Odiffr Odiffr logo

CRAN status R-CMD-check Codecov

Fast pixel-by-pixel image comparison for R, powered by odiff.

Features

Installation

System Requirements

Odiffr requires the Odiff binary to be installed on your system:

# npm (cross-platform, recommended)
npm install -g odiff-bin

# Or download binaries from GitHub releases
# https://github.com/dmtrKovalenko/odiff/releases

Install Odiffr

# Install from CRAN (when available)
install.packages("odiffr")

# Or install the development version from GitHub
# install.packages("pak")
pak::pak("BenWolst/odiffr")

Alternative: Download via R

If you cannot install Odiff system-wide:

odiffr::odiffr_update()  # Downloads to user cache

Quick Start

library(odiffr)

# Compare two images
result <- compare_images("baseline.png", "current.png")
result$match
#> [1] FALSE

result$diff_percentage
#> [1] 2.45

# Generate a diff image
result <- compare_images("baseline.png", "current.png", diff_output = "diff.png")

Usage

Basic Comparison

# High-level API (returns tibble if available)
result <- compare_images("img1.png", "img2.png")

# Low-level API (returns detailed list)
result <- odiff_run("img1.png", "img2.png")

With Options

# Adjust sensitivity threshold (0-1, lower = more precise)
result <- compare_images("img1.png", "img2.png", threshold = 0.05)

# Ignore antialiased pixels
result <- compare_images("img1.png", "img2.png", antialiasing = TRUE)

# Fail immediately if dimensions differ
result <- compare_images("img1.png", "img2.png", fail_on_layout = TRUE)

Ignore Regions

# Ignore specific areas (e.g., timestamps, dynamic content)
result <- compare_images("img1.png", "img2.png",
  ignore_regions = list(
    ignore_region(0, 0, 200, 50),     # Header
    ignore_region(0, 500, 800, 600)   # Footer
  )
)

Batch Comparison

# Compare multiple image pairs
pairs <- data.frame(
  img1 = c("baseline/page1.png", "baseline/page2.png"),
  img2 = c("current/page1.png", "current/page2.png")
)

results <- compare_images_batch(pairs, diff_dir = "diffs/")

# Extract failures or passes
failed_pairs(results)
passed_pairs(results)

# Compare entire directories
results <- compare_image_dirs("baseline/", "current/", recursive = TRUE)

# Get summary statistics
summary(results)
#> odiffr batch comparison: 50 pairs
#> Passed: 42 (84.0%)
#> Failed: 8 (16.0%)

# Use parallel processing (Unix only)
results <- compare_images_batch(pairs, parallel = TRUE)

HTML Reports

# One-liner: compare directories and generate HTML report
compare_dirs_report("baseline/", "current/")
# -> Creates diffs/ directory with diff images and report.html

# Or step-by-step for more control
results <- compare_image_dirs("baseline/", "current/", diff_dir = "diffs/")
batch_report(results, output_file = "qa-report.html")

# Self-contained report with embedded images
batch_report(results, output_file = "qa-report.html", embed = TRUE)

# Portable report with relative image paths
batch_report(results, output_file = "output/report.html", relative_paths = TRUE)

CI Integration

Run visual regression tests in GitHub Actions and upload diff artifacts:

# .github/workflows/visual-regression.yaml
name: Visual Regression

on: [push, pull_request]

jobs:
  visual-test:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4

      - uses: r-lib/actions/setup-r@v2

      - name: Install dependencies
        run: |
          install.packages(c("odiffr", "webshot2"))
          odiffr::odiffr_update()
        shell: Rscript {0}

      - name: Generate screenshots
        run: Rscript scripts/generate-screenshots.R

      - name: Compare images
        run: |
          library(odiffr)
          results <- compare_dirs_report("baseline/", "current/")
          if (any(!results$match)) stop("Visual regression detected!")
        shell: Rscript {0}

      - name: Upload diffs
        if: failure()
        uses: actions/upload-artifact@v4
        with:
          name: visual-diffs
          path: diffs/

With magick Package

library(magick)

# Compare magick-image objects directly
img1 <- image_read("baseline.png") |> image_resize("800x600")
img2 <- image_read("current.png") |> image_resize("800x600")

result <- compare_images(img1, img2)

Visual Regression Testing

library(testthat)
library(odiffr)

test_that("dashboard renders correctly", {

  expect_images_match(
    "screenshots/current.png",
    "screenshots/baseline.png",
    threshold = 0.1
  )
})

test_that("button changes on hover", {
  expect_images_differ(
    "button_normal.png",
    "button_hover.png"
  )
})

On failure, diff images are automatically saved to tests/testthat/_odiffr/.

Binary Management

# Check if Odiff is available
odiff_available()

# Get version and configuration info
odiff_info()

# Update to latest version (downloads to user cache)
odiffr_update()

# Use a specific binary
options(odiffr.path = "/path/to/odiff")

Binary Detection Priority

  1. options(odiffr.path = "...") - User override
  2. System PATH (Sys.which("odiff"))
  3. Cached binary from odiffr_update()

Supported Formats

Type Formats
Input PNG, JPEG, WEBP, TIFF
Output PNG only

Cross-format comparison is supported (e.g., compare JPEG to PNG).

For Validated Environments

Odiffr is designed for use in validated pharmaceutical and clinical research:

# Pin to a specific validated binary
options(odiffr.path = "/validated/bin/odiff-4.1.2")

# Document in validation scripts
info <- odiff_info()
sprintf("Using odiff %s from %s", info$version, info$source)

Performance

Odiff is approximately 6x faster than ImageMagick for pixel comparison, thanks to SIMD optimizations. Performance scales well with image size.

License

MIT