Package ‘parallelDist’

October 14, 2022

Type Package
Title Parallel Distance Matrix Computation using Multiple Threads
Version 0.2.6

Author Alexander Eckert [aut, cre],
Lucas Godoy [ctb],
Srikanth KS [ctb]

Maintainer Alexander Eckert <info@alexandereckert.com>

Description A fast parallelized alternative to R's native 'dist' function to
calculate distance matrices for continuous, binary, and multi-dimensional
input matrices, which supports a broad variety of 41 predefined distance
functions from the 'stats', ‘proxy' and 'dtw' R packages, as well as user-
defined functions written in C++. For ease of use, the 'parDist' function
extends the signature of the 'dist' function and uses the same parameter
naming conventions as distance methods of existing R packages. The package
is mainly implemented in C++ and leverages the 'RcppParallel’ package to
parallelize the distance computations with the help of the "TinyThread'
library. Furthermore, the 'Armadillo’ linear algebra library is used for
optimized matrix operations during distance calculations. The curiously
recurring template pattern (CRTP) technique is applied to avoid virtual
functions, which improves the Dynamic Time Warping calculations while
the implementation stays flexible enough to support different DTW step
patterns and normalization methods.

License GPL (>=2)

URL https://github.com/alexeckert/parallelDist,

https://www.alexandereckert.com/projects/#r-packages

BugReports https://github.com/alexeckert/parallelDist/issues
NeedsCompilation yes

Depends R (>=3.0.2)

Imports Rcpp (>=0.12.6), ReppParallel (>= 4.3.20)

LinkingTo Rcpp, ReppParallel, ReppArmadillo

SystemRequirements C++11

https://github.com/alexeckert/parallelDist
https://www.alexandereckert.com/projects/#r-packages
https://github.com/alexeckert/parallelDist/issues

2 parDist

Suggests dtw, ggplot2, proxy, testthat, RcppArmadillo, ReppXPtrUtils
Repository CRAN
Date/Publication 2022-02-03 23:50:02 UTC

R topics documented:

parDist. e e 2
Index 10
parDist Parallel Distance Matrix Computation using multiple Threads
Description

Calculates distance matrices in parallel using multiple threads. Supports 41 predefined distance
measures and user-defined distance functions.

Usage
parDist(x, method = "euclidean”, diag = FALSE, upper = FALSE, threads = NULL, ...)

parallelDist(x, method = "euclidean”, diag = FALSE, upper = FALSE, threads = NULL, ...

Arguments
X a numeric matrix (each row is one series) or list of numeric matrices for multi-
dimensional series (each matrix is one series, a row is a dimension of a series)
method the distance measure to be used. A list of all available distance methods can be
found in the details section below.
diag logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist.
upper logical value indicating whether the upper triangle of the distance matrix should
be printed by print.dist
threads number of cpu threads for calculating a distance matrix. Default is the maximum
amount of cpu threads available on the system.
additional parameters which will be passed to the distance methods. See details
section below.
Details

User-defined distance functions:

custom Defining and compiling a user-defined C++ distance function, as well as creating an
external pointer to the function can easily be achieved with the cppXPtr function of the
ReppXPtrUtils package. The resulting Xptr external pointer object needs to be passed to
parDist using the func parameter.
Parameters:

parDist 3

» func (Xptr) External pointer to a user-defined distance function with the following sig-
nature:
double customDist(const arma: :mat &A, const arma: :mat &B)
Note that the return value must be a double and the two parameters must be of type
const arma::mat ¶m.

More information about the Armadillo library can be found athttp://arma.sourceforge.
net/docs.html or as part of the documentation of the ReppArmadillo package.
An exemplary definition and usage of an user-defined euclidean distance function can be
found in the examples section below.

Available predefined distance measures (written for two vectors = and y):
Distance methods for continuous input variables

bhjattacharyya The Bhjattacharyya distance.
Type: continuous
Formula: sqrt(sum;(sqrt(x;) — sqrt(y;))?)).
Details: See pr_DB$get_entry("bhjattacharyya™) in proxy.
bray The Bray/Curtis dissimilarity.
Type: continuous
Formula: sum;|x; — y;|/sum;(x; + y;).
Details: See pr_DB$get_entry(”"bray") in proxy.
canberra The Canberra distance (with compensation for excluded components). Terms with
zero numerator and denominator are omitted from the sum and treated as if the values were
missing.
Type: continuous
Formula: sum;|x; — y;|/|®i + vil.
Details: See pr_DB$get_entry("”canberra”) in proxy.
chord The Chord distance.
Type: continuous
Formula: sqrt(2 * (1 — zy/sqrt(zx * yy))).
Details: See pr_DB$get_entry("chord”) in proxy.
divergence The Divergence distance.
Type: continuous
Formula: sum;(x; — y;)?/(x; + yi)?.
Details: See pr_DB$get_entry("divergence"”) in proxy.
dtw Implementation of a multi-dimensional Dynamic Time Warping algorithm.
Type: continuous
Formula: Buclidean distance sqrt(sum;(z; — y;)?).
Parameters:

* window.size (integer, optional) Size of the window of the Sakoe-Chiba band. If the
absolute length difference of two series x and y is larger than the window.size, the
window.size is set to the length difference.

e norm.method (character, optional) Normalization method for DTW distances.

— path.length Normalization with the length of the warping path.
— n Normalization with n. n is the length of series x.
— n+m Normalization with n + m. n is the length of series x, m is the length of series

y.

http://arma.sourceforge.net/docs.html
http://arma.sourceforge.net/docs.html

parDist

* step.pattern (character or stepPattern of dtw package, default: symmetrici1) The

following step patterns of the dtw package are supported:
— asymmetric (Normalization hint: n)

— asymmetricP@ (Normalization hint: n)

— asymmetricP05 (Normalization hint: n)

— asymmetricP1 (Normalization hint: n)

— asymmetricP2 (Normalization hint: n)

— symmetricl (Normalization hint: path.length)

— symmetric2 or symmetricP@ (Normalization hint: n+m)
— symmetricP@5 (Normalization hint: n+m)

— symmetricP1 (Normalization hint: n+m)

— symmetricP2 (Normalization hint: n+m)

For a detailed description see stepPattern of the dtw package.

euclidean The Euclidean distance/L_2-norm (with compensation for excluded components).

Type: continuous

Formula: sqrt(sum;(z; — y;)?)).

Details: See pr_DB$get_entry(”euclidean”) in proxy.
fJaccard The fuzzy Jaccard distance.

Type: binary

Formula: sum;(minx,,y;)/sum;(maxz;, y;).

Details: See pr_DB$get_entry("fJaccard”) in proxy.
geodesic The geoedesic distance, i.e. the angle between x and y.

Type: continuous

Formula: arccos(zy/sqrt(za * yy)).

Details: See pr_DB$get_entry("geodesic”) in proxy.
hellinger The Hellinger distance.

Type: continuous

Formula: sqrt(sum;(sqrt(x;/sum;z) — sqrt(y; /sum;y))?).

Details: See pr_DB$get_entry(”"hellinger”) in proxy.
kullback The Kullback-Leibler distance.

Type: continuous

Formula: sum;[z; * log((x;/sum;x;)/(y:/sum;y;))/sum;x;)].

Details: See pr_DB$get_entry("kullback"”) in proxy.

mahalanobis The Mahalanobis distance. The Variance-Covariance-Matrix is estimated from the

input data if unspecified.
Type: continuous
Formula: sqrt((x — y)Sigmal — 1)(z — y)).
Parameters:
* cov (numeric matrix, optional) The covariance matrix (p x p) of the distribution.

* inverted (logical, optional) If TRUE, cov is supposed to contain the inverse of the

covariance matrix.
Details: See pr_DB$get_entry(”"mahalanobis”) in proxy or mahalanobis in stats.

manhattan The Manhattan/City-Block/Taxi/L_1-norm distance (with compensation for excluded

components).
Type: continuous

parDist 5

Formula: sum;|x; — y;|.
Details: See pr_DB$get_entry("manhattan”) in proxy.
maximum The Maximum/Supremum/Chebyshev distance.
Type: continuous
Formula: max;|z; — y;|-
Details: See pr_DB$get_entry("maximum™) in proxy.
minkowski The Minkowski distance/p-norm (with compensation for excluded components).
Type: continuous
Formula: (sum;(z; —y;)?){1/p).
Parameters:
* p (double, optional) The pth root of the sum of the pth powers of the differences of the
components.
Details: See pr_DB$get_entry(”"minkowski") in proxy.
podani The Podany measure of discordance is defined on ranks with ties. In the formula, for two
given objects x and y, n is the number of variables, a is is the number of pairs of variables
ordered identically, b the number of pairs reversely ordered, ¢ the number of pairs tied in both
x and y (corresponding to either joint presence or absence), and d the number of all pairs of
variables tied at least for one of the objects compared such that one, two, or thee scores are
ZEerO0.
Type: continuous
Formula: 1 — 2% (a—b+c—d)/(n*(n—1)).
Details: See pr_DB$get_entry("podani”) in proxy.
soergel The Soergel distance.
Type: continuous
Formula: sum;|z; — y;|/sum;mazx;, y;.
Details: See pr_DB$get_entry("soergel”) in proxy.
wave The Wave/Hedges distance.
Type: continuous
Formula: sum;(1 — min(z;, y;)/max(z;, y;)).
Details: See pr_DB$get_entry("wave") in proxy.
whittaker The Whittaker distance.
Type: continuous
Formula: sum;|x;/sum;x — y;/sum;y|/2.
Details: See pr_DB$get_entry("whittaker") in proxy.

Distance methods for binary input variables
Notation:

* a: number of (TRUE, TRUE) pairs

* b: number of (FALSE, TRUE) pairs

 c¢: number of (TRUE, FALSE) pairs

¢ d: number of (FALSE, FALSE) pairs
Note: Similarities are converted to distances.

binary The Jaccard Similarity for binary data. It is the proportion of (TRUE, TRUE) pairs, but
not considering (FALSE, FALSE) pairs.
Type: binary
Formula: a/(a + b+ ¢).
Details: See pr_DB$get_entry("binary"”) in proxy.

parDist

braun-blanquet The Braun-Blanquet similarity.
Type: binary
Formula: a/maz(a + b), (a + ¢).
Details: See pr_DB$get_entry("braun-blanquet”) in proxy.
cosine The cosine similarity.
Type: continuous
Formula: (a * b)/(|a| * [b]).
Details: See pr_DB$get_entry("cosine”) in proxy.
dice The Dice similarity.
Type: binary
Formula: 2a/(2a + b + ¢).
Details: See pr_DB$get_entry("dice"”) in proxy.
fager The Fager / McGowan distance.
Type: binary
Formula: a/sqrt((a + b)(a + ¢)) — sqrt(a + ¢)/2.
Details: See pr_DB$get_entry("fager") in proxy.
faith The Faith similarity.
Type: binary
Formula: (a + d/2)/n.
Details: See pr_DB$get_entry(”faith") in proxy.
hamman The Hamman Matching similarity for binary data. It is the proportion difference of the
concordant and discordant pairs.
Type: binary
Formula: ([a +d] — [b+ ¢])/n.
Details: See pr_DB$get_entry("hamman”) in proxy.
hamming The hamming distance between two vectors A and B is the fraction of positions where
there is a mismatch.
Formula: # of (A! = B)/#in A (or B)
kulczynskil Kulczynski similarity for binary data. Relates the (TRUE, TRUE) pairs to discor-
dant pairs.
Type: binary
Formula: a/(b + ¢).
Details: See pr_DB$get_entry("kulczynskil”) in proxy.
kulczynski2 Kulczynski similarity for binary data. Relates the (TRUE, TRUE) pairs to the
discordant pairs.
Type: binary
Formula: [a/(a + b) + a/(a + ¢)]/2.
Details: See pr_DB$get_entry("kulczynski2") in proxy.
michael The Michael similarity.
Type: binary
Formula: 4(ad — be)/[(a + d)? + (b + ¢)?].
Details: See pr_DB$get_entry(”"michael”) in proxy.
mountford The Mountford similarity for binary data.
Type: binary
Formula: 2a/(ab + ac + 2bc).
Details: See pr_DB$get_entry("mountford”) in proxy.

mozley The Mozley/Margalef similarity.

parDist 7

Type: binary
Formula: an/(a 4+ b)(a + ¢).
Details: See pr_DB$get_entry("mozley"”) in proxy.
ochiai The Ochiai similarity.
Type: binary
Formula: a/sqrt[(a + b)(a + ¢)].
Details: See pr_DB$get_entry("ochiai”) in proxy.
phi The Phi similarity (= Product-Moment-Correlation for binary variables).
Type: binary
Formula: (ad — bc)/sqrt[(a + b)(c+ d)(a + ¢)(b + d)].
Details: See pr_DB$get_entry("phi”) in proxy.
russel The Russel/Raosimilarity for binary data. It is just the proportion of (TRUE, TRUE)
pairs.
Type: binary
Formula: a/n.
Details: See pr_DB$get_entry(”russel”) in proxy.
simple matching The Simple Matching similarity for binary data. It is the proportion of concor-
dant pairs.
Type: binary
Formula: (a + d)/n.
Details: See pr_DB$get_entry("simple matching”) in proxy.
simpson The Simpson similarity.
Type: binary
Formula: a/min(a 4+ b), (a + c).
Details: See pr_DB$get_entry("simpson”) in proxy.
stiles The Stiles similarity. Identical to the logarithm of Krylov’s distance.
Type: binary
Formula: log(n(|ad — be| — 0.5n)2/[(a + b)(c + d)(a + ¢)(b + d)]).
Details: See pr_DB$get_entry("stiles"”) in proxy.
tanimoto The Rogers/Tanimoto similarity for binary data. Similar to the simple matching coef-
ficient, but putting double weight on the discordant pairs.
Type: binary
Formula: (a 4+ d)/(a + 2b + 2¢ + d).
Details: See pr_DB$get_entry("tanimoto"”) in proxy.
yule The Yule similarity.
Type: binary
Formula: (ad — bc)/(ad + be).
Details: See pr_DB$get_entry("yule") in proxy.
yule2 The Yule similarity.
Type: binary
Formula: (sqrt(ad) — sqrt(bc))/(sqrt(ad) + sqrt(bc)).
Details: See pr_DB$get_entry("yule2") in proxy.

Value

parDist returns an object of class "dist".

The lower triangle of the distance matrix stored by columns in a vector, say do. If n is the number
of observations, i.e., n <- attr(do, "Size"), then for ¢ < j < n, the dissimilarity between (row)

8 parDist

iandjis do[n*(i-1) - i*(i-1)/2 + j-i]. The length of the vector is n * (n — 1)/2, i.e., of order
2
n?.

The object has the following attributes (besides "class” equal to "dist"):

Size integer, the number of observations in the dataset.
Labels optionally, contains the labels, if any, of the observations of the dataset.
Diag, Upper logicals corresponding to the arguments diag and upper above, specifying how
the object should be printed.
call optionally, the call used to create the object.
method optionally, the distance method used; resulting from parDist (), the (match.arg()ed)

method argument.

Examples

Not run:

predefined distance functions

defining a matrix, where each row corresponds to one series
sample.matrix <- matrix(c(1:100), ncol = 10)

euclidean distance

parDist(x = sample.matrix, method = "euclidean”)

minkowski distance with parameter p=2

parDist(x = sample.matrix, method = "minkowski"”, p=2)
dynamic time warping distance

parDist(x = sample.matrix, method = "dtw")

dynamic time warping distance normalized with warping path length
parDist(x = sample.matrix, method = "dtw"”, norm.method="path.length")
dynamic time warping with different step pattern

parDist(x = sample.matrix, method = "dtw", step.pattern="symmetric2")
dynamic time warping with window size constraint
parDist(x = sample.matrix, method = "dtw"”, step.pattern="symmetric2", window.size=1)

multi-dimensional distance functions using list of matrices

defining a list of matrices, where each list entry row corresponds to a two dimensional series
tmp.mat <- matrix(c(1:40), ncol = 10)

sample.matrix.list <- list(tmp.mat[1:2,], tmp.mat[3:4,])

multi-dimensional euclidean distance

parDist(x = sample.matrix.list, method = "euclidean”)
multi-dimensional dynamic time warping

parDist(x = sample.matrix.list, method = "dtw")

user-defined distance function

library(RcppArmadillo)

Use RcppXPtrUtils for simple usage of C++ external pointers
library(RcppXPtrUtils)

compile user-defined function and return pointer (RcppArmadillo is used as dependency)
euclideanFuncPtr <- cppXPtr(
"double customDist(const arma::mat &A, const arma::mat &B) {

return sqrt(arma::accu(arma::square(A - B)));

parDist

", depends = c("RcppArmadillo”))

distance matrix for user-defined euclidean distance function (note that method is set to "custom”)
parDist(matrix(1:16, ncol=2), method="custom”, func = euclideanFuncPtr)
End(Not run)

Index

call, 8
cppXPtr, 2

match.arg, 8

parallelDist (parDist), 2
parDist, 2,2, 8

stepPattern, 4

10

	parDist
	Index

