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Abstract
optimx is a wrapper package to allow the multiple methods for function minimization available in R and
CRAN packages to be used through a consistent syntax. This vignette is a significant update of an earlier
one that describes some of the issues in building and extending the package. However, it is intended mainly
for developers, including ourselves, as an aid to and partial record of work done. Thus it is an incomplete
and imperfect document not aimed at users.

NOTE: Some material also appears in the “Intro to optimx” vignette

Background
The base R distribution includes three tools that allow for function minimization, possibly with bounds
constraints. These are optim(), nlm() and nlminb(). There is also the nonlinear least squares solver nls()
that will not be discussed here except when there is overlap with particular matters at hand.

Because the syntax for optim() is relatively convenient and already spans five different multiparameter
minimization methods (or solvers). There is also method “Brent” in optim() that is a one-parameter, or
one-dimensional, minimizer. Separately, base R has the one-parameter function optimize().

The optim() syntax, from the manual, is

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",

"Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

Here par is the vector of starting parameters for the function fn which has an (optional) gradient function
gr. method specifies the solver to be used. It actually must be a single character string. An attempt to call
two solvers by, say,

t2 <- optim(par=c(2,2), fn=fr, gr=grr, method=c("BFGS", "Nelder-Mead"))

generates the message

Error in match.arg(method) : 'arg' must be of length 1

The benefits of a unified syntax are seen immediately if we look how nlm() and nlminb() must be called.

nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)),
fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)

nlminb(start, objective, gradient = NULL, hessian = NULL, ...,
scale = 1, control = list(), lower = -Inf, upper = Inf)
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The reader can query the help for these functions (?nlm or ?nlminb) to get the meaning of the arguments.
Here I will note particularly

• the names, order and structure of the parameters and objective function are inconsistent across the
three tools;

• the controls have different names and meanings and are sometimes arguments in the call, and sometimes
elements of a control vector;

• the “answer” returned by the three tools is similar but not quite interchangeable in structure.

When we extend our interest to CRAN packages, these issues multiply.

Moreover, there are different features of the R tools and CRAN packages that are NOT general. It would be
helpful to users if they were consistently available across a wider range of solver functions. Some of these are:

• to provide for parameter scaling for all methods via control$parscale or a similar (but consistent)
mechanism;

• to return a consistent result structure that as far as possible matches the list optim() returns;
• to allow a number of methods to be called in a single multi-solver function, opm();
• to permit some post-solution checks and extra optimization infrastructure to be consistently applied

across a number of solvers;
• to allow for bounds constraints and fixed (masked) parameters to be specified, where the solvers allow;
• to provide a didactic version of a direct search Hooke-and-Jeeves solver;
• to provide for the use of explicit Hessian function in some existing solvers and two didactic safeguarded

Newton solvers.

The updated package incorporates the earlier optimx() function which inspired the present work. That
function uses a slightly different call and returns a slightly different result structure from the more recent
opm() function. A number of CRAN and other packages use optimx(); see Nash and Varadhan (2009).
Because we do not wish to cause breakages of working packages and tools, we have retained the optimx()
function in the current version.

WARNING: only updates to correct egregious errors in optimx() are envisaged going forward.
Please use optimr() and opm().

It is fully intended that both developers and users may wish to extend the package, especially by adding
solvers to the optimr() function. The file ctrldefault.R lists the optimizers currently available via this
function in the code optimr.R. Note that there are multiple package lists in the ctrldefault() function for
unconstrained, bounded and masked parameters. Users can add lists suitable to their needs. Indeed, this
vignette is intended to assist in the the addition of other solvers, as well perhaps as extra functionality or
features.

Ideally, such extensions should be possible for any R user reasonably proficient in programming R scripts.
Changes would, of course, be made by downloading the source of the package and modifying the R code to
make a new, but only locally available, package. The author does, on the other hand, welcome suggestions
for inclusion in the distributed package, especially if these have been well-documented and tested. I caution,
however, that over 95% of the effort in building and improving optimx has been to try to ensure that errors
and conflicts are purged, and that the code is resistant to mistakes in user inputs.

“Optimization”
The general nonliear optimization problem considers the minimization or maximization of an objective
function subject to equality and inequality constraints that are both linear and nonlinear. It comprehends
the field of mathematical programming, and borders on nonlinear equations.

In R, what is referred to as “optimization”, including the original optim() function and its replacement in
this package, only allows for the minimization or maximization of nonlinear functions of multiple parameters
subject to at most bounds constraints. Many methods offer extra facilities, but apart from masks (fixed
parameters) for the hjn, Rcgmin and Rvmmin methods, such features are likely inaccessible via this package
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without some customization of the code. Even masks are just bounds constraints where the upper and lower
bounds coincide.

For our purposes, we wish to find the vector of (real valued) parameters bestpar that minimize an objective
function specified by an R function fn(par, ... ) where par is the general vector of parameters, initially
provided as a vector that is either the first argument to optimr() or else specified by a par= argument. The
dot arguments are additional information needed to compute the function. Function minimization methods
may require information on the gradient or Hessian of the function, which we will assume to be furnished, if
required, by functions gr(par, ...) and hess(par, ....). Bounds or box constraints, if they are to be
imposed, are given in the vectors lower and upper.

As far as I am aware, all the optimizers included in the optimx package are local minimizers, possibly apart
from the “SANN” method of optim(). That is, the solvers attempt to find a local minimum of the objective
function. Global optimization is a much bigger problem. Even finding a local minimum can often be difficult,
and to that end, the optimx package offers the function kktchk() to test the Kuhn-Karush-Tucker conditions.
These essentially require that a local minumum has a zero gradient and all nearby points on the function
surface have a greater function value. There are many details that are ignored in this very brief explanation.

Developments of the optimx() function
Users will note that there is much overlap between functions optimx() and opm(). The reasons for the
restructuring to optimr() and opm() are as follows:

• optimx has a large set of features, which increases the complexity of maintenance;

• opm() is built upon optimr() which is designed to call any one of a set of solvers, so extensions reside
largely in the optimr() function;

• there are small but possibly important differences in the result structures from optimx() and opm().
For example, opm() does not report the number of “iterations” in the variable niter because such a
value is not returned by either the original optim() or newer optimr() functions.

• optimr() is structured so it can use the original optim() syntax and result format, together with the
parscale control allowing parameter scaling for all solvers. optimx() only allows parscale for some
solvers.

• optimx() was intended to have features to allow for calling solvers sequentially to create polyalgorithms,
as well as for using multiple vectors of starting parameters. The combination of such options may cause
unexpected behaviour.

• polyopt() (built on optimr()) allows for running solvers sequentially to create a polyalgorithm. For
example, one may want to run a number of cycles of method Nelder-Mead, followed by the gradient
method Rvmmin.

• multistart() allows multiple starting vectors to be used in a single call.

How the optimr() function (generally) works
optimr() is an aggregation of wrappers for a number of individual function minimization (“optimization”)
tools available for R. The individual wrappers are selected by a sequence of if() statements using the
argument method in the call to optimr().

To add a new optimizer, we need in general terms to carry out the following:

• Ensure the new function is available, that is, the package containing it is installed, and the functions
imported into optimr;

• Include the function in one or more of the lists of methods in the ctrldefault() function;
• Add an appropriate if() statement to select the new “method”;
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• Translate the control list elements of optimr() into the corresponding control arguments (possibly not
in a list of that name but in one or more other structures, or even arguments or environment variables)
for the new “method”. If necessary, update ctrldefault();

• If necessary, redefine the R function or functions to compute the value of the function, gradient and
possibly Hessian of the objective function so that the output is suited to the method at hand (see the
section of optimr() for the nlm() function, for example);

• When derivative information is required by a method, we may also need to incorporate the possibility
of numerical approximations to the derivative information;

• Add code to check for situations where the new method cannot be applied, and in such cases return
a result with appropriate diagnostic information so that the user can either adjust the inputs or else
choose a different method;

• Provide, if required, appropriate links to modified function and gradient routines that allow the
parameter scaling control$parscale to be applied if this functionality is not present in the methods.
To my knowledge, only the base optim() function methods do not need such special scaling provisions.

• As needed, back-transform scaled parameters and other output of the different optimization methods,
and reset any control items.

An internal structure for bounds and masks

The Rvmmin and Rcgmin packages use the (integer) vector bdmsk to indicate the status of each parameter
with respect to bounds and masks.

• bdmsk[i] = 1 indicates parameter i is free
• bdmsk[i] = 0 indicates parameter i is fixed at its current value (masked)
• bdmsk[i] = -1 indicates parameter i is at its upper bound (upper[i])
• bdmsk[i] = -3 indicates parameter i is at its lower bound (lower[i])

This particular structure was developed for use with the BASIC programs in Nash and Walker-Smith (1987),
primarily for active set methods, and returned in the bdmsk list item of the answer for Rvmmin() and Rcgmin().
These need to know the direction in which a step can be taken for each parameter. If the gradient component
i is positive, then the step needs to be a negative one, which it can only be if there is no lower bound in
the way. A free parameter is clearly fine, or one that is on an upper bound. Adding 2 to bdmsk[i] must be
positive, but if it is negative, we are at a lower bound and cannot move. Similarly we can use a negative
gradient component and step forward from a lower bound. The codes Rvmminb.R and Rcgminb.R provide
details, which are fairly straightforward, but tedious.

I believe that the same structure could be ported to other gradient-based codes, for example, snewton or
snewtonm.

Bounds

A number of methods support the inclusion of box (or bounds) constraints. This includes the function nmkb()
from package dfoptim. Unfortunately, this method uses the transfinite transformation of the objective
function to impose the bounds (Chapter 11 of Nash (2014)), which causes an error if any of the initial
parameters are on one of the bounds.

There are several improvements in the optimr package relating to bounds that would be especially nice to
see, but I do not have good ideas yet how to implement them all. Among these unresolved improvements are:

• to use the transfinite approach to permit bounds to be supplied for all the unconstrained optimization
methods;

• to automatically adjust the bounds or the parameters very slightly to allow initial parameter sets to be
provided with the initial parameters on a bound. It would be important to issue a warning in such
cases.

• to flag or otherwise indicate to the user which approach to bounds has been used, and also to allow
control of the approach. For example, the transfinite approach could be used with unconstrained versions
of some of the methods that allow bounds to permit comparisons of the effectiveness of transfinite
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versus active-set approaches. Note that these possibilities increase the complexity of the code and may
be prone to bugs.

Masks (fixed parameters)

The methods hjn, Rcgmin and Rvmmin (and possibly others, but not obviously accessible yet via this package)
also permit fixed (masked) parameters. See Nash and Walker-Smith (1987). This is useful when we want to
establish an objective function where one or more of the parameters is supplied a value in most situations, or
for which we want to fix a value while we optimize the other parameters. At another time, we may want to
allow such parameters to be part of the optimization process.

In principle, we could fix parameters in methods that allow bounds constraints by simply setting the lower
and upper bounds equal for the parameters to be masked. As a computational approach, this is generally a
very bad idea, but in the present optimr() this is permitted as a way to signal that a parameter is fixed.
Internally a different representation is used.

The method hjn is a Hooke and Jeeves axial search method that allows masks and bounds. It is coded using
explicit loops, so will generally be much slower than an implementation (e.g., hjkb from dfoptim or the
similar code in package pracma) that try to employ vectorized computations. hjn was included in optimr to
provide an example of a direct search method with masks. I do NOT recommend it for general use.

There is a possibility that masks could be implemented globally in optimr.

• masked parameters can be selected by mskd <- which(lower >= upper)
• if idx <- 1:length(par), then ‘idx <- idx[which(lower<=upper)] are parameters that take part in

the optimization
• idx can be passed into the working function and gradient routines efn and egr in the same way scaling

is performed.

At the time of writing (2016-7-11) this has yet to be tried. However, we have got a test of the transformation.
## test masked transformation

# set of 10 parameters
par <- 3*(1:10)
cat("par:")

## par:
print(par)

## [1] 3 6 9 12 15 18 21 24 27 30
cat("Mask 3rd, 5th, 7th\n")

## Mask 3rd, 5th, 7th
bdmsk<-rep(1,10) # indicator of parameters that are free
bdmsk[3] <- 0
bdmsk[5] <- 0
bdmsk[7] <- 0
cat("bdmsk:")

## bdmsk:
print(bdmsk)

## [1] 1 1 0 1 0 1 0 1 1 1
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# want to produce xpar which are the reduced parameters
iactive <- which(bdmsk == 1)
cat("iactive (length=",length(iactive),"):")

## iactive (length= 7 ):
print(iactive)

## [1] 1 2 4 6 8 9 10
xpar <- par[iactive]
cat("xpar:")

## xpar:
print(xpar)

## [1] 3 6 12 18 24 27 30
xpar <- - xpar
print("altered xpar:")

## [1] "altered xpar:"
print(xpar)

## [1] -3 -6 -12 -18 -24 -27 -30
cat("expand back to newpar\n")

## expand back to newpar
newpar <- par
newpar[iactive] <- xpar
cat("newpar:")

## newpar:
print(newpar)

## [1] -3 -6 9 -12 15 -18 21 -24 -27 -30
# Need to combine with scaling to get full setup for optimr()

# Then also think of the transfinite approach for bounds on unconstrained
## Or even for bounds methods but using unconstrained part.

Issues in adding a new method
Adjusting the objective function for different methods

The method nlm() provides a good example of a situation where the default fn() and gr() are inappropriate
to the method to be added to optimr(). We need a function that returns not only the function value at the
parameters but also the gradient and possibly the hessian. Don’t forget the dot arguments which are the
exogenous data for the function!

nlmfn <- function(spar, ...){
f <- efn(spar, ...)
g <- egr(spar, ...)
attr(f,"gradient") <- g
attr(f,"hessian") <- NULL # ? maybe change later
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f
}

Note that we have defined nlmfn using the scaled parameters spar and the scaled function efn and gradient
egr. That is, we develop the unified objective plus gradient AFTER the parameters are scaled.

In the present optimr(), the definition of nlmfn is put near the top of optimr() and it is always loaded. It
is the author’s understanding that such functions will always be loaded/interpreted no matter where they are
in the code of a function. For ease of finding the code, and as a former Pascal programmer, I have put it near
the top, as the structure can be then shared across several similar optimizers. There are other methods that
compute the objective function and gradient at the same set of parameters. Though nlm() can make use of
Hessian information, we have chosen here to omit the computation of the Hessian.

Parameter scaling

Parameter scaling is a feature of the original optim() but generally not provided in many other optimizers.
It has been included (at times with some difficulty) in the optimr() function. The construct is to provide a
vector of scaling factors via the control list in the element parscale.

In the tests of the package, and as an example of the use and utility of scaling, we use the Hobbs weed
infestation problem (./tests/hobbs15b.R). This is a nonlinear least squares problem to estimate a three-
parameter logistic function using data for 12 periods. This problem has a solution near the parameters c(196,
49, 0.3). In the test, we try starting from c(300, 50, 0.3) and from the much less informed c(1,1,1). In both
cases, the scaling lets us find the solution more reliably. The timings and number of function and gradient
evaluations are, however, not necessarily improved for the methods that “work” (though these measures are
all somewhat unreliable because they may be defined or evaluated differently in different methods – we use
the information returned by the packages rather than insert counters into functions). However, what values
of these measures should we apply for a failed method?

As a warning – having made the mistake myself – scaling must be applied to bounds when calling a
bounds-capable method.

Function scaling

optim() uses control$fnscale to “scale” the value of the function or gradient computed by fn or gr
respectively. In practice, the only use for this scaling is to convert a maximization to a minimization. Most
of the methods applied are function minimization tools, so that if we want to maximize a function, we
minimize its negative. Some methods actually have the possibility of maximization, and include a maximize
control. In these cases having both fnscale and maximize could create a conflict. We check for this in
optimr() and try to ensure both controls are set consistently. There is a further risk of conflict with the use
of numerical approximation of derivatives, as discussed later.

Modified, unused or unwanted controls

Because different methods use different control parameters, and may even put them into arguments rather
than the control list, a lot of the code in optimr() is purely for translating or transforming the names
and values to achieve the desired result. This is sometimes not possible precisely. A method which uses
control$trace = TRUE (a logical element) has only “on” or “off” for controlling output. Other methods use
an integer for this trace object, or call it something else that is an integer, in which case there are more
levels of output possible.

I have found that it is important to remove (i.e., set NULL) controls that are not used for a method. Moreover,
since R can leave objects in the workspace, I find it important to set any unused or unwanted control to
NULL both before and after calling a method.

Thus, if print.level is the desired control, and it more or less matches the optimr() control$trace, we
need to set
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print.level <- control$trace
control$trace <- NULL

After the method has run, we may need to reset control$trace.

There are some programming issues in the package with method controls and these are discussed in a separate
section.

Methods in other computing languages

When the method we wish to call is not written in R, special care is generally needed to get a reliable and
consistent operation. Typically we call an R routine from optimr(). Let us call the interface to this “foreign”
language solver myop().
Then myop() will set up and call the underlying optimizer and return (supposedly) an answer.

For FORTRAN programs, Nash (2014), Chapter 18, has some suggestions. Particular issues concern the dot
arguments (ellipsis or . . . entries to allow exogenous data for the objective function and gradient), which can
raise difficulties. In package optimr the interface to the lbfgs shows one approach, which consolidates the
arguments for lbfgs() into a list, then converts the list to an environment.

Using separate unconstrained and bounds constrained functions

As an attempt to avoid executing unnecessary code, for some years I built separate unconstrained and
constrained routines with a common umbrella routine. Hence,

• Rvmmin() calls either Rvmminu() or Rvmminb()
• Rcgmin() calls either Rcgminu() or Rcgminb()
• the method specification “Rtnmin” calls either tn() or tnbc()

More recently, with improvements in the just-in-time compiler for R, I am exploring consolidated codes, e.g.,
nvm() and ncg() though these are far from fully developed. However, they also are designed to be called
from optimr() and not run independently, whereas the routines mentioned above originally were part of
independent R packages. The newer codes rely on optimr() to perform sanity checks on supplied parameters,
bounds and functions. In particular, bmchk() is called to check parameters and bounds.

Running multiple methods
It is often convenient to be able to run multiple optimization methods on the same function and gradient. To
this end, the function opm() is supplied. The output of this by default includes the KKT tests and other
information in a data frame, and there are convenience methods summary() and coef() to allow for display
or extraction of results.

opm() is extremely useful for comparing methods easily. I caution that it is not an efficient way to run
problems, even though it can be extremely helpful in deciding which method to apply to a class of problems.

An important use of opm() is to discover cases where methods fail on particular problems and initial conditions
of parameters and settings. This has proven over time to help discover weaknesses and bugs in codes for
different methods. If you find such cases, and your code and data can be rendered as an easily executed
example, I strongly recommend posting it to one of the R lists or communicating with the package maintainers.
That really is one of the few ways that our codes come to be improved.

Polyalgorithms – multiple methods in sequence
Function polyopt() is intended to allow for attempts to optimize a function by running different methods in
sequence. The call to polyopt() differs from that of optimr() or opm() in the following respects:
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• The method character argument or character vector is replaced by the methcontrol array which has a
set of triplets consisting of a method name (character), a function evaluation count and an iteration
count.

• the control$maxit and control$maxfeval are replaced, if present, with values from the methcontrol
argument list.

The methods in methcontrol are executed in the sequence in which they appear. Each method runs until
either the specified number of iterations (typically gradient evaluations) or function evaluations have been
completed, or termination tests cause the method to be exited, after which the best set of parameters so far
is passed to the next method specified. If there is no further method, polyopt() exits.

Polyalgorithms may be useful because some methods such as Nelder-Mead are fairly robust and efficient in
finding the region in which a minimum exists, but then very slow to obtain an accurate set of parameters.
Gradients at points far from a solution may be such that gradient-based methods do poorly when started far
away from a solution, but are very efficient when started “nearby”. Caution, however, is recommended. Such
approaches need to be tested for particular applications.

Multiple sets of starting parameters
For problems with multiple minima, or which are otherwise difficult to solve, it is sometimes helpful to
attempt an optimization from several starting points. multistart() is a simple wrapper to allow this to be
carried out. Instead of the vector par for the starting parameters argument, however, we now have a matrix
parmat, each row of which is a set of starting parameters.

In setting up this functionality, I chose NOT to allow mixing of multiple starts with a polyalgorithm or
multiple methods. For users really wishing to do this, I believe the available source codes opm.R, polyopt.R
and multistart.R provide a sufficient base that the required tools can be fashioned fairly easily.

Counting function, gradient and hessian evaluations

Different methods take different approaches to counting the computational effort of performing optimizations.
Sometimes this can make it difficult to compare methods.

• When using numerical gradient approximations, it would be more sensible to report 0 gradient evaluations,
but count each function evaluation.

• “Iterations” may be used as a measure of effort for some methods, but an “iteration” may not be
comparable across methods.

Derivatives
Derivative information is used by many optimization methods. In particular, the gradient is the vector of
first derivatives of the objective function and the hessian is its second derivative matrix. It is generally
non-trivial to write a function for a gradient, and a huge amount of work to write the hessian function.

While there are derivative-free methods, we may also choose to employ numerical approximations for
derivatives. Some of the optimizers called by optimr automatically provide a numerical approximation if the
gradient function (typically called gr) is not provided or set NULL. However, I believe this is open to abuse
and also a source of confusion, since we may not be informed in the results what approximation has been
used. There is also the question of counting function and gradient evaluations correctly.

Specifying that numerical gradients are to be used, and which method for such approximation, presents a
software interfacing issue. Around 2010 I introduced the idea of making the name of a gradient approximation
program a character string e.g., “grfwd” and “grcentral” for forward and central derivative approximations.
Direct codes for the gradient are included in the call by name NOT in character form.

This idea has been helpful, but it has raised some concerns.

• as described below, there may be conflicts with the maximize control;
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• there is an inefficiency if the (already evaluated) current best function value is not used in computing
the gradient approximation;

• bounds constraints can be violated by the argument step to compute the gradient approximation by
finite differences;

• some approximations may be inappropriate or inadmissible for the current objective function.

For example, the package numDeriv has functions for the gradient and hessian, and offers three methods,
namely a Richardson extrapolation (the default), a complex step method, and a “simple” method. The last is
either a forward of backward approximation controlled by an extra argument side to the grad() function.
The complex step method, which offers essentially analytic precision from a very efficient computation, is
unfortunately only applicable if the objective function has specific properties. That is, according to the
documentation:

This method requires that the function be able to handle complex valued
arguments and return the appropriate complex valued result, even though
the user may only be interested in the real-valued derivatives. It also
requires that the complex function be analytic.

The default method of numDeriv generally requires multiple evaluations of the objective function to approxi-
mate a derivative. The simpler choices, namely, the forward, backward and central approximations, require
respectively 1, 1, and 2 (extra) function evaluations for each parameter.

To keep the code straightforward, I decided that if an approximate gradient is to be used by optimr() (or by
extension the multiple method routine opm()), then the user should specify the name of the approximation
routine as a character string in quotations marks. The optimx package supplies five gradient approximation
functions for this purpose, namely “grfwd” and “grback” for the forward and backward simple approximations,
“grcentral” for the central approximation, “grnd” for the default Richardson method via numDeriv, and
“grpracma” for function grad from package pracma. It should be fairly straightforward for a user to copy
the structure of any of these routines and build their own gradient approximation, but I have not tried to
document how to do this.

An example using the complex step derivative would also be useful to include in this vignette. I welcome
contributions!

Note As at 2018-7-8 Changcheng Li and John Nash had preliminary success in using the autodiffr package
at https://github.com/Non-Contradiction/autodiffr/ to generate gradient, hessian and jacobian functions via
the Julia language automatic differentiation capabilities. There are some issues of slow performance compared
to native-R functions to compute these collections of derivative information, but the ease of generation of the
functions and the fact that they generate analytic results i.e., as good as R can compute the information,
allows for some improvements in results and also makes feasible the application of some Newton-like methods.
Unfortunately, rapid changed in Julia functions have made it very difficult to keep this capability operational.

Conflict between numerical gradients and maximization controls

A nasty inconsistency that has caused me quite a lot of difficulty in developing and maintaining optimx is
that the use of a character string gr function, implying a numerical approximation to the gradient, comes
into conflict with either of the controls maximize=TRUE or fnscale=-1 (or other negative number).

The issue arises because we need to negate the gr function when it is analytic, but the numerical approximation
works on the already scaled objective function. Great care is needed to avoid trouble, especially as individual
solvers may also try to apply scalings.

Duplications and other efficiency considerations

Most optimization routines perform preliminary checks on the inputs. Clearly any wrapper function such as
optimr() or opm() also has such checks. There is naturally duplication. While this may be minor in time
and effort cost, it would be more elegant to be able to use just one set of checks.
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The obvious simple gradient approximations “grfwd” and “grback” compare the function at a step away from
a base point given by par. Looking at the code, we have

grfwd <- function(par, userfn, fbase=NULL, env=optsp, ...) {
# Forward different gradient approximation
eps<-env$deps
if (is.null(fbase)) fbase <- userfn(par, ...)
# ensure we have function value at par
df <- rep(NA, length(par))
teps <- eps * (abs(par) + eps)
for (i in 1:length(par)) {

dx <- par
dx[i] <- dx[i] + teps[i]
df[i] <- (userfn(dx, ...) - fbase)/teps[i]

}
df

}

In many solvers, we would generally use the current “best” point for the vector par as our base for computing
the gradient. Thus if n = length(par), we compute fbase n times when we already have the value unless
the solver code is clever enough to provide it. Because other approximations, “grcentral” in particular, do
not use fbase (even though it appears in the function specification), avoiding recalculation would require our
solvers to be aware of the particular approximation that has been given in the call. Nevertheless, it is clear
there are opportunities for improved efficiency.

Structuring the optimr() function
Given the optimr has been set up to

• prepare internal functions efn and egr that are to be minimized. This means that internal calls to
solvers within optimr() have maximize set to FALSE and fnscale set to 1.

• pass NULL to internal function egr if gr is NULL; this may cause some methods to fail
• parscale is applied to the objective function parameters and we minimize scaled parameters and

transform the values back to the original scale when returning an answer on exiting optimr().

It is open to discussion wheter we should flag (i.e., explicitly report in the output result or elsehwere) that an
approximation is being used for the gradient or hessian.

A test script was written to explore this structure and is part of the package in inst/doc/testefnegr.R‘.

Special cases such as nlm()

nlm() needs an objective function that has gradient and hessian functions as attributes. As illustrated in
inst/doc/examples/woodtest.R, this takes a form like

wood.fgh <- function(x){ # For info only
fval <- wood.f(x)
gval <- wood.g(x)
hval <- wood.h(x)
attr(fval,"gradient") <- gval
attr(fval,"hessian") <- hval
fval

}
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Functions besides optimr() in the package
opm()

As mentioned above, this routine allows a vector of methods to be applied to a given function and (optionally)
gradient. The pseudo-method “ALL” (upper case) can be given as a single character string (not in a vector)
to run all available methods. A more useful pseudo-method is “MOST” which leaves out some less-useful
methods. If bounds are given, the list of methods specified is restricted to the methods that can deal with
bounds.

optchk()

This routine is an attempt to consolidate the function, gradient and scale checks.

ctrldefault()

This routine provides default values for the control vector that is applicable to all the methods for a given
size of problem. The single argument to this function is the number of parameters, which is used to compute
values for termination tolerances and limits on function and gradient evaluations. However, while I believe
the values computed are “reasonable” in general, for specific problems they may be wildly inappropriate.

ctrldefault() was developed by recording the different controls of many functions and packages in a
spreadsheet to allow for their recording and comparison. This spreadsheet, optcontrol.xls also records the
returned answer structure. It is part of the inst/doc/ collection of information in the package.

dispdefault()

This routine (in file ctrldefault.R) is intended to allow a compact display of the current default settings
used within optimx.

Functions that were formerly in the optextras package
Optimization methods share a lot of common infrastructure, and much of this was collected in my retired
optextras package. (Now in the optimx package.) The routines used in the current package are as follows.

kktchk()

This routine, which can be called independently for checking the results of other optimization tools, checks
the KKT conditions for a given set of parameters that are thought to describe a local optimum.

grfwd(), grback(), grcentral(), grnd() and grpracma()

These have be discussed above under Derivatives.

fnchk(), grchk() and hesschk()

These functions are provided to allow for detection of user errors in supplied function, gradient or hessian
functions. Though we do not yet use hessians in the optimizers called, it is hoped that eventually they can
be incorporated.

fnchk() is mainly a tool to ensure that the supplied function returns a finite scalar value when evaluated at
the supplied parameters.

The other routines use numerical approximations (from numDeriv) to check the derivative functions supplied
by the user.
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bmchk()

This routine is intended to trap errors in setting up bounds and masks for function minimization problems.
In particular, we are looking for situations where parameters are outside the bounds or where bounds are
impossible to satisfy (e.g., lower > upper). This routine creates an indicator vector called bdmsk whose values
are 1 for free parameters, 0 for masked (fixed) parameters, -3 for parameters at their lower bound and -1 for
those at their upper bound. (The particular values are related to a coding trick for BASIC in the early 1980s
that was used in Nash and Walker-Smith (1987).) Note that this function allows parameter values outside
the bounds to be shifted to the nearest bound (when shift2bound=TRUE, which is the default behaviour).

scalechk()

This routine is an attempt to check if the parameters and bounds are roughly similar in their scale. Unequal
scaling can result in poor outcomes when trying to optimize functions using derivative free methods that try
to search the parameter space. Note that the attempt to include parameter scaling for all methods is intended
to provide a work-around for such bad scaling. Because nonlinear functions have scaling that changes across
the parameter domain, scalechk() should be treated with caution.

Program inefficiencies
One of the unfortunate, and only partially avoidable, inefficiencies in a wrapper function such as optimr()
is that there will be duplication of much of the setup and error-avoidance that a properly constructed
optimization program requires. That is, both the wrapper and the called programs will have code to
accomplish similar goals. Some of these relate to the following.

• Bounds constraints should be checked to ensure that lower bounds do not exceed upper bounds.
• Parameters should be feasible with respect to the bounds.
• Function and gradient evaluations should be counted.
• Function and gradient code should satisfy some minimal tests.
• Timing of execution may be performed surrounding different aspects of the computations, and the

positioning of the timing code may be awkward to place so the timing measures equivalent operations.
For example, if there is a significant setup within some routines and not others, we should try to time
either setup and optimization, or just optimization. However, there are often coding peculiarities that
prevent a clean placement of the timing.

Besides these sources of inefficiency, there is a potential cost in both human effort and program execution if
we “specialize” variants of a code. For example, the separate unconstrained and constrained routines, with
the wrapper calling the appropriate version. Rvmmin has a top-level routine to decide between Rvmminu and
Rvmminb, but optimr() takes over this selection. A similar choice exists within dfoptim for the Hooke and
Jeeves codes. While previously, I would have chosen to separate the bounded and unconstrained routines, I
am now leaning towards a combined routine for the Hooke and Jeeves. First, I discovered that the separation
seems to have introduced a bug, since the code was structured to allow a similar organization for both choices,
where possibly a different structure would have been better adapted for efficient R. Note, however, that I have
not performed appropriate timings to support this conjecture. Second, I managed to implement a bounds
constrained HJ code from a description in one of my own books in less time than it took to try (not fully
successfully) to correct the code from dfoptim, in part because the development and stable versions of the
latter are quite different, though both failed the test function bt.f() example. Ravi Varadhan has corrected
the codes on CRAN.

Note that this is not a criticism of the creators of dfoptim. I have made similar choices myself with other
packages. It is challenging to balance clarity, maintainability, efficiency, and common structure for a suite of
related program codes.

Providing controls to different algorithms
We have already noted that it is important to provide control settings for the different methods. This can
be a challenge, largely because some methods (or at least their instantiations in R codes or wrappers to
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other languages) only permit selected controls. The ctrldefault function provides as many of the controls
as possible, and provides them via the control list. However, many methods put the contols into separate
arguments of their function call. For example, the control$maxit iteration limit is iterlim for the function
nlm().

A more subtle difficulty is that the multiple-method wrapper opm() will generally be called with the same
iteration and function count limits across different solvers. However, we may wish to compare the underlying
codes with their own, rather particular, limits. Again nlm() provides an example when we call the Wood
4-parameter test function starting at w0 <- c(-3,-1,-3,-1). The default iterlim value in nlm() is 100,
but ctrldefault(npar=4) returns a value for maxit of 1000. This has consequences, as seen in the following
example, which also shows how to call nlm through optimr() and opm() using the internal default.

require(optimx)

## Loading required package: optimx
npar <- 4
control<-list(maxit=NULL)
ctrl <- ctrldefault(npar)
ncontrol <- names(control)
nctrl <- names(ctrl)
for (onename in ncontrol) {

if (onename %in% nctrl) {
if (! is.null(control[onename]) || ! is.na(control[onename]) )
ctrl[onename]<-control[onename]

}
}
control <- ctrl # note the copy back! control now has a FULL set of values
print(control$maxit)

## NULL
control<-list()
ctrl <- ctrldefault(npar)
ncontrol <- names(control)
nctrl <- names(ctrl)
for (onename in ncontrol) {

if (onename %in% nctrl) {
if (! is.null(control[onename]) || ! is.na(control[onename]) )
ctrl[onename]<-control[onename]

}
}
control <- ctrl # note the copy back! control now has a FULL set of values
print(control$maxit)

## [1] 1000

Testing the package
There are examples and tests within the package. These include

• simple examples to illustrate the usage
• individual method tests
• problem tests over many methods

At some future opportunity, I hope to be able to document these tests more fully.
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Needed tests or examples to provide proper coverage

For optimr(), which runs individual solvers, we need to run the following test combinations for those methods
where the tests are appropriate:

• unconstrained
– minimization
– maximization

• bounds constrained
– minimization
– maximization
– different ways of inputting bounds (single value, only lower, etc.)

• masks (fixed parameters)
– plus bounds
– no bounds
– possibly with maximization

For axsearch(), an example of use. Currently a small example intests/bdstest.R‘. ?? put example
in Rd file.

For bmchk() ?? improve example in Rd file.

For bmstep() an example in the Rd file is needed. This is intended as an internal function that computes
the maximum allowable step along a search direction (or returns Inf).

• checksolver.R
• ctrldefault.R
• fnchk.R
• gHgenb.R
• gHgen.R
• grback.R
• grcentral.R
• grchk.R
• grfwd.R
• grnd.R
• grpracma.R
• hesschk.R
• hjn.R
• kktchk.R
• multistart.R
• opm.R
• optchk.R
• optimr.R
• optimx.check.R
• optimx-package.R
• optimx.R
• optimx.run.R
• optimx.setup.R
• polyopt.R
• scalechk.R
• snewtonm.R
• snewton.R
• zzz.R
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