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Abstract
This vignette is intended to aid understanding and maintenance of the function minimization methods
available to users of R. R users commonly, if incorrectly, call this optimization, though most base or packaged
methods for “optimization” carry out unconstrained or bounds constrained function minimization.

General Approach
The general problem is to find the vector of parameters x that gives at least a local minimum of an objective
function f(x, Y ), where Y is a collection of exogenous data that is needed to compute the function, possibly
subject to constraints that for generality could be expressed as a vector of functions that are positive. That is

c(x, Y ) ≥ 0

We do not attempt to consider here the annoying detail of a constraint requiring strictly “greater than”
constraints. In such cases, the expedient is to use a tiny quantity in place of the relevant zero. Furthermore,
maximization of f(x, Y ) can be achieved by minimizing (−1) ∗ f(x, Y ).

From f(x, Y ), we can generally compute two important related objects:

• the gradient of f(x, Y ) is the vector of first partial derivatives with respect to the parameters x

• the Hessian of f(x, Y ) is the matrix of second partial derivatives with respect to the parameters x. In
one dimension, the Hessian is the slope of the gradient.

Gradient minimizers are minimization methods that require the gradient or an approximation to be
available. Other minimizers are either direct search approaches or stochastic methods that use pseudo-
random trial sets of parameters. From gradient-related calculations, gradient minimizers propose a search
direction t then try to find new sets of parameters with lower function value by moving from x along t. At
some such lower point, a new search direction is computed and a new search begun. This iterative process
stops when no more progress can be made.

As with many similar tasks, the details give rise to a great many particular algorithms and programs. There
can be no proof that any particular choice is “best”, and we rely on accumulated experience with test and
other problems to suggest the best approaches in particular situations.

Line Search
The line search is a key sub-problem for gradient minimization methods, and for convenience we will discuss
it first, then move on to the issue of choosing a method to compute search directions.

The line search is an attempted one-dimensional minimization of

z(s) = f(x + s ∗ t, Y )
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since s is a scalar. We assume that t is a descent direction, and indeed this should be verified within programs,
since rounding and other errors may cause that assumption to be violated. Typically we look for a negative
gradient projection gt ∗ t. Since we are only looking at positive s values, 0 is a lower bound to the line
search. We also may need to contend with lower and upper bounds (box constraints) on the parameters x
that provide an upper limit smax.

Line search methods follow a couple of standard themes:

• generate trial values of s by some reasonable heuristic and stop when the derived parameters x satisfy
some acceptable point criterion.

• choose a suitable set of values of s so that a model m(s) of the function z(s) can be approximated.
This model should be one for which the minimizing value sm is easily computed, and we compute z(sm)
in the hope that it is lower than any objective function value so far found.

“Acceptable” is a slippery concept, but commonly some version of the Wolfe or Armijo conditions (see
https://en.wikipedia.org/wiki/Wolfe_conditions) are used. This is slightly stronger than requiring that
the function value has simply been lowered in our search. However, we have not got any assurance that we
have “minimized” z(s). It is important to at least check that the new point is “lower” than any other so far,
and to use the lowest point found so far. Depending on the manner in which the search direction t has been
generated, we then may try a different search direction such as the negative gradient t = −g or, if we are
satisfied no further progress is possible, terminate the minimization.

Similarly annoying is the possibility that our model does not do a good enough job of approximating z().
The blackboard description of the process leaves out a great deal of the software safeguards needed to avoid
silly answers being proposed to problems.

Backtracking line search

Let us consider a simple but quite effective strategy that is used in the Rvmmin Variable Metric minimizer
(which uses the same underlying algorithm as optim::BFGS in base R).

Given a downhill search direction t, the gradient projection q = gt ∗ t, a small number (e.g., 0.0001) which
we call α and some initial value of s, we

A) compute z(s)

B) If z(s) < z(0) + s ∗ q ∗ α, accept s as an acceptable point; otherwise reduce s and repeat from (A).

If there are bounds constraints, the initial s may be limited by the distance to the closest bound. If this
is smaller than the default initial stepsize, it may reduce the number of trial sets of parameters in the
backtracking stepsize reduction.

Typically s is reduced by some fixed ratio, e.g., multiplying by a number such as 0.5 (halving) or some other
fraction. I like 0.15 or 0.2 in order to reduce the stepsize quickly when that is important.

Quadratic inverse interpolation line search

A fairly obvious model for z() is a quadratic one. That is,

m(s) = as2 + bs + z(0) ≈ z(s)

whose minimum should be found at −b/(2a).

We note that we need two more conditions to find a and b. The gradient projection provides one of these,
since m′(0) = b ≈ q. A third piece of information comes from evaluating z(s0) for some choice of s0.

In practice, poor choices of s0 give poor results. A better approach, in my experience at least, is to first carry
out a backtracking line search to an acceptable point (or at least a lower one), and use the stepsize to that
point as s0. This means that z(s0) < z(0). We then can solve our model approximation to find
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a = (z(s0) − z(0) − q ∗ s0)/s0
2

so that

smin = −q/(2 ∗ a)

In software, we need to be careful how things are computed to avoid digit cancellation or division by very
small quantities, but by and large this quadratic approximation approach is quite reliable and efficient.

Approximate derivatives
The calculation of the gradient and possibly the Hessian are an important aspect of all gradient-based methods,
but an error-prone and often computationally demanding task. The choices for the user of optimization
methods are:

• to put in the intellectual effort to develop formulas and code to compute the derivatives needed. Note
that analytic expressions for deriviatives may be available in all, or even most, cases.

• to use symbolic or automatic differentiation (Margossian (2019)). R has some built-in tools in base R
and in packages such as “Deriv” by Clausen and Sokol (2018). However, these are, in my experience,
difficult to use. While symbolic differentiation, if it works, results in analytic expressions that can
generally be implemented concisely, automatic differentiation can generate a large amount of stored
data.

• numerical approximation to derivatives builds on the introductory calculus idea that the first derivative
of a function f(x) of a single variable x being defined as

f ′(x) = lim
h→0

((f(x + h) − f(x))/h)

Finite differences lead to several formulas, some as simple as forward or backward difference approx-
imations, or the more accurate central difference formula, but at the expense of an extra function
evaluation. Greater accuracy can be obtained using more function evaluations, as in Gilbert (2009). For
the gradient and the Hessian the number of parameters n means we need at least n and n2 evaluations
respectively. Generally evaluation of an expression for the gradient has a computational cost not hugely
larger than that of a single function evaluation. Automatic differentiation is more complicated, but
numerical approximation is often the most costly.

If approximations are used, minimization software generally follows a somewhat different trajectory of iterates
– the list of sets of parameters x – than the same program using analytic gradients and Hessian. On the other
hand, it has often be observed that approximations do well in early iterations when the initial parameters are
“far” from the solution.

Where analytic gradients are particularly helpful is in deciding to terminate a method, since we can be more
confident that a “small” gradient norm is correctly reported. This is especially so if the function value is
quite large, since the derivative approximations must subtract nearly equal numbers.

Bounds and masks constraints
Bounds or box constraints complicate our programs.

In particular, the step size in the line search may be limited by bounds. If l ≤ x ≤ u

smax = min((l − x)/t, (u − x)/t)

This is then used as the initial step in the line search if it is greater than the chosen default starting step.
Since we use
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z(s) = f(x + s ∗ t, Y )

we need to compute x + s ∗ t for a value of s that should bring some elements of x to a bound. Unfortunately,
rounding errors can cause elements of the parameter to very slightly violate the bound. Finite difference
derivative approximation calculations can also cause such violations. These are difficult to properly control in
software.

Masks or fixed parameters are more easily accommodated, since we can simply force the appropriate gradient
elements to zero for the fixed parameters. That is, we apply a “mask” to the gradient to zero out those
elements. However, as a means to indicate that a parameter is fixed, we could set lower and upper bounds
for the fixed parameters as equal.

Checking input information
The idea of telling our minimization program that parameters are fixed by setting lower and upper bounds
equal raises the related question of inputs that are invalid. To clarify the vocabulary, I prefer to say a
specification of a problem is infeasible if a parameter is not on or between lower and upper bounds. Here it
is the parameters that violate constraints. However, a problem is inadmissible if a lower bound exceeds an
upper bound, in that such a problem makes no sense.

Within software, it is sometimes a great nuisance if the starting parameters x violate bounds. For example,
we have updated bounds but forgotten to adjust the starting parameters. Some programs then simply move
parameters to the nearest bound and continue with the minimization, since users generally want a solution.
However, users should be informed that initial parameters have been changed. Package optimx (for which
this article was originally written; see J. C. Nash and Varadhan (2011)) provides functionality of this sort,
along with a number of other checks for inputs that could be thought of as “silly” and usually the result of
simple user errors.

Yet another check is that the objective function or constraints can be evaluated at the initial parameters. R
provides a useful mechanism for such checks in the try() function. On the other hand, if users know that
their objective function should not be evaluated in certain regions of the parameter space, it is sometimes
worth explicitly coding for such eventualities. Here the fact that R objects can be given attributes is
helpful. Another approach is to return a very large value when a function cannot be evaluated. In optimx the
standard control list contains the element bigval preset to .Machine$double.xmax*0.01 or approximately
1.797693e+306. This is set smaller than the biggest representable number in case any computations are
performed on the returned value, but it can be debated whether 0.01 is an appropriate reduction factor, and
I welcome discussion with users who actually apply this idea.

Steepest descents
Steepest descents (or gradient descent) is one of the simplest ideas for a minimizer. We use t = −g, perform
a line search, then repeat.

While one can demonstrate that the gradient provides the most “downhill” direction of search, the iterative
process tends to be quite inefficient in that it takes a long time to converge. Nevertheless, the negative
gradient is often a useful tool to restart other methods when a method suffers some failure.

Newton-like methods
A long-standing approach to optimization is Newton’s method, though it is likely Newton would not recognize
modern forms of it. The idea is to seek a zero (or root) of the gradient g. For this we need the Hessian H,
i.e., the slope of the gradient in 1 dimension. We evaluate H and g at our current point x and then solve

Ht = −g

4



to generate the search direction. The classic Newton method iterates with a full step of t, but safeguarded
Newton methods use some form of line search to ensure f(x + s ∗ t, Y ) is lower than f(x, Y ). Iterating
hopefully finds us a stationary point of the gradient, which should be a flat point on the surface of f().
Details and constraints complicate the implementation of these ideas, and the computation of the gradient
and especially the Hessian are often very tricky.

Newton-like ideas inspire many other gradient methods. Commonly we wish to avoid storing or explicitly
computing H.

Variable Metric and quasi-Newton methods
In this article, at the risk of offending some purists, these terms will be treated as synonymous, though some
workers do make a distiction.

We have seen that Newton’s method gets a search direction t from solving

Ht = −g

If the Hessian H is invertible, then this is equivalently written

t = −H−1g

The central idea of variable metric (VM) or quasi-Newton (QN) methods is to replace the initial Hessian or
its inverse with some approximation that is much easier to compute and which (hopefully) allows a simpler
solution of the equations that define t. In the kth iteration we perform a search along the computed t to
get xk+1 starting from xk. Using “old” and “new” gradients, parameters and function values, we derive
“better” approximations of either H or H−1. The goal is to have updates that are efficient to calculate and
preserve some desirable properties for the approximate Hessian or Hessian inverse such as symmetry and
positive-definiteness. The actual Hessian may not be positive definite, though it will be symmetric.

The first such update was by Davidon in 1959, circulated as a mimeograph report that was rejected
by journal referees. It was finally published by SIAM as Davidon (1991) when thousands of references
to an essentially unpublished but critical piece of research work became an embarrassment to the field.
https://en.wikipedia.org/wiki/Davidon%E2%80%93Fletcher%E2%80%93Powell_formula gives a reasonable
discussion of the DFP algorithm.

https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_a
lgorithm presents the main alternative to the DFP approach. The BFGS family of approaches has become
dominant for the variable metric class of minimizers. As usual, programming details can heavily influence
practical behaviour of software and there are thousands of papers and programs. In base R, optim() has
methods labelled BFGS and L-BFGS-B. The former is an adaptation (I did not program it however) of my
Algorithm 21 from J. C. Nash (1979), which itself was developed after a January 1976 discussion with Roger
Fletcher of the method described in Fletcher (1970) to try to find a very compact code. At the time 8K bytes
was considered a reasonable amount of memory for a small computer. L-BFGS-B is based on ideas in Byrd et
al. (1995) and a quite complicated code that I feel generally uneasy discussing, despite having worked to
provide an updated version of it for R users (see Fidler et al. (2018)).

Rvmmin

Rvmmin() is an all-R implementation of a bounds-constrained version of my own Algorithm 21 from J. C.
Nash (1979) that is now part of package optimx, though it was earlier a separate package. While the base R
optim::BFGS can be faster, being coded in C, it is not as easy to read, maintain or modify as the R code of
Rvmmin.
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Conjugate Gradient methods
Extending the conjugate gradients method for solving linear equations of Hestenes and Stiefel (1952) to
minimizing nonlinear objective functions, Fletcher and Reeves (1964) started a busy field of endeavour that
aims to accomplish the minimization with as small a working memory as possible.

The idea is to start with some descent direction – the negative gradient is traditional – and perform a line
search. A new gradient is then combined with information from the present line search information to produce
a new t that is somehow “conjugate” to, and linearly independent of, previous search directions. For a
problem with n parameters, we can generate at most n such directions, so must restart our process after n
cycles, or before if there are indications of “loss of conjugacy”.

The brilliance of Fletcher and Reeves (1964) is that the formulas for their “new” search direction are extremely
simple. However, there are alternative formulations of the algorithm which, depending on various assumptions
and approximations, are almost equally simple but give somewhat different sets of search directions and
minimization performance.

In the 1970s I explored several such formulas for the updated search direction, and included three possibilities
in Algorithm 22 of J. C. Nash (1979), but chose that of Polak and Ribière (1969) as the default. Unfortunately,
my experience with this algorithm, which is implemented in base R as optim::CG, has been very unsatisfactory.

By contrast, an approach that melds the update ideas by Dai and Yuan (2001) has led me to build Rcgmin(),
now part of package optimx (J. C. Nash and Varadhan (2011)), though originally an independent R package.
This has proven remarkably strong in performance. I added bounds and masks constraints.

Rcgmin and ncg

NOTE: In early 2022 I discovered a coding glitch in the bounds constrained code that ignored the possibility
that a quadratic inverse interpolation would suggest a negative stepsize, which would be “uphill”. A crude
correction to double the best steplength so far in such cases was added to block possible failure.

Other ideas for simplifying Newton’s method
The quasi-Newton/variable metric methods used one approximation of the Hessian or its inverse to provide
a Newton-like search direction. Another approach is to approximately solve the Newton equations rather
than approximate the Hessian. Such methods are typically called inexact Newton or truncated Newton
methods. They often do NOT explicitly generate the Hessian, but use clever ideas which generate, at least
approximately, the effect of multiplying a vector by the Hessian without actually having the matrix itself.
Having such a matrix-vector product allows for solution of the Newton equations using the linear conjugate
gradient or similar methods. These are iterative, and stopping them “early” may still give a useful search
direction while saving computational effort. Hence the “inexact” or “truncated” nomenclature. See S. G.
Nash (2000) for a survey.

Rtnmin

The method “Rtnmin” calls the functions tn() or tnbc() (for unconstrained or bounds constrained problems).
These functions are R translations of Matlab functions due to S. G. Nash (1983). The translation is not
always well-coded for R, and these routines could be improved, but often work quite well, especially for
problems with large numbers of parameters.

Limited-memory quasi-Newton methods

optimx offers several versions of these ideas as the bounds constrained solvers “L-BFGS-B” from base-
R optim() and its revision in C as lbfgsb3c (Fidler2018), as well as the unconstrained solver “lbfgs()”
(Coppola2014). The idea behind these methods is to avoid storing the full Hessian or inverse Hessian, but
instead to keep only a few of the vectors of information needed to create them via the updating formulas. The
details require care and attention. Moreover, all the “work” of these codes is programmed in languages other
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than R. They are particularly helpful for problems with large numbers of parameters such as the variable
dimension problem number 25 of Moré, Garbow, and Hillstrom (1981). In the example below, warnings about
the lack of symmetry of the returned Hessian are suppressed.
# example using var_dim function from More et al. (or funconstrain)
bfn = function(par) {

n <- length(par)
if (n < 1) {stop("Variably Dimensioned: n must be positive")}
fsum <- 0; fn1 <- 0;
for (j in 1:n) {

fj <- par[j] - 1; fsum <- fsum + fj * fj; fn1 <- fn1 + j * fj
}
fn1_fn1 <- fn1 * fn1 # f_n+1 and f_n+2
fsum <- fsum + fn1_fn1 + fn1_fn1 * fn1_fn1
fsum

}
bgr = function(par) {

n <- length(par)
# if (n < 1) {stop("Variably Dimensioned: n must be positive") }

fsum <- 0; grad <- rep(0, n); fn1 <- 0
for (j in 1:n) {

fj <- par[j] - 1; fn1 <- fn1 + j * fj; grad[j] <- grad[j] + 2 * fj
}
fn1_2 <- fn1 * 2; fn13_4 <- fn1_2 * fn1_2 * fn1
grad <- grad + 1:n * (fn1_2 + fn13_4)
grad

}
x0<-rep(pi,100)
library(optimx)
defaultW <- getOption("warn")
options(warn = -1)
mm<-c("ncg","Rcgmin","lbfgs","L-BFGS-B","Rtnmin")
res1<-opm(x0, bfn, bgr, method=mm)
options(warn = defaultW)
res1[,100:108]

## p100 value fevals gevals hevals convergence kkt1 kkt2 xtime
## ncg 1 5.902531e-25 58 13 0 0 TRUE TRUE 0.028
## Rcgmin 1 1.239035e-23 73 17 0 0 TRUE TRUE 0.002
## lbfgs 1 4.845483e-16 62 62 0 0 TRUE TRUE 0.048
## L-BFGS-B 1 8.548800e-18 60 60 0 0 TRUE TRUE 0.002
## Rtnmin 1 3.714564e-13 86 86 0 0 TRUE TRUE 0.006
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