __MPI_APTS__’, i.e. allocated by other MPI APIs.

pbdMPI/R/arrange.mpi.apts provides the R code, and pbdMPI/src/pkg_x. * provides the details
of this call.

Value

‘. __MPI_APTS__’issetin .GlobalEnv of R.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:
See source code for the details.

End(Not run)

https://pbdr.org/

58 Package Tools

Package Tools Functions for Get/Print MPI_COMM Pointer (Address)

Description
These functions are designed to get or print MPI_COMM pointer and its address when the SPMD
code in R be a foreign application of other applications.

Usage

get.mpi.comm.ptr(comm = .pbd_env$SPMD.CT$comm, show.msg = FALSE)
addr.mpi.comm.ptr(comm.ptr)

Arguments
comm a communicator number.
comm.ptr a communicator pointer.
show.msg if showing message for debug only.
Details

get.mpi.comm.ptr() returns an R external pointer that points to the address of the comm.

addr.mpi.comm.ptr() takes the R external points, and prints the address of the comm. This func-
tion is mainly for debugging.
Value

get.mpi.comm.ptr() returns an R external pointer.

addr.mpi.comm.ptr() prints the comm pointer address and the address of MPI_COMM_WORLD.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Save code in a file "demo.r" and run with 22processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

https://pbdr.org/

probe 59

ptrl <- get.mpi.comm.ptr(1, show.msg = TRUE)
addr.mpi.comm.ptr(ptr1)

comm.split(color = as.integer(comm.rank()/2), key = comm.rank())

ptri.new <- get.mpi.comm.ptr(1, show.msg = TRUE)
addr.mpi.comm.ptr(ptrl.new)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code = spmd.code, nranks = 2L)

probe Probe Functions

Description

The functions call MPI probe functions.

Usage

probe(rank.source = .pbd_env$SPMD.CT$rank.source,
tag = .pbd_env$SPMD.CT$tag, comm = .pbd_env$SPMD.CT$comm,
status = .pbd_env$SPMD.CT$status)

iprobe(rank.source = .pbd_env$SPMD.CT$rank.source,
tag = .pbd_env$SPMD.CT$tag, comm = .pbd_env$SPMD.CT$comm,
status = .pbd_env$SPMD.CT$status)

Arguments
rank.source a source rank where an object sent from.
tag a tag number.
comm a communicator number.
status a status number.
Details

These functions are for internal functions. Potentially, they set/get probe for receiving data.

Value

An invisible state of MPI call is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

60 recv-method

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:
See source code of spmd.recv.default() for an example.

End(Not run)

recv-method A Rank Receives (Blocking) an Object from the Other Rank

Description

This method lets a rank receive (blocking) an object from the other rank in the same communicator.
The default return is the object sent from the other rank.

Usage

recv(x.buffer = NULL, rank.source = .pbd_env$SPMD.CT$rank.source,
tag = .pbd_env$SPMD.CT$tag, comm = .pbd_env$SPMD.CT$comm,
status = .pbd_env$SPMD.CT$status,
check.type = .pbd_env$SPMD.CT$check. type)

Arguments

x.buffer a buffer to store x sent from the other rank.

rank.source a source rank where x sent from

tag a tag number.

comm a communicator number.

status a status number.

check. type if checking data type first for handshaking.
Details

A corresponding send() should be evoked at the corresponding rank rank. source.

These are high level S4 methods. By default, check. type is TRUE and an additional send () /recv ()
will make a handshaking call first, then deliver the data next. i.e. an integer vector of length two
(type and length) will be deliver first between send() and recv() to ensure a buffer (of right type
and right size/length) is properly allocated at the rank.dest side.

Currently, four data types are considered: integer, double, raw/byte, and default/raw.object.
The default method will make a serialize() call first to convert the general R object into a raw
vector before sending it away. After the raw vector is received at the rank.dest side, the vector
will be unserialize() back to the R object format.

https://pbdr.org/

recv-method 61

check. type set as FALSE will stop the additional handhsaking call, but the buffer should be prepared
carefully by the user self. This is typically for the advanced users and more specifically calls are
needed. i.e. calling those spmd. send. integer with spmd.recv.integer correspondingly.

check. type also needs to be set as FALSE for more efficient calls such as isend()/recv() or
send()/irecv(). Currently, no check types are implemented in those mixed calls.

Value

An object is returned by default and the buffer will be overwritten implicitely.

Methods
For calling spmd.recv.*():

signature(x = "ANY")
signature(x = "integer")
signature(x = "numeric")

signature(x ="raw")

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

irecv(), send(), isend().

Examples

Save code in a file "demo.r” and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.
N <-5
x <= (1:N) + N * .comm.rank
if(.comm.rank == @){

y <- send(matrix(x, nrow = 1))
} else if(.comm.rank == 1){

y <- recv()

https://pbdr.org/

62 reduce-method

}

comm.print(y, rank.print = 1)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

reduce-method A Rank Receive a Reduction of Objects from Every Rank

Description

This method lets a rank receive a reduction of objects from every rank in the same communicator
based on a given operation. The default return is an object as the input.

Usage

reduce(x, x.buffer = NULL, op = .pbd_env$SPMD.CT$op,
rank.dest = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

Arguments
X an object to be gathered from all ranks.
x.buffer a buffer to hold the return object which probably has x with the same type of x.
op a reduction operation applied on combine all x.
rank.dest a rank of destination where all x reduce to.
comm a communicator number.
Details

By default, the object is reduced to . pbd_env$SPMD.CT$rank. source, i.e. rank OL.
All x on all ranks are likely presumed to have the same size and type.

x.buffer can be NULL or unspecified. If specified, the type should be either integer or double
specified correctly according to the type of x.

See methods{"reduce"} for S4 dispatch cases and the source code for further details.

Value

The reduced object of the same type as x is returned by default.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

scatter-method 63

References

Programming with Big Data in R Website: https://pbdr.org/

See Also
allgather(), gather(), reduce().

Examples

#i## Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initial.

suppressMessages(library(pbdMPI, quietly = TRUE))
init()

.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.

N<-5

x <= (1:N) + N * .comm.rank

y <- reduce(matrix(x, nrow = 1), op = \"sum\")
comm.print(y)

y <- reduce(x, double(N), op = \"prod\")
comm.print(y)

x <- as.logical(round(runif(N)))
y <- reduce(x, logical(N), op = \"land\")
comm.print(y)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code = spmd.code, nranks = 2L)

scatter-method A Rank Scatter Objects to Every Rank

Description

This method lets a rank scatter objects to every rank in the same communicator. The default input
is a list of length equal to ‘comm size’ and the default return is an element of the list.

Usage

scatter(x, x.buffer = NULL, x.count = NULL, displs = NULL,
rank.source = .pbd_env$SPMD.CT$rank.source,
comm = .pbd_env$SPMD.CT$comm)

https://pbdr.org/

64

scatter-method

Arguments
X an object of length ‘comm size’ to be scattered to all ranks.
x.buffer a buffer to hold the return object which probably has ‘size of element of x* with
the same type of the element of x.
x.count a vector of length ‘comm size’ containing all object lengths.
displs c(OL, cumsum(x.count)) by default.
rank.source a rank of source where elements of x scatter from.
comm a communicator number.
Details

All elements of x are likely presumed to have the same size and type.

x.buffer, x.count, and displs can be NULL or unspecified. If specified, the type should be one of
integer, double, or raw specified correctly according to the type of x.

If x. count is specified, then the spmd. scatterv.*() is called.

Value

An element of x is returned according to the rank id.

Methods

For calling spmd.scatter.*():

signature(x = "ANY", x.buffer = "missing”, x.count = "missing")

signature(x = "integer"”, x.buffer = "integer"”, x.count = "missing")

signature(x = "numeric”, x.buffer = "numeric”, x.count = "missing")

signature(x = "raw”, x.buffer = "raw”, x.count = "missing")
For calling spmd.scatterv.*():

signature(x = "ANY", x.buffer = "missing”, x.count = "integer")
signature(x = "ANY", x.buffer = "ANY", x.count = "integer")
signature(x = "integer", x.buffer = "integer"”, x.count = "integer")
signature(x = "numeric"”, x.buffer = "numeric”, x.count = "integer")

signature(x = "raw”, x.buffer = "raw”, x.count = "integer")

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

seed for RNG 65

See Also

bcast().

Examples

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

#i## Examples.

N<-5

x <= split(1:(N * .comm.size), rep(1:.comm.size, N))
y <- scatter(lapply(x, matrix, nrow = 1))
comm.print(y)

y <- scatter(x, double(N))

comm.print(y)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

seed for RNG Parallel random number generation with reproducible results

Description

These functions control the parallel-capable L’Ecuyer-CMRG pseudo-random number generator
(RNG) on clusters and in multicore parallel applications for reproducible results. Reproducibility
is possible across different node and core configurations by associating the RNG streams with an
application vector.

Usage
comm. set.seed(
seed = NULL,
diff = TRUE,
state = NULL,

streams = NULL,

comm = .pbd_env$SPMD.CT$comm
)
comm. set.stream(

name = NULL,

66 seed for RNG

reset = FALSE,

state = NULL,

comm = .pbd_env$SPMD.CT$comm
)
comm.get.streams(

comm = .pbd_env$SPMD.CT$comm,

seed = FALSE
)
Arguments

seed In comm. set. seed, a single value interpreted as an integer. In comm. get. streams,
a logical if TRUE, return includes the current local .Random. seed.

diff Logical indicating if the parallel instances should have different random streams.

state In function comm. set. seed: This parameter is deprecated. In function comm. set.stream:
If non-NULLit restarts a stream from a previously saved state <- comm.set.stream().
A stream state is a list with one named element, which is the 6-element L’Ecuyer-
CMRG .Random. seed, probably captured earlier with state <- comm.set.stream()).
The stream name, if different from a provided parameter name, has precedence,
but a warning is produced. Further, the requesting rank must own the stream.

streams An vector of sequential integers specifying the streams to be prepared on the cur-
rent rank. Typically, this is used by ‘comm.chunk()‘ to prepare correct streams
for each rank, which are aligned with the vector being chunk-ed.

name Stream number that is coercible to character, indicating to start or continue gen-
erating from that stream.

reset If true, reset the requested stream back to its beginning.

comm The communicator that determines MPI rank numbers.

Details

This implementation uses the function nextRNGStream in package parallel to set up streams
appropriate for working on a cluster system with MPI. The main difference from parallel is that
it adds a reproducibility capability with vector-based streams that works across different numbers
of nodes or cores by associating streams with an application vector.

Vector-based streams are best set up with the higher level function comm. chunk instead of using
comm. set.stream directly. comm.chunk will set up only the streams that each rank needs and
provides the stream numbers necessary to switch between them with comm. set.stream.

The function uses parallel’s nextRNGStream() and sets up the parallel stream seeds in the . pbd_env$RNG
environment, which are then managed with comm. set.stream. There is only one communication
broadcast in this implementation that ensures all ranks have the same seed as rank 0. Subsequently,

each rank maintains only its own streams.

When rank-based streams are set up, comm. chunk with form = "number"” and rng = TRUE param-
eters, streams are different for each rank and switching is not needed. Vector-based streams are
obtained with form = "vector” and rng = TRUE parameters. In this latter case, the vector returned
to each rank contains the stream numbers (and vector components) that the rank owns. Switch with

seed for RNG 67

comm. set.stream(v), where v is one of the stream numbers. Switching back and forth is allowed,
with each stream continuing where it left off.

RNG Notes R sessions connected by MPI begin like other R sessions as discussed in Random.
On first use of random number generation, each rank computes its own seed from a combination
of clock time and process id (unless it reads a previously saved workspace, which is not recom-
mended). Because of asynchronous execution, imperfectly synchronized node clocks, and likely
different process ids, this almost guarantees unique seeds and most likely results in independent
streams. However, this is not reproducible and not guaranteed. Both reproducibility and guaran-
tee are brought by the use of the L’Ecuyer-CMRG generator implementation in nextRNGStream
and the use of comm. set.seed and comm. set. stream adaptation for parallel computing on cluster
systems.

At ahigh level, the L’Ecuyer-CMRG pseudo-random number generator can take jumps (advance the
seed) in its stream (about 27191 long) so that distant substreams can be assigned. The nextRNGStream
implementation takes jumps of 27127 (about 1.7e38) to provide up to 2764 (about 1.8e19) in-
dependent streams. See https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/
parallel.pdf for more details.

In situations that require the same stream on all ranks, a simple set. seed from base R and the de-
fault RNG will suffice. comm. set.seed will also accomplish this with the diff = FALSE parameter
if switching between same and different streams is needed.

Value

comm. set. seed engages the L’Ecuyer-CMRG RNG and invisibly returns the previous RNG in use
(Output of RNGkind()[1]). Capturing it, enables the restoration of the previous RNG with RNGkind.
See examples of use in demo/seed_rank.r and demo/seed_vec.r.

comm. set.stream invisibly returns the current stream number as character.

comm. get.streams returns the current stream name and other stream names available to the rank
as a character string. Optionally, the local .Random. seed is included. This function is a debugging
aid for distributed random streams.

All three functions manage and use the environment . pbd_env$RNG.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Pierre L’Ecuyer, Simard, R., Chen, E.J., and Kelton, W.D. (2002) An Object-Oriented Random-
Number Package with Many Long Streams and Substreams. Operations Research, 50(6), 1073-
1075.

https://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf
Programming with Big Data in R Website: https://pbdr.org/

See Also

comm. chunk ()

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf
https://pbdr.org/

68 send-method

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

suppressMessages(library(pbdMPI, quietly = TRUE))

comm. print (RNGkind())
comm.print(runif(5), all.rank = TRUE)

set.seed(1357)
comm.print(runif(5), all.rank = TRUE)

old.kind = comm.set.seed(1357)
comm. print (RNGkind())
comm.print(runif(5), all.rank = TRUE)

comm.set.stream(reset = TRUE)
comm.print(runif(5), all.rank = TRUE)

comm.set.seed(1357, diff = TRUE)
comm.print(runif(5), all.rank = TRUE)

state <- comm.set.stream() ### save each rank's stream state
comm.print(runif(5), all.rank = TRUE)

comm.set.stream(state = state) ### set current RNG to state
comm.print(runif(5), all.rank = TRUE)

RNGkind(old.kind)

set.seed(1357)

comm. print (RNGkind())
comm.print(runif(5), all.rank = TRUE)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

send-method A Rank Send (blocking) an Object to the Other Rank

Description

This method lets a rank send (blocking) an object to the other rank in the same communicator. The
default return is NULL.

send-method 69

Usage

send(x, rank.dest = .pbd_env$SPMD.CT$rank.dest,
tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm,
check.type = .pbd_env$SPMD.CT$check. type)

Arguments
X an object to be sent from a rank.
rank.dest arank of destination where x send to.
tag a tag number.
comm a communicator number.
check. type if checking data type first for handshaking.
Details

A corresponding recv() should be evoked at the corresponding rank rank.dest.

These are high level S4 methods. By default, check. type is TRUE and an additional send()/recv()
will make a handshaking call first, then deliver the data next. i.e. an integer vector of length two
(type and length) will be deliver first between send() and recv() to ensure a buffer (of right type
and right size/length) is properly allocated at the rank.dest side.

Currently, four data types are considered: integer, double, raw/byte, and default/raw.object.
The default method will make a serialize() call first to convert the general R object into a raw
vector before sending it away. After the raw vector is received at the rank.dest side, the vector
will be unserialize() back to the R object format.

check. type set as FALSE will stop the additional handhsaking call, but the buffer should be prepared
carefully by the user self. This is typically for the advanced users and more specifically calls are
needed. i.e. calling those spmd. send. integer with spmd.recv.integer correspondingly.

check. type also needs to be set as FALSE for more efficient calls such as isend()/recv() or
send()/irecv(). Currently, no check types are implemented in those mixed calls.
Value

A NULL is returned by default.

Methods

For calling spmd.send.*():

signature(x = "ANY")
signature(x = "integer")
signature(x = "numeric”)

signature(x ="raw")

70 sendrecv-method

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

isend(), recv(), irecv().

Examples

Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.
N <-5
x <= (1:N) + N * .comm.rank
if(.comm.rank == @){

y <- send(matrix(x, nrow = 1))
} else if(.comm.rank == 1){

y <= recv()
3

comm.print(y, rank.print = 1)

Finish.
finalize()

n

pbdMPI: :execmpi(spmd.code, nranks = 2L)

sendrecv-method Send and Receive an Object to and from Other Ranks

Description

This method lets a rank send an object to the other rank and receive an object from another rank in
the same communicator. The default return is x.

https://pbdr.org/

sendrecv-method

Usage

sendrecv(x, x.buffer = NULL,
rank.dest = (comm.rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
send.tag = .pbd_env$SPMD.CT$tag,
rank.source = (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),
recv.tag = .pbd_env$SPMD.CT$tag,

comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status)

Arguments
X an object to be sent from a rank.
x.buffer a buffer to store x sent from the other rank.
rank.dest a rank of destination where x send to.
send. tag a send tag number.
rank.source a source rank where x sent from.
recv.tag a receive tag number.
comm a communicator number.
status a status number.

Details

A corresponding sendrecv () should be evoked at the corresponding ranks rank.dest and rank. source.

rank.dest and rank.source can be as.integer (NULL) to create a silent sendrecv operation

which is more efficient than setting rank.dest and rank. source to be equal.

Value

A x is returned by default.

Methods

For calling spmd. sendrecv.*():

signature(x = "ANY", x.buffer = "ANY")
signature(x = "integer", x.buffer = "integer")
signature(x = "numeric”, x.buffer = "numeric")

n

signature(x = "raw

n

, X.buffer ="raw")

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,

and Hao Yu.

72

References

sendrecv.replace-method

Programming with Big Data in R Website: https://pbdr.org/

See Also

sendrecv.replace().

Examples

Not run:

#i## Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r

”

spmd.code <-
Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()
.comm.rank <- comm.rank()

Examples.
N <-5

x <= (1:N) + N * .comm.size
y <- sendrecv(matrix(x, nrow = 1))
comm.print(y, rank.print = 1)

Finish.
finalize()

"

execmpi(spmd.code, nranks = 2L)

End(Not run)

sendrecv.replace-method

Send and Receive an Object to and from Other Ranks

Description

This method lets a rank send an object to the other rank and receive an object from another rank in
the same communicator. The default return is x.

Usage

sendrecv.replace(x,

rank.dest =

send.tag =
rank.source

(comm. rank(.pbd_env$SPMD.CT$comm) + 1) %%
comm.size(.pbd_env$SPMD.CT$comm),

.pbd_env$SPMD.CT$tag,

= (comm.rank(.pbd_env$SPMD.CT$comm) - 1) %%
comm.size(.pbd_env$SPMD.CT$comm),

https://pbdr.org/

sendrecv.replace-method 73

recv.tag = .pbd_env$SPMD.CT$tag,
comm = .pbd_env$SPMD.CT$comm, status = .pbd_env$SPMD.CT$status)

Arguments
X an object to be sent from a rank.
rank.dest a rank of destination where x send to.
send. tag a send tag number.
rank.source a source rank where x sent from.
recv.tag a receive tag number.
comm a communicator number.
status a status number.

Details

A corresponding sendrecv.replace() should be evoked at the corresponding ranks rank.dest
and rank. source.

rank.dest and rank.source can be as.integer(NULL) to create a silent sendrecv operation
which is more efficient than setting rank.dest and rank. source to be equal.

Warning: sendrecv.replace() is not safe for R since R is not a thread safe package that a
dynamic returning object requires certain blocking or barrier at some where. The replaced object or
memory address ‘MUST’ return correctly. This is almost equivalent to sendrecv ().

Value

A x is returned by default.

Methods
For calling spmd. sendrecv.replace.*():

signature(x = "ANY")
signature(x = "integer")
signature(x = "numeric")

signature(x ="raw")

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

sendrecv().

https://pbdr.org/

74

Examples

Not run:

#i## Save code in a file "demo.r" and run with 2 processors by

SHELL> mpiexec -np 2 Rscript demo.r
spmd.code <- "

Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()

.comm.rank <- comm.rank()

Examples.

N <-5

X <= (1:N) + N * .comm.size

x <- sendrecv.replace(matrix(x, nrow = 1))
comm.print(x, rank.print = 1)

Finish.
finalize()

"

execmpi(spmd.code, nranks = 2L)

End(Not run)

Set global pbd options

Set global pbd options
Set Global pbdR Options

Description

This is an advanced function to set pbdR options.

Usage
pbd_opt(..., bytext = "", envir = .GlobalEnv)
Arguments
in argument format option = value to set .pbd_env$option <- value inside
the envir.
bytext in text format "option = value" to set .pbd_env$option <- value inside the
envir.

envir by default the global environment is used.

Set global pbd options 75

Details

. allows multiple options in envir$.pbd_env, but only in a simple way.

bytext allows to assign options by text in envir$.pbd_env, but can assign advanced objects.
For example, "option$suboption <- value” will set envir$.pbd_env$option$suboption <-
value.

Value

No value is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Drew Schmidt.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

.pbd_env, SPMD.CT(), SPMD.0OP(), SPMD.I0(), SPMD.TP(), and .mpiopt_init().

Examples

Not run:
Save code in a file "demo.r” and run with 4 processors by
SHELL> mpiexec -np 4 Rscript demo.r

Initialize
suppressMessages(library(pbdMPI, quietly = TRUE))

Examples.

1s(.pbd_env)

pbd_opt (ICTXT = c(2, 2))

pbd_opt(bytext = "grid.new <- list(); grid.new$ICTXT <- c(4, 4)")
pbd_opt(BLDIM = c(16, 16), bytext = "grid.new$BLDIM = c(8, 8)")
1s(.pbd_env)

.pbd_env$ICTXT

.pbd_env$BLDIM

.pbd_env$grid.new

Finish.
finalize()

End(Not run)

https://pbdr.org/

76 sourcetag

sourcetag Functions to Obtain source and tag

Description

The functions extract MPI_ANY_SOURCE, MPI_ANY_TAG, MPIL_status.source and MPI_status.tag.

Usage

anysource()
anytag()

get.sourcetag(status = .pbd_env$SPMD.CT$status)
Arguments

status a status number.

Details

These functions are for internal uses.

Value

Corresponding status will be returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

Examples

Not run:
Save code in a file "demo.r" and run with 2 processors by
SHELL> mpiexec -np 2 Rscript demo.r
spmd.code <- "
Initialize
suppressMessages(library(pbdMPI, quietly = TRUE))
.comm.size <- comm.size()
.comm.rank <- comm.rank()
if(.comm.size < 2)
comm.stop(\"At least two processors are requried.\")

Examples.

https://pbdr.org/

SPMD Control

if(.comm.rank != 0){

send(as.integer(.comm.rank * 10), rank.dest = 0oL,
tag = as.integer(.comm.rank + 10))

}
if(.comm.rank == 0){
for(i in 1:(.comm.size -
ret <- recv(x.buffer =
rank. source
sourcetag <- get.source
print(c(sourcetag, ret)
}
3

Finish.
finalize()

n

execmpi(spmd.code, nranks

End(Not run)

O
integer(1),

= anysource(), tag = anytag())

tag()
)

= 2L)

77

SPMD Control

Default control in pbdMPIL.

Description

These variables provide default values for most functions in the package.

Format

The environment . pbd_env contains several objects with parameters for communicators and meth-

ods.

Details

The elements of .pbd_env$SPMD.CT are default values for various controls

Elements
comm
intercomm
info
newcomm
op
port.name
print.all.rank
print.quiet
rank.root
rank.source
rank.dest

Default
OL
2L
OL
1L

"sum"
"spmdport"

FALSE

FALSE
OL
OL
1L

Meaning

communicator index

inter communicator index

info index

new communicator index

the operation

the operation

whether all ranks print message
whether rank is added to print/cat
the rank of root

the rank of source

the rank of destination

78 SPMD Control

request OL the request index

serv.name "spmdserv" the service name

status OL the status index

tag OL the tag number

unlist FALSE whether to unlist a return
divide.method "block" default method for jid
mpi.finalize TRUE shutdown MPI on finalize()
quit TRUE quit when errors occur
msg.flush TRUE flush each comm.cat/comm.print
msg.barrier TRUE include barrier in comm.cat/comm.print
Rprof.all.rank FALSE call Rprof on all ranks
lazy.check TRUE use lazy check on all ranks

The elements of . pbd_env$SPMD. OP list the implemented operations for reduce () and allreduce().

Currently, implemented operations are "sum", "prod", "max", "min", "land", "band", "lor", "bor",
"Ixor", "bxor".

The elements of . SPMD. I0 are default values for functions in comm_read. r and comm_balance.r.

Elements Default Meaning

max.read.size 5.2e6 max of reading size (5 MB)
max.test.lines 500 max of testing lines
read.method "gbd" default reading method

balance.method "block" default load balance method

where balance.method is only used for "gbd" reading method when nrows = -1 and skip = 0 are
set.

The elements of . pbd_env$SPMD. TP are default values for task pull settings

Elements Default Meaning

bcast FALSE whether to bcast () objects to all ranks
barrier TRUE if call barrier() for all ranks

try TRUE if use try() in works

try.silent FALSE if silent the try() message

See task.pull() for details.

Author(s)
Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

SPMD Control Functions 79

SPMD Control Functions
Sets of controls in pbdMPI.

Description

These sets of controls are used to provide default values in this package. The values are not supposed
to be changed in general.

Author(s)

Wei-Chen Chen <wccsnow@gmail. com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

.pbd_env.

Task Pull Functions for Task Pull Parallelism

Description

These functions are designed for SPMD but assume that rank 0 is a manager and the rest are workers.

Usage
task.pull(jids, FUN, ..., rank.manager = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm, bcast = .pbd_env$SPMD.TP$bcast,
barrier = .pbd_env$SPMD.TP$barrier,
try = .pbd_env$SPMD.TP$try,
try.silent = .pbd_env$SPMD.TP$try.silent)
task.pull.workers(FUN = function(jid, ...){ return(jid) 3}, ...,

rank.manager = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm,
try = .pbd_env$SPMD.TP$try,
try.silent = .pbd_env$SPMD.TP$try.silent)
task.pull.manager(jids, rank.manager = .pbd_env$SPMD.CT$rank.root,
comm = .pbd_env$SPMD.CT$comm)

https://pbdr.org/

80 Task Pull

Arguments
jids all job ids (a vector of positive integers).
FUN a function to be evaluated by workers.

extra parameters for FUN.

rank.manager rank of the manager from where jid is sent.

comm a communicator number.
bcast if beast to all ranks.
barrier if barrier for all ranks.
try wheter to use try() to avoid crashes. CAUTION: try = FALSE is not safe and
can crash all MPI/R jobs.
try.silent turn off error messages from try().
Details

All of these functions are designed to emulate a manager/workers paradigm in an SPMD environ-
ment. If your chunk workloads are known and similar, consider a direct SPMD solution.

FUN is a user defined function which has jid as its first argument and other variables are given in

The manager will be queried by workers whenever a worker finishes a job to see if more jobs are
available.

Value
A list with length comm.size() - 1 will be returned to the manager and NULL to the workers. Each
element of the list contains the returns ret of their FUN results.

Author(s)
Wei-Chen Chen <wccsnow@gmail . com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,
and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also

get.jid().

Examples

Not run:

Under command mode, run the demo with 2 processors by

(Use Rscript.exe for windows system)

mpiexec -np 2 Rscript -e "demo(task_pull, 'pbdMPI', ask=F,echo=F)"
Or

execmpi("demo(task_pull, 'pbdMPI', ask=F,echo=F)", nranks = 2L)

https://pbdr.org/

Utility execmpi 81

End(Not run)

Utility execmpi Execute MPI code in system

Description

This function basically saves code in a spmd.file and executes MPI via R’s system call e.g. system("mpiexec
-np 1 Rscript spmd.file").

Usage

execmpi(spmd.code = NULL, spmd.file = NULL,
mpicmd = NULL, nranks = 1L, rscmd = NULL, verbose = TRUE,
disable.current.mpi = TRUE, mpiopt = NULL, rsopt = NULL)
runmpi(spmd.code = NULL, spmd.file = NULL,
mpicmd = NULL, nranks = 1L, rscmd = NULL, verbose = TRUE,
disable.current.mpi = TRUE, mpiopt = NULL, rsopt = NULL)

Arguments
spmd. code SPMD code to be run via mpicmd and Rscript.
spmd.file a file contains SPMD code to be run via mpicmd and Rscript.
mpicmd MPI executable command. If NULL, system default will be searched.
nranks number of processes to run the SPMD code envoked by mpicmd.
rscmd Rscript executable command. If NULL, system default will be searched.
verbose print SPMD code outputs and MPI messages.

disable.current.mpi
force to finalize the current MPI comm if any, for unix-alike system only.

mpiopt MPI options appended after -np nranks --oversubscribe .
rsopt Rscript options appended after Rscript .
Details

When the spmd. code is NULL: The code should be already saved in the file named spmd.file for
using.

When the spmd. code is not NULL: The spmd. code will be dumped to a temp file (spmd.file) via
the callwriteLines(spmd.code, conn) where conn <- file(spmd.file, open = "wt"). The file
will be closed after the dumping.

When spmd. file is ready (either dumped from spmd. code or provided by the user), the steps below
will be followed: If spmd.file = NULL, then a temporary file will be generated and used to dump
spmd. code.

82 Utility execmpi

For Unix-alike systems, the command cmd <- paste(mpicmd, "-np”, nranks, mpiopt, rscmd,
rscmd spmd.file, ">", log.file, " 2>&1 & echo \"PID=$!\" &") is executed via system(cmd,
intern = TRUE, wait = FALSE, ignore.stdout = TRUE, ignore.stderr = TRUE). The log.file
is a temporary file to save the outputs from the spmd. code. The results saved to the log.file will
be read back in and cat and return to R.

For OPENMPI, the "—oversubscribe " is added before mpiopt as mpiopt <- paste(”--oversubscribe
", mpiopt, sep ="") and is passed to cmd thereon.

For Windows, the cmd will be paste(mpicmd, "-np”, nranks, mpiopt, rscmd, rsopt spmd.file)
and is executed via system(cmd, intern = TRUE, wait = FALSE, ignore.stdout = TRUE, ignore.stderr
= TRUE).

Value

Basically, only the PID of the MPI job (in background) will be returned in Linux-alike systems. For
Windows, the MPI job is always wait until it is complete.

Note

For Unix-alike systems, in new R and MPI, the pbdMPI: :execmpi(. . .) may carry the current MPI
comm into system(cmd, ...) calls. Because the comm has been established/loaded by the init()
call because of : :, the mpiexec inside the system(cmd, ...) calls will be confused with the exist
comm.

Consider that pbdMPI: :execmpi(. . .) is typically called in interactive mode (or actually only done
for CRAN check in most case), an argument disable.current.mpi = TRUE is added/needed to
finalize the existing comm first before system(cmd, ...) be executed.

This function is NOT recommended for running SPMD programs. The recommended way is to run
under shell command.
Author(s)

Wei-Chen Chen <wccsnow@gmail.com> and Drew Schmidt.

References

Programming with Big Data in R Website: https://pbdr.org/

See Also
pbdCS: :pbdRscript().

Examples

Save code in a file "demo.r” and run with 2 processors by
#i## SHELL> mpiexec -np 2 Rscript demo.r

spmd.file <- tempfile()

cat(”

suppressMessages(library(pbdMPI, quietly = TRUE))
allreduce(2)

https://pbdr.org/

wait

finalize()
", file = spmd.file)
pbdMPI: :execmpi(spmd.file = spmd.file, nranks = 2L)

83

wait Wait Functions

Description

The functions call MPI wait functions.

Usage

wait(request = .pbd_env$SPMD.CT$request,

status = .pbd_env$SPMD.CT$status)
waitany(count, status = .pbd_env$SPMD.CT$status)
waitsome(count)
waitall(count)

Arguments

request a request number.
status a status number.

count a count number.

Details

These functions are for internal uses. Potentially, they wait after some nonblocking MPI calls.

Value

An invisible state of MPI call is returned.

Author(s)

Wei-Chen Chen <wccsnow@gmail.com>, George Ostrouchov, Drew Schmidt, Pragneshkumar Patel,

and Hao Yu.

References

Programming with Big Data in R Website: https://pbdr.org/

https://pbdr.org/

84

Examples

Not run:

Save code in a file "demo.r” and run with 2 processors by

#i## SHELL> mpiexec -np 2 Rscript demo.r

n

spmd.code <-
Initialize

suppressMessages(library(pbdMPI, quietly = TRUE))

.comm.size <- comm.size()
.comm.rank <- comm.rank()

Examples.

N<-5

x <= (1:N) + N *x .comm.rank

if(.comm.rank == @){
isend(list(x))

3

if(.comm.rank == 1){
y <= irecv(list(x))

3

wait()

comm.print(y, rank.print = 1L)

Finish.
finalize()

n

execmpi(spmd.code, nranks = 2L)

End(Not run)

wait

Index

* collective probe, 59
allgather-methods, 5 sourcetag, 76
allreduce-method, 7 wait, 83
alltoall, 9 * utility
bcast-method, 13 apply and lapply, 10
gather-methods, 19 Get Configures Used at Compiling
irecv-method, 52 Time, 21
isend-method, 55 get job id, 22
recv-method, 60 global all pairs, 24
reduce-method, 62 global any and all, 25
scatter-method, 63 global as.gbd, 27
send-method, 68 global balanc, 28
sendrecv-method, 70 global base, 30
sendrecv.replace-method, 72 global distance function, 31
* global variables global match.arg, 33
Set global pbd options, 74 global pairwise, 34
SPMD Control, 77 global print and cat, 36
SPMD Control Functions, 79 global range, max, and min, 38
* methods global reading, 39
allgather-methods, 5 global Rprof, 42
allreduce-method, 7 global sort, 43
alltoall, 9 global stop and warning, 45
bcast-method, 13 global timer, 47
gather-methods, 19 global which, which.max, and
irecv-method, 52 which.min, 47
isend-method, 55 global writing, 49
recv-method, 60 Package Tools, 58
reduce-method, 62 seed for RNG, 65
scatter-method, 63 Task Pull, 79
send-method, 68 Utility execmpi, 81
sendrecv-method, 70 .mpiopt_init, 75
sendrecv.replace-method, 72 .mpiopt_init (SPMD Control Functions),
* package 79
pbdMPI-package, 3 .pbd_env, 75, 79
* programming .pbd_env (SPMD Control), 77
communicator, 16
info, 51 addr.mpi.comm.ptr (Package Tools), 58
is.comm.null, 54 allgather, 5, 8, 10, 20, 63
MPI array pointers, 57 allgather (allgather-methods), 5

85

86

allgather,ANY,ANY, integer-method
(allgather-methods), 5

allgather,ANY,missing, integer-method
(allgather-methods), 5

allgather,ANY,missing,missing-method
(allgather-methods), 5

allgather,integer,integer,integer-method
(allgather-methods), 5

allgather,integer,integer,missing-method
(allgather-methods), 5

allgather,numeric,numeric,integer-method
(allgather-methods), 5

allgather,numeric,numeric,missing-method
(allgather-methods), 5

allgather,raw,raw,integer-method
(allgather-methods), 5

allgather,raw,raw,missing-method
(allgather-methods), 5

allgather-methods, 5

allgatherv, 10

allgatherv (allgather-methods), 5

allreduce, 5, 6, 20

allreduce (allreduce-method), 7

allreduce,ANY,missing-method
(allreduce-method), 7

allreduce,float32,float32-method
(allreduce-method), 7

allreduce,integer,integer-method
(allreduce-method), 7

allreduce,logical,logical-method
(allreduce-method), 7

allreduce,numeric,numeric-method
(allreduce-method), 7

allreduce-method, 7

alltoall, 9

anysource (sourcetag), 76

anytag (sourcetag), 76

apply and lapply, 10

arrange.mpi.apts (MPI array pointers),
57

barrier (communicator), 16

bcast, 5, 65

bcast (bcast-method), 13
bcast,ANY-method (bcast-method), 13
bcast,integer-method (bcast-method), 13
bcast,numeric-method (bcast-method), 13
bcast,raw-method (bcast-method), 13
bcast-method, 13

comm

comm
comm
comm

comm

comm
comm

comm

comm
comm

comm.
comm.
comm.
comm.

comm.
comm.
comm.
comm.
comm.
comm.
comm.
comm.
comm.
.set.seed, 15

.set.seed (seed for RNG), 65

comm
comm

INDEX

.abort (communicator), 16
comm.
comm.
comm.
comm.
comm.
.any (global any and all), 25
.as.gbd, 29

.as.ghd (global as.ghbd), 27
comm.
comm.
comm.
comm.
comm.
comm.
comm.
comm.
comm.
.end.seed (seed for RNG), 65
comm.
.get.streams (seed for RNG), 65
.is.null (communicator), 16
comm.
comm.
comm.
comm.
comm.
.max (global range, max, and min),

accept (communicator), 16

all (global any and all), 25
allcommon (global any and all), 25
allpairs, 32

allpairs (global all pairs), 24

balance.info (global balanc), 28
c2f (communicator), 16

cat (global print and cat), 36
chunk, 14, 23, 66

connect (communicator), 16
disconnect (communicator), 16

dist, 25, 35

dist (global distance function), 31
dup (communicator), 16

free (communicator), 16

length (global base), 30
load.balance, 27, 28, 41, 50
load.balance (global balanc), 28
localrank (communicator), 16
match.arg (global match.arg), 33

38

.mean (global base), 30
.min (global range, max, and min),

38
pairwise, 32, 35
pairwise (global pairwise), 34
print (global print and cat), 36
range (global range, max, and
min), 38
rank (communicator), 16
read.csv (global reading), 39
read.csv2 (global reading), 39
read. table, 28, 29, 48, 50
read.table (global reading), 39
reset.seed (seed for RNG), 65
Rprof (global Rprof), 42
sd (global base), 30
seed.state (seed for RNG), 65

INDEX

comm.set.stream, 15, 66, 67

comm.set.stream (seed for RNG), 65

comm.size, 23

comm.size (communicator), 16

comm. sort (global sort), 43

comm.split (communicator), 16

comm. stop (global stop and warning), 45

comm. stopifnot (global stop and
warning), 45

comm. sum (global base), 30

comm. timer (global timer), 47

comm.unload.balance (global balanc), 28

comm.var (global base), 30

comm.warning (global stop and warning),
45

comm.warnings (global stop and
warning), 45

comm.which (global which, which.max,
and which.min), 47

comm.write (global writing), 49

comm.write.table, 28, 29, 41

communicator, 16

execmpi (Utility execmpi), 81

finalize, 4
finalize (communicator), 16

gather, 5, 6, 8, 63
gather (gather-methods), 19
gather,ANY,ANY, integer-method
(gather-methods), 19
gather,ANY,missing, integer-method
(gather-methods), 19
gather,ANY,missing,missing-method
(gather-methods), 19
gather,integer,integer,integer-method
(gather-methods), 19
gather,integer,integer,missing-method
(gather-methods), 19
gather,numeric,numeric,integer-method
(gather-methods), 19
gather,numeric,numeric,missing-method
(gather-methods), 19
gather,raw,raw,integer-method
(gather-methods), 19
gather,raw,raw,missing-method
(gather-methods), 19
gather-methods, 19

87

gatherv (gather-methods), 19

Get Configures Used at Compiling Time,
21

get job id, 22

get.conf (Get Configures Used at
Compiling Time), 21

get.jid, 80

get.jid (get job id), 22

get.lib (Get Configures Used at
Compiling Time), 21

get.mpi.comm.ptr (Package Tools), 58

get.sourcetag (sourcetag), 76

get.sysenv (Get Configures Used at
Compiling Time), 21

global all pairs, 24

global any and all, 25

global as.gbd, 27

global balanc, 28

global base, 30

global distance function, 31

global match.arg, 33

global pairwise, 34

global print and cat, 36

global range, max, and min, 38

global reading, 39

global Rprof, 42

global sort, 43

global stop and warning, 45

global timer, 47

global which, which.max, and
which.min, 47

global writing, 49

info, 51

init (communicator), 16
intercomm.create (communicator), 16
intercomm.merge (communicator), 16
iprobe (probe), 59

irecv, 56, 61, 70

irecv (irecv-method), 52
irecv,ANY-method (irecv-method), 52
irecv,integer-method (irecv-method), 52
irecv,numeric-method (irecv-method), 52
irecv,raw-method (irecv-method), 52
irecv-method, 52

is.comm.null, 54

is.finalized (communicator), 16

isend, 53,61, 70

isend (isend-method), 55

88

isend, ANY-method (isend-method), 55

isend, integer-method (isend-method), 55
isend,numeric-method (isend-method), 55

isend, raw-method (isend-method), 55
isend-method, 55

MPI array pointers, 57
nextRNGStream, 66, 67

Package Tools, 58

pbd_opt (Set global pbd options), 74
pbdApply (apply and lapply), 10
pbdLapply (apply and lapply), 10
pbdMPI (pbdMPI-package), 3
pbdMPI-package, 3

pbdSapply (apply and lapply), 10
port.close (communicator), 16
port.open (communicator), 16
probe, 59

Random, 67

recv, 53, 56, 70

recv (recv-method), 60

recv,ANY-method (recv-method), 60

recv, integer-method (recv-method), 60

recv,numeric-method (recv-method), 60

recv, raw-method (recv-method), 60

recv-method, 60

reduce, 5, 6, 8, 20, 63

reduce (reduce-method), 62

reduce, ANY,missing-method
(reduce-method), 62

reduce, float32,float32-method
(reduce-method), 62

reduce, integer,integer-method
(reduce-method), 62

reduce,logical,logical-method
(reduce-method), 62

reduce, numeric,numeric-method
(reduce-method), 62

reduce-method, 62

RNGkind, 67

Rprof, 42, 43

runmpi (Utility execmpi), 81

scatter, 5, 14

scatter (scatter-method), 63

scatter,ANY,ANY, integer-method
(scatter-method), 63

INDEX

scatter,ANY,missing,integer-method
(scatter-method), 63

scatter,ANY,missing,missing-method
(scatter-method), 63

scatter,integer,integer,integer-method

(scatter-method), 63

scatter,integer,integer,missing-method

(scatter-method), 63

scatter,numeric,numeric,integer-method

(scatter-method), 63

scatter,numeric,numeric,missing-method

(scatter-method), 63
scatter,raw,raw, integer-method
(scatter-method), 63
scatter,raw,raw,missing-method
(scatter-method), 63
scatter-method, 63
seed for RNG, 65
send, 53, 56, 61
send (send-method), 68
send, ANY-method (send-method), 68
send, integer-method (send-method), 68
send, numeric-method (send-method), 68
send, raw-method (send-method), 68
send-method, 68
sendrecv, 73
sendrecv (sendrecv-method), 70
sendrecv, ANY, ANY-method
(sendrecv-method), 70
sendrecv, integer,integer-method
(sendrecv-method), 70
sendrecv,numeric, numeric-method
(sendrecv-method), 70
sendrecv, raw, raw-method
(sendrecv-method), 70
sendrecv-method, 70
sendrecv.replace, 72
sendrecv.replace
(sendrecv.replace-method), 72
sendrecv.replace, ANY-method
(sendrecv.replace-method), 72
sendrecv.replace, integer-method
(sendrecv.replace-method), 72
sendrecv.replace,numeric-method
(sendrecv.replace-method), 72
sendrecv.replace, raw-method
(sendrecv.replace-method), 72
sendrecv.replace-method, 72

INDEX

serv.lookup (communicator), 16
serv.publish (communicator), 16
serv.unpublish (communicator), 16
Set global pbd options, 74
set.seed, 67

sourcetag, 76

SPMD Control, 77

SPMD Control Functions, 79
spmd.alltoall.double (alltoall), 9
spmd.alltoall.integer (alltoall), 9
spmd.alltoall.raw(alltoall), 9
spmd.alltoallv.double (alltoall), 9
spmd.alltoallv.integer (alltoall), 9
spmd.alltoallv.raw(alltoall), 9
SPMD.CT, 75

SPMD.CT (SPMD Control Functions), 79
SPMD.DT (SPMD Control Functions), 79
SPMD. IO, 75

SPMD.IO (SPMD Control Functions), 79
SPMD.OP, 75

SPMD.OP (SPMD Control Functions), 79
SPMD. TP, 75

SPMD.TP (SPMD Control Functions), 79

Task Pull, 79
task.pull, 23,78
task.pull (Task Pull), 79

Utility execmpi, 81

wait, 83

waitall (wait), 83
waitany (wait), 83
waitsome (wait), 83

89

	pbdMPI-package
	allgather-methods
	allreduce-method
	alltoall
	apply and lapply
	bcast-method
	comm.chunk
	communicator
	gather-methods
	Get Configures Used at Compiling Time
	get job id
	global all pairs
	global any and all
	global as.gbd
	global balanc
	global base
	global distance function
	global match.arg
	global pairwise
	global print and cat
	global range, max, and min
	global reading
	global Rprof
	global sort
	global stop and warning
	global timer
	global which, which.max, and which.min
	global writing
	info
	irecv-method
	is.comm.null
	isend-method
	MPI array pointers
	Package Tools
	probe
	recv-method
	reduce-method
	scatter-method
	seed for RNG
	send-method
	sendrecv-method
	sendrecv.replace-method
	Set global pbd options
	sourcetag
	SPMD Control
	SPMD Control Functions
	Task Pull
	Utility execmpi
	wait
	Index

