
Orthogonal Nonlinear Least-Squares Regression in R

Andrej-Nikolai Spiess

Soilytix GmbH, Hamburg, Germany

draspiess@gmail.com

October 31, 2022

Abstract

Orthogonal nonlinear least squares (ONLS) regression is a not so frequently applied and largely
overlooked regression technique that comes into question when one encounters an "error in variables"
problem. While classical nonlinear least squares (NLS) aims to minimize the sum of squared vertical
residuals, ONLS minimizes the sum of squared orthogonal residuals. The method is based on �nding
points on the �tted line that are orthogonal to the data by minimizing for each (xi, yi) the Euclidean
distance ∥Di∥ to some point (x0i, y0i) on the �tted curve. There is a 25 year old FORTRAN imple-
mentation for ONLS available (ODRPACK, http://www.netlib.org/toms/869.zip), which has been
included in the 'scipy' package for Python (http://docs.scipy.org/doc/scipy-0.14.0/reference/odr.html).
Here, onls has been developed for easy future algorithm tweaking in R. The results obtained from
onls are exactly similar to those found in [1, 4]. The implementation is based on an inner loop
using optimize for each (xi, yi) to �nd min ∥Di∥ within some border [xi−w, xi+w] and an outer loop
for the �t parameters using nls.lm of the 'minpack' package.

Overview

The onls package o�ers orthogonal nonlinear least-squares regression in R. In a standard
nonlinear regression setup, we estimate parameters β in a nonlinear model yi = f(xi,β)+εi,
with εi ∼ N (0, σ2), by minimizing the residual sum-of-squares of the vertical distances

min
β

n∑
i=1

(yi − f(xi,β))
2 (1)

In contrast, orthogonal nonlinear regression aims to estimate parameters β in a nonlinear
model yi = f(xi + δi,β) + εi, with εi, δi ∼ N (0, σ2), by minimizing the sum-of-squares of
the orthogonal distances

min
β,δ

n∑
i=1

([yi − f(xi + δi,β)]
2 + δ2i) (2)

We do this by using the orthogonal distanceDi from the point (xi, yi) to some point (x0i, y0i)
on the curve f(xi, β̂) that minimizes the Euclidean distance

min ∥Di∥ ≡ min
√
(xi − x0i)2 + (yi − y0i)2 (3)

The minimization of the Euclidean distance is conducted by using an inner loop on each
(xi, yi) with the optimize function that �nds the corresponding (x0i, y0i) in some window
[a, b]:

argmin
x0i∈[a,b]

√
(xi − x0i)2 + (yi − f(x0i, β̂))2 (4)

1

Algorithm and Implementation

In detail, onls conducts the following steps:

1) A normal (non-orthogonal) nonlinear model is �t by nls.lm to the data. This approach
has been implemented because parameters of the orthogonal model are usually within a
small window of the standard NLS model. The obtained parameters are passed to the
ONLS routine, which is:
2) Outer loop: Levenberg-Marquardt minimization of the orthogonal distance sum-of-squares∑N

i=1 ∥Di∥2 using nls.lm, optimization of β.

3) Inner loop: For each (xi, yi), �nd (x0i, f(x0i, β̂)), x0i ∈ [a, b], that minimizes ∥Di∥ using

optimize. Return vector of orthogonal distances ∥D⃗∥.

The outer loop (nls.lm) scales with the number of parameters p in the model, proba-
bly with O(p) for evaluating the 1-dimensional Jacobian and O(p2) for the two-dimensional
Hessian. The inner loop has O(n) for �nding min ∥Di∥, summing up to O(n(p+ p2)). Sim-
ulations with di�erent number of n by �xed p showed that the processor times scale exactly
linearly.

2

How to use

1. Building the model

As in the 'Examples' section of nls (here with 10% added error), we supply a formula, data
environment and starting parameters to the model:

> library(onls)

> DNase1 <- subset(DNase, Run == 1)

> DNase1$density <- sapply(DNase1$density, function(x) rnorm(1, x, 0.1 * x))

> mod1 <- onls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

+ data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))

Obtaining starting parameters from ordinary NLS...

Passed...

Relative error in the sum of squares is at most `ftol'.

Optimizing orthogonal NLS...

Passed... Relative error in the sum of squares is at most `ftol'.

2. Looking at the model and checking orthogonality

printing the model will give us the estimated coe�cients, the (classical) vertical resid-
ual sum-of-squares, the orthogonal residual sum-of-squares, and most importantly, in-
formation on how many points (xi, yi) are orthogonal to (x0i, y0i) on the �tted curve
f(xi + δi,β) + εi. This is accomplished using the independent checking routine check_o

which calculates the angle between the slope mi of the tangent obtained from the �rst
derivative at (x0i, y0i) and the slope ni of the onls-minimized Euclidean distance between
(x0i, y0i) and (xi, yi):

tan(αi) =

∣∣∣∣ mi − ni
1 + mi · ni

∣∣∣∣ , mi =
df(x, β)

dx0i
, ni =

yi − y0i
xi − x0i

=> αi[
◦] = tan−1

(∣∣∣∣ mi − ni
1 + mi · ni

∣∣∣∣) · 360
2π

(5)

which should be 90◦, if the Euclidean distance has been minimized.

> mod1

Nonlinear orthogonal regression model

model: density ~ Asym/(1 + exp((xmid - log(conc))/scal))

data: DNase1

Asym xmid scal

2.819 1.943 1.071

vertical residual sum-of-squares: 0.0563

orthogonal residual sum-of-squares: 0.0544

PASSED: 16 out of 16 fitted points are orthogonal.

Number of iterations to convergence: 4

Achieved convergence tolerance: 1.49e-08

In this case, all points have been �tted orthogonal, giving the PASSED message and all is
well. If a FAILED message is given, not all of the points are orthogonal and some tweaking
is necessary, see next chapter.

3. Tweaking the model in case of non-orthogonality

Two arguments to the onls function mainly in�uence the success of overall orthogonal �tting:

extend: By default, it is set to c(0.2, 0.2), which means that (x0i, y0i) in the inner loop

3

are also optimized in an extended predictor value x range of [min(x)−0.2·range(x),max(x)+
0.2·range(x)]. This is important for the values at the beginning and end of the data, because
the resulting model can display signi�cantly di�erent curvature if (x0i, y0i) are forced to be
within the predictor range, often resulting in a loss of orthogonality at the end points.
In the following, we will take an example from the ODRPACK implementation [1].

> x <- c(0, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 100, 105)

> y <- c(4.14, 8.52, 16.31, 32.18, 64.62, 98.76, 151.13, 224.74, 341.35,

+ 423.36, 522.78, 674.32, 782.04, 920.01)

> DAT <- data.frame(x, y)

> mod4 <- onls(y ~ b1 * 10^(b2 * x/(b3 + x)), data = DAT,

+ start = list(b1 = 1, b2 = 5, b3 = 100))

Obtaining starting parameters from ordinary NLS...

Passed...

Relative error in the sum of squares is at most `ftol'.

Optimizing orthogonal NLS...

Passed... Relative error in the sum of squares is at most `ftol'.

With

> coef(mod4)

b1 b2 b3

4.487871 7.188155 221.837807

we get the same coe�cients as in the ODRPACK implementation (4.4879/7.1882/221.8383)
and with

> deviance_o(mod4)

[1] 15.26281

attr(,"label")

[1] "Deviance (RSS) of orthogonal residuals from orthogonal model"

the same orthogonal residual sum-of-squares (15.263), as both given on page 363.
However, if we do not use the (default) extended predictor range and set extend = c(0,

0), x1 and x14 are non-orthogonal, as analyzed by the check_o function. See α1 and α14:

> mod5 <- onls(y ~ b1 * 10^(b2 * x/(b3 + x)), data = DAT,

+ start = list(b1 = 1, b2 = 5, b3 = 100), extend = c(0, 0))

Obtaining starting parameters from ordinary NLS...

Passed...

Relative error in the sum of squares is at most `ftol'.

Optimizing orthogonal NLS...

Passed... Relative error in the sum of squares is at most `ftol'.

> check_o(mod5)

x x0 y y0 alpha df/dx Ortho

1 0 6.268415e-09 4.14 4.519317 71.480996 0.3349642 FALSE

2 10 9.701772e+00 8.52 9.005909 89.999996 0.6137531 TRUE

3 20 1.934099e+01 16.31 16.928822 89.999997 1.0649360 TRUE

4 30 2.999583e+01 32.18 32.182244 89.998082 1.8596599 TRUE

5 40 4.244013e+01 64.62 63.893359 89.999994 3.3580964 TRUE

6 50 5.094935e+01 98.76 98.564953 89.999995 4.8672676 TRUE

7 60 5.988618e+01 151.13 151.146249 89.999556 7.0049505 TRUE

8 70 6.872289e+01 224.74 224.870231 89.999820 9.8067846 TRUE

9 80 7.862153e+01 341.35 341.448888 89.999995 13.9398003 TRUE

10 85 8.398467e+01 423.36 423.420823 89.999851 16.6939640 TRUE

4

11 90 8.942638e+01 522.78 522.808813 89.999961 19.9081116 TRUE

12 95 9.625199e+01 674.32 674.269107 89.999989 24.6004639 TRUE

13 100 1.003675e+02 782.04 782.026781 89.998525 27.8176079 TRUE

14 105 1.050000e+02 920.01 919.996237 1.793663 31.8165855 FALSE

window: is the window [xi−w, xi+w] in which optimize searches for (x0i, y0i) to minimize
∥Di∥. The default of window = 12 works quite well with sample sizes n > 25, but may be
tweaked, as in the following example when the x values are very close in a region:

> x <- 1:100

> y <- x^2

> set.seed(123)

> y <- sapply(y, function(a) rnorm(1, a, 0.1 * a))

> DAT <- data.frame(x, y)

> mod6 <- onls(y ~ x^a, data = DAT, start = list(a = 1))

Obtaining starting parameters from ordinary NLS...

Passed...

Relative error in the sum of squares is at most `ftol'.

Optimizing orthogonal NLS...

Passed... Relative error in the sum of squares is at most `ftol'.

> mod6

Nonlinear orthogonal regression model

model: y ~ x^a

data: DAT

a

2.005

vertical residual sum-of-squares: 17496215

orthogonal residual sum-of-squares: 675.3

FAILED: Only 98 out of 100 fitted points are orthogonal.

Number of iterations to convergence: 2

Achieved convergence tolerance: 1.49e-08

Here �tting fails, while it passes when using a larger window size:

> mod7 <- onls(y ~ x^a, data = DAT, start = list(a = 10), window = 17)

Obtaining starting parameters from ordinary NLS...

Passed...

Conditions for `info = 1' and `info = 2' both hold.

Optimizing orthogonal NLS...

Passed... Conditions for `info = 1' and `info = 2' both hold.

> mod7

Nonlinear orthogonal regression model

model: y ~ x^a

data: DAT

a

2.005

vertical residual sum-of-squares: 17496215

orthogonal residual sum-of-squares: 675.3

PASSED: 100 out of 100 fitted points are orthogonal.

Number of iterations to convergence: 2

Achieved convergence tolerance: 1.49e-08

5

4. Analysing the orthogonal model with classical nls functions

Plotting.

> plot(mod1)

Due to di�erent scaling of x- and y-axes, orthogonality is often not evident (Figure 1).
Scaling both axes equally resolves this issue (Figure 2):

> plot(mod1, xlim = c(0, 1), ylim = c(0, 1), asp = 1)

Fit features and summaries.

The usual summary as in summary.nls but with information for vertical and orthogonal

residual standard errors:

> summary(mod1)

Formula: density ~ Asym/(1 + exp((xmid - log(conc))/scal))

Parameters:

Estimate Std. Error t value Pr(>|t|)

Asym 2.8191 0.4579 6.157 3.45e-05 ***

xmid 1.9430 0.3734 5.204 0.00017 ***

scal 1.0708 0.1180 9.073 5.49e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error of vertical distances: 0.06581 on 13 degrees of freedom

Residual standard error of orthogonal distances: 0.06469 on 13 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 1.49e-08

Coe�cients:

> coef(mod1)

Asym xmid scal

2.819107 1.942971 1.070838

Variance-Covariance matrix:

> vcov(mod1)

Asym xmid scal

Asym 0.20966237 0.16979216 0.04959222

xmid 0.16979216 0.13939689 0.04105222

scal 0.04959222 0.04105222 0.01392993

Response value prediction:

> predict(mod1, newdata = data.frame(conc = 6))

[1] 1.310198

Pro�ling con�dence intervals:

> confint(mod1)

2.5% 97.5%

Asym 2.1979613 4.888361

xmid 1.3852416 3.238137

scal 0.8520192 1.385197

6

5. Extracting information based on vertical residuals

Models �tted with onls incorporate information with respect to the vertical residuals using
the classical S3 functions.

Vertical residuals:

> residuals(mod1)

[1] -0.0108694939 -0.0093966789 0.0243193659 0.0257995399 -0.0020589710

[6] 0.0517282798 0.0323550658 -0.0005473146 0.0490086419 -0.0394687677

[11] -0.0710915338 -0.1268082733 0.0978812421 0.0941504861 0.0231400967

[16] -0.0838788572

attr(,"label")

[1] "Vertical residuals from orthogonal model"

Fitted values corresponding to x:

> fitted(mod1)

[1] 0.02712250 0.02712250 0.09652291 0.09652291 0.17882012 0.17882012

[7] 0.32296190 0.32296190 0.55870581 0.55870581 0.90419580 0.90419580

[13] 1.33696469 1.33696469 1.78390439 1.78390439

attr(,"label")

[1] "Fitted values from orthogonal model"

Vertical residual sum-of-squares:

> deviance(mod1)

[1] 0.05630085

attr(,"label")

[1] "Deviance (RSS) of vertical residuals from orthogonal model"

Log-likelihood of model using vertical residuals:

> logLik(mod1)

'log Lik.' 22.49406 (df=4)

"Log-likelihood using vertical residuals from orthogonal model"

6. Extracting information based on orthogonal residuals

The following functions are meant to extract S3-type values based on orthogonal residuals.
The naming convention is function_o.

Orthogonal residuals:

> residuals_o(mod1)

[1] 0.0096603463 0.0083523270 0.0222238536 0.0235771814 0.0019114119

[6] 0.0480497724 0.0306215403 0.0005178932 0.0473465742 0.0381223703

[11] 0.0699204874 0.1247151123 0.0973466563 0.0936362462 0.0231124394

[16] 0.0837785520

attr(,"label")

[1] "Orthogonal residuals from orthogonal model"

Orthogonal residual sum-of-squares:

> deviance_o(mod1)

[1] 0.05439814

attr(,"label")

[1] "Deviance (RSS) of orthogonal residuals from orthogonal model"

7

Log-likelihood of model using orthogonal residuals:

> logLik_o(mod1)

'log Lik.' 22.7691 (df=4)

"Log-likelihood using orthogonal residuals from orthogonal model"

7. Extracting information about x0i and y0i

Orthogonal �tting is based on �nding some pair (x0i, y0i) on the �tted curve that is orthog-
onal to (xi, yi). Values for x0i and y0i can be extracted with x0 and y0:

Extracting x0i:

> x0(mod1)

[1] 0.04438593 0.04499080 0.20431517 0.20486056 0.38991433 0.40835739

[7] 0.79112309 0.78108248 1.57470643 1.55261494 3.11234482 3.10238086

[13] 6.26015242 6.25976603 12.50112952 12.49590323

attr(,"label")

[1] "x0 values from orthogonal model"

Extracting y0i:

> y0(mod1)

[1] 0.02483142 0.02514446 0.10052352 0.10076513 0.17853554 0.18589034

[7] 0.32633075 0.32290464 0.56196840 0.55605552 0.90186996 0.90003431

[13] 1.33803013 1.33798961 1.78395966 1.78370386

attr(,"label")

[1] "y0 values from orthogonal model"

8

0 2 4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

conc

de
ns

ity

Figure 1: Plot of mod1 showing the (xi, yi) values as black circles, (x0i, y0i)
values as red circles and orthogonal lines in red.

9

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

conc

de
ns

ity

Figure 2: Plot of mod1 as in Figure 1 with equal scaling for better visualization of orthogonality.

10

References

[1] ALGORITHM 676 ODRPACK: Software for Weighted Orthogonal Distance Regres-
sion.
Boggs PT, Donaldson JR, Byrd RH and Schnabel RB.
ACM Trans Math Soft (1989), 15: 348-364.
http://dl.acm.org/citation.cfm?id=76913.

[2] Nonlinear Perpendicular Least-Squares Regression in Pharmacodynamics.
Ko HC, Jusko WJ and Ebling WF.
Biopharm Drug Disp (1997), 18: 711-716.

[3] Orthogonal Distance Regression.
Boggs PT and Rogers JE.
NISTIR (1990), 89-4197: 1-15.
http://docs.scipy.org/doc/external/odr_ams.pdf.

[4] User's Reference Guide for ODRPACK Version 2.01
Software for Weighted Orthogonal Distance Regression.
Boggs PT, Byrd RH, Rogers JE and Schnabel RB.
NISTIR (1992), 4834: 1-113.
http://docs.scipy.org/doc/external/odrpack/guide.pdf.

11

http://dl.acm.org/citation.cfm?id=76913
http://docs.scipy.org/doc/external/odr_ams.pdf
http://docs.scipy.org/doc/external/odrpack/guide.pdf

