--- title: "Getting Started with Odiffr" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with Odiffr} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = odiffr::odiff_available() ) ``` ## Introduction Odiffr provides R bindings to [Odiff](https://github.com/dmtrKovalenko/odiff), a blazing-fast pixel-by-pixel image comparison tool. It's designed for: - Visual regression testing of Shiny apps and reports - Quality assurance in validated pharmaceutical environments - Automated image analysis workflows ## System Requirements Odiffr requires the Odiff binary to be installed on your system: ```bash # npm (cross-platform, recommended) npm install -g odiff-bin # Or download binaries from GitHub releases # https://github.com/dmtrKovalenko/odiff/releases ``` If you cannot install Odiff system-wide, use `odiffr_update()` after installing the package to download a binary to your user cache. ## Installation ```{r eval=FALSE} # From CRAN (when available) install.packages("odiffr") # Development version pak::pak("BenWolst/odiffr") ``` ## Basic Usage ```{r setup} library(odiffr) ``` ### Check Configuration ```{r} # Verify Odiff is available odiff_available() # View configuration details odiff_info() ``` ### Compare Images The main function is `compare_images()`, which returns a tibble (or data.frame): ```{r eval=FALSE} result <- compare_images("baseline.png", "current.png") result #> # A tibble: 1 × 7 #> match reason diff_count diff_percentage diff_output img1 img2 #> #> 1 FALSE pixel-diff 1234 2.45 NA baseline.png current.png ``` ### Generate Diff Images ```{r eval=FALSE} # Specify output path result <- compare_images("baseline.png", "current.png", diff_output = "diff.png") # Or use TRUE for auto-generated temp file result <- compare_images("baseline.png", "current.png", diff_output = TRUE) result$diff_output #> [1] "/tmp/RtmpXXXXXX/file12345.png" ``` ## Advanced Options ### Threshold The threshold parameter (0-1) controls color sensitivity. Lower values are more precise: ```{r eval=FALSE} # Very strict comparison result <- compare_images("img1.png", "img2.png", threshold = 0.01) # More lenient (ignore minor color variations) result <- compare_images("img1.png", "img2.png", threshold = 0.2) ``` ### Antialiasing Ignore antialiased pixels that often differ between renders: ```{r eval=FALSE} result <- compare_images("img1.png", "img2.png", antialiasing = TRUE) ``` ### Ignore Regions Exclude specific areas from comparison (useful for timestamps, dynamic content): ```{r eval=FALSE} result <- compare_images("img1.png", "img2.png", ignore_regions = list( ignore_region(x1 = 0, y1 = 0, x2 = 200, y2 = 50), # Header ignore_region(x1 = 0, y1 = 900, x2 = 1920, y2 = 1080) # Footer ) ) ``` ## Batch Processing Compare multiple image pairs efficiently: ```{r eval=FALSE} pairs <- data.frame( img1 = c("baseline/page1.png", "baseline/page2.png", "baseline/page3.png"), img2 = c("current/page1.png", "current/page2.png", "current/page3.png") ) results <- compare_images_batch(pairs, diff_dir = "diffs/") # View failures results[!results$match, ] ``` ### Directory Comparison Compare all images in two directories by matching filenames: ```{r eval=FALSE} # Compare baseline/ vs current/ directories results <- compare_image_dirs("baseline/", "current/") # Include subdirectories results <- compare_image_dirs("baseline/", "current/", recursive = TRUE) # Only compare PNG files results <- compare_image_dirs("baseline/", "current/", pattern = "\\.png$") ``` Note: `compare_image_dirs()` matches files by name in both directories. If there are files in `current/` with no matching baseline, a message is printed showing which files were skipped. ### Accessor Functions Extract passing or failing pairs from batch results: ```{r eval=FALSE} results <- compare_image_dirs("baseline/", "current/") # Get only failures failures <- failed_pairs(results) nrow(failures) #> [1] 8 # Get only passes passes <- passed_pairs(results) nrow(passes) #> [1] 42 ``` ### Batch Summary Get aggregate statistics for batch results: ```{r eval=FALSE} results <- compare_image_dirs("baseline/", "current/") summary(results) #> odiffr batch comparison: 50 pairs #> ─────────────────────────────────── #> Passed: 42 (84.0%) #> Failed: 8 (16.0%) #> - pixel-diff: 6 #> - layout-diff: 2 #> #> Diff statistics (failed pairs): #> Min: 0.15% #> Median: 2.34% #> Mean: 3.21% #> Max: 12.45% #> #> Worst offenders: #> 1. page_a.png (12.45%, 1245 pixels) #> 2. page_b.png (8.32%, 832 pixels) ``` ### Column Reference The `odiffr_batch` object returned by `compare_images_batch()` and `compare_image_dirs()` contains these columns: | Column | Type | Description | | ----------------- | --------- | --------------------------------------------- | | `pair_id` | integer | Sequential comparison ID | | `match` | logical | `TRUE` if images match | | `reason` | character | `"match"`, `"pixel-diff"`, or `"layout-diff"` | | `diff_count` | integer | Number of different pixels | | `diff_percentage` | numeric | Percentage of pixels different | | `diff_output` | character | Path to diff image, or `NA` | | `img1` | character | Path to baseline image | | `img2` | character | Path to current image | ### Parallel Processing Speed up batch comparisons using multiple CPU cores (Unix only): ```{r eval=FALSE} # Compare in parallel on macOS/Linux results <- compare_images_batch(pairs, parallel = TRUE) # Also works with directory comparison results <- compare_image_dirs("baseline/", "current/", parallel = TRUE) ``` Note: On Windows, `parallel = TRUE` falls back to sequential processing. ### HTML Reports Generate standalone HTML reports for QA review: ```{r eval=FALSE} # Run batch comparison with diff images results <- compare_image_dirs( "baseline/", "current/", diff_dir = "diffs/" ) # Generate HTML report (links to diff images) batch_report(results, output_file = "qa-report.html") # Self-contained report with embedded images (for sharing) batch_report(results, output_file = "qa-report.html", embed = TRUE) # Portable report with relative paths (move report + diffs together) batch_report(results, output_file = "output/report.html", relative_paths = TRUE) # Customize the report batch_report( results, output_file = "report.html", title = "Dashboard Visual Regression", n_worst = 20, # Show top 20 failures show_all = TRUE # Include all comparisons, not just failures ) ``` Reports include: - Pass/fail statistics with visual cards - Failure reason breakdown - Diff statistics (min, median, mean, max) - Worst offenders table with thumbnails The `relative_paths` option is useful when you want to move or share the report along with the diff images folder. With relative paths, the report will find the images regardless of where the files are moved. ### One-Liner Workflow For the common workflow of comparing directories and generating a report, use `compare_dirs_report()`: ```{r eval=FALSE} # Compare and generate report in one step compare_dirs_report("baseline/", "current/") # -> Creates diffs/ directory with diff images and report.html # Self-contained report with embedded images (recommended for sharing) compare_dirs_report("baseline/", "current/", embed = TRUE) # See all comparisons, not just failures compare_dirs_report("baseline/", "current/", show_all = TRUE) # Portable report with relative image paths compare_dirs_report("baseline/", "current/", relative_paths = TRUE) # Combine options: parallel processing with embedded report compare_dirs_report("baseline/", "current/", parallel = TRUE, embed = TRUE) ``` ### CI Integration The `compare_dirs_report()` one-liner is ideal for CI pipelines: ```{r eval=FALSE} # In your CI script results <- compare_dirs_report("baseline/", "current/") # Fail the build if any images differ if (any(!results$match)) { stop("Visual regression detected! See diffs/ for details.") } ``` For GitHub Actions, upload `diffs/` as an artifact on failure: ```yaml - name: Upload diffs if: failure() uses: actions/upload-artifact@v4 with: name: visual-diffs path: diffs/ ``` ## Working with magick Odiffr integrates with the [magick](https://cran.r-project.org/package=magick) package for preprocessing: ```{r eval=FALSE} library(magick) # Read and preprocess images img1 <- image_read("baseline.png") |> image_resize("800x600") |> image_convert(colorspace = "sRGB") img2 <- image_read("current.png") |> image_resize("800x600") |> image_convert(colorspace = "sRGB") # Compare directly result <- compare_images(img1, img2) ``` ## Low-Level API For full control, use `odiff_run()`: ```{r eval=FALSE} result <- odiff_run( img1 = "baseline.png", img2 = "current.png", diff_output = "diff.png", threshold = 0.1, antialiasing = TRUE, fail_on_layout = TRUE, diff_mask = FALSE, diff_overlay = 0.5, diff_color = "#FF00FF", diff_lines = TRUE, reduce_ram = FALSE, ignore_regions = list(ignore_region(10, 10, 100, 50)), timeout = 60 ) # Detailed result result$match result$reason result$diff_count result$diff_percentage result$diff_lines result$exit_code result$duration ``` ## Binary Management ### Update Binary Download the latest Odiff binary to your user cache: ```{r eval=FALSE} # Latest version odiffr_update() # Specific version odiffr_update(version = "v4.1.2") ``` ### Custom Binary Path Use a specific binary (useful for validated environments): ```{r eval=FALSE} options(odiffr.path = "/validated/bin/odiff-4.1.2") ``` ### Cache Management ```{r} # View cache location odiffr_cache_path() ``` ```{r eval=FALSE} # Clear cached binaries odiffr_clear_cache() ``` ## Visual Regression Testing with testthat Odiffr provides dedicated testthat expectations for visual regression testing: ```{r eval=FALSE} library(testthat) library(odiffr) test_that("dashboard renders correctly", { skip_if_no_odiff() # Generate current screenshot (using your preferred method) webshot2::webshot("http://localhost:3838/dashboard", "current.png") # Compare to baseline using expect_images_match() expect_images_match( "current.png", "baselines/dashboard.png", threshold = 0.1, antialiasing = TRUE ) }) test_that("button changes on hover", { skip_if_no_odiff() # Assert that images are different expect_images_differ( "button_normal.png", "button_hover.png" ) }) ``` ### Diff Images on Failure When `expect_images_match()` fails, a diff image is automatically saved to `tests/testthat/_odiffr/` for debugging. Control this behavior with options: ```{r eval=FALSE} # Disable diff image saving options(odiffr.save_diff = FALSE) # Use a custom directory options(odiffr.diff_dir = "my_diffs/") ``` ### Comparison with vdiffr Odiffr and [vdiffr](https://vdiffr.r-lib.org/) are complementary tools: - **vdiffr** uses SVG-based comparison for ggplot2/grid graphics snapshots - **odiffr** uses pixel-based comparison for screenshots, rendered images, and bitmaps Use vdiffr for testing R plots; use odiffr for testing screenshots of Shiny apps, web pages, PDFs, or any raster image comparison. ## For Validated Environments Odiffr is designed for validated pharmaceutical/clinical research: 1. **Pinnable**: Lock to a specific validated binary with `options(odiffr.path = ...)` 2. **Auditable**: Use `odiff_version()` to document binary version for audit trails 3. **Base R core**: Zero external runtime dependencies for core functions ```{r eval=FALSE} # Pin to a specific validated binary options(odiffr.path = "/validated/bin/odiff-4.1.2") # Document version for validation info <- odiff_info() sprintf("Using odiff %s from %s", info$version, info$source) ```