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This technical report details the calculation of solution path of the R package
mpath on penalized zero-inflated regression, supplementary to the publications
Wang et al. (2014, 2015).

1 Zero-inflated Poisson regression

Assume response variable Y has a zero-inflated Poisson distribution, denote d; +
1 and ds 4 1-dimensional vectors B; and G;. The parameters p = (p1, fi2, - fin)T
and m; are modeled with log(p;) = BT/ and logit(r;) = log(m; /(1 — m;)) = GI¢
for covariate matrix B and G, which can be different. To include an intercept,
let Bio = Gijo = 1. Define ® = (¢7,5T)T with length d = dy + dy + 2. The
log-likelihood function £z;p(®;y) is given by

Czrp(®iy) =Y log(exp(GTC) + exp(—e®7)) + Y (y:BI B — exp(B] B))

y;=0 y; >0
— Y log(1+exp(GT¢)) — > log(ui!).
=1 y; >0
(1)
We minimize a penalized negative log-likelihood function for ZIP model:
plzip(®;y) = —Lz1p(P5y) + p(C, B), (2)

where

dq _ do _
p(C8) =Y (el + 2= ) 1 S @+ 2002 gy (3)
k=1

Jj=1

In the R package mpath, a;, s are labeled as alpha.zero, alpha.count, re-
spectively; A1, Ao are labeled as lambda.zero, lambda.count, respectively. A
point ® is a minimizer of plzrp(P®;y) if and only if plzrp(P;y) is subdifferen-
tiable at ® and ® = 0 is a subgradient of plzrp(®;y) at ®. Take derivatives:



dz1p(Py) exp(G7¢)Gij _  exp(GTQ)Gy;
=2 exp ) 2

¢ = (GIC) + exp(—exp(B] B8 1+ exp(G]() ’
Olz1p(®iy) 3 exp(—exp(B] B8))(— exp(B] B)) Bix (1)
OB = exp(GIQ) +exp(—exp(B]f))
+ Y (yiBir — exp(B] B)Bix).
yi>0

In this document, we take j = 1,...,d1,k = 1, ..., d unless otherwise specified.
It is clear that naiAysign(¢;)+ A1 (1 —a1)¢; is a subgradient of p(¢, 3) at fj #0,
nasAosign(Bg) + Ao (1 — ) By is a subgradient of p(¢, 8) at Bk # 0, nayAiep for
e1 € [~1,1] is a subgradient of p(¢, 3) at {; = 0, and nagAges for ey € [~1,1]
is a subgradient of p(C, 3) at Be=0. Ifdisa minimizer of plzrp(®;y), then
0 € Iplzip(P;y), the subdifferential of ply;p(P;y) at @, which leads to the
KKT conditions:

o2 or P; .
if Cj 75 0: _mgéw + na1)\181gn(gj) + )\1(1 — al)Cj =0,
j
if éj =0: 7%181:.7@’2;) +77,0él)\161 = 0,
or C(jtl) ) 5)
if B £0: —%k’y + nasesign(Br) + Mo(1 — a2)Be = 0,
~ -
if B, =0: —W + nagAges = 0.
k
Therefore, for {“j = O,/;’k = 0, it must be:
0z1p(P;y) 0lzrp(P;y)
paLLLE LIRS A, | ————272 < Ao. 6
‘ ac; < nogAy, 9 < nasAg (6)

Denote Ai max and Az max the smallest values of A\; and Ag, respectively, such
that {; = 0,0, = 0, and (A1 max, A2,max) can be determined by (6) and the
following quantities:

Mzip(Psy) exp(Co)Gij _ — exp(6)Giy

ac; y,-zzo exp(o) + exp(—exp(Bo)) ; 1+ exp(Co)’
ozrp(P;y) exp(—exp(fo))(—exp(Bo)) Bir

OBk, B Z exp(Co) + exp(—exp(6o)) @

yi=0

+ Z (yi Bir. — exp(Bo)Bik)-

vy >0

There is an alternative approach to construct (A1 max, A2,max) as in Wang et al.
(2014). In mixture models, the EM algorithm is set up by imposing missing
data into the problem. Suppose we could observe which zeros came from the
zero state and which came from Poisson state; i.e., suppose we knew z; = 1
when y; is from zero state, and z; = 0 when y; is from the Poisson state. Denote



z = (z1,22,...,2n)7. The complete data (y,z) log-likelihood function can be
written as

n

01p(@iy,2) = {2GI¢ —log(1 + exp(GT())}
= (8)
+) (1= 2){y:B] B — exp(B] ) — log(!)} .

=1

The complete data penalized negative log-likelihood function is then given by

Pl 1p(P5y,2) = —L%p +p(C, B)- 9)

Taking derivatives of (8), we obtain

c . n T g
NG 1p(P5y,2) _ Z {ZiGij _ exp(GiQ)Gi } 7

¢ — 1+ exp(G]¢)
ol i) l; 10)
Y 1Y 2
Hrp(802) S 71— 20) (B — exp( BB}
i=1
The KKT conditions of a minimizer ® of Pl p(®;y, 2) are given by:
e 2 001 p(P; )
if Cj 75 0: —ZIéZSy) + nal)\lslgn(Cj) + )\1(1 — al)Cj = 0,
j
if CAj =0: _i%IBPf);:y) +na1)\161 = 0,
e A 8€CZIP(](I)§Z/) . ()
if B #£0: T on + nasAasign(Bg) + Aa(1 — a2) Bk =0,
" C (I).
if B, =0: —8€Zg)ﬁ( ’y) + nagiges = 0.
k
Therefore, for éj =0, Bk = 0, it must be:
ol ; p(P; NS p (D
‘Zjapc(jy)‘ < nag, Zlgéky)‘ < nagAs. (12)

(m)

%

The EM algorithm estimates z; at iteration m by its conditional mean z
given below:

m m -1 . _
0, ify; =1,2,....
Let ¢(™) = ¢, (™) = B, then (13) becomes
L 1+ exp(—GI¢ — exp(BiTﬂ)]_1 , ify; =0, (14)
‘o, ify; =1,2, ...

It is a simple exercise to show that the right hand side of (10) is the same as
that of (4) once (14) is plugged into (10). Hence, the KKT conditions (11)



are the same as (5) once (14) is plugged into (10). These connections offer a
different method to derive (A1 max, Ao ‘max) Such that CJ =0 Bk = 0 hold (Wang
et al., 2014). We first estimate (p, By for an intercept-only ZIP model, then (14)

reduces to

o {[1 +tep(=Go—exp(Bl ", i =0, (15)

0, ify, =1,2,....

Plugging in (15), (;\1,max, 5\271%}() are computed based on (12). Furthermore,
we have shown that (A max, A2,max) = (A1, max, A2 max) holds, a special case of a
more general result (7).

2 Zero-inflated negative binomial regression

Assume response variable Y has a zero-inflated negative binomial distribution,
denote d; +1 and ds + 1-dimensional vectors B; and G, respectively. As before,
the first entry of these vectors is 1. In ZINB regression, assume log(u;) = B] 3
and log(72-) = G]¢ where ¢ = (Co,C1y--,Cay) and 8 = (Bo, b1, -, Bay) are
unknown parameters. Here (y and S are intercepts. For n independent random
samples, denote ® = ({7, 87,0)T, the log-likelihood function is then given by

¢ (®; 1 i o
o) = 3 o 1=y
+ 1 1— i Yi
yz>:0 ° {( g )F(yi L@ 6 Gt
where p; = exp(B] ) and p; = % The derivatives are given by:
Ipi Ipi 0
0lzing(P;y) _ Z 82 - 0§J(u1+0 Z op; 1
a¢; —opit+ (- pi)(u )’ =0 oG 1 —pi’
0
0 16
—(1- -)auie(wf’) 1o
o zinB(P;y) _ Pi)op, ul +9 Z 5% Yi  Yi +9)
9Bk = pit -0y = 5ﬂk pi i+ 07
where
% _ Gyj exp(G1Q)
9¢;  (L+exp(GI())*
Ou;
— =B BIj).
95, k exp(B/ )
For variable selection, consider minimizing a penalized negative loss function:
plzine(®;y) = —L(®) + p(C, B), (17)

where p(¢, ) is given by (3). The KKT conditions for a minimizer $ of
plzine(®) can be derived. Therefore, for ¢; = 0, B, = 0, it must be:
‘ Ol zrnp(P;y) 0lzinB(P;y)
9¢; OBk

‘ S nozl)\l, ’ S TlOlQ)\Q. (18)



Denote A1 max and A2 max the smallest values of A\; and Ag, respectively, such
that (; = 0,5, = 0, and (A1 max, A2,max) can be determined by (16), (18) and
the following quantities:

~exp(Co)  Ipi  Gijexp(Co) B ou;
T en(@) G (1 b e(Go) T PR g, = Baexpl)

(19)

Consider an EM algorithm to optimize (17). Let z; = 1 if y; is from the zero state

and z; = 0 if y; is from the NB state. Since z = (21, ..., 2,)7 is not observable, it

is often treated as missing data. The EM algorithm is particularly attractive to

missing data problems. If complete data (y, z) are available, the complete data

log-likelihood function is given by

n

ing(@iy) =Y {(5GT¢ —log(1 + exp(GTQ)) + (1 — z) log(f (yi; B,0))} ,

i=1
(20)
and the complete data penalized negative log-likelihood function is given by

Pl ine( Py, 2) = —L5 v (P y, 2) +p(C, B),

where f(y;;08,0) = F(Zi(ﬁ%i)(e)(uﬁG)yi(uiie)e and p; = exp(B]B). Taking

derivatives of (20), we obtain

oG v (P, 2) = { eXP(GTC)Gw‘ }
- a = ’LG’L - L 3
¢ ; A5 T T o (GT)

oy e (P;y, 2) - { ou; yi yi+0 }
ger Z ( Z)ab’k(ui m+9)

(21)

The KKT conditions of a minimizer ® of ¢5, 5(®;v, z) can be derived. There-
fore, for C}- =0, fr =0, it must be:

oG np(P5y)

‘WZHEZ((I”Z/)‘ < naiA, 9 ’ < nazAs. (22)
The conditional expectation of z; at iteration m is provided by
o\ —1
Lo _ (1 +exp(=G7 (™) {m@%} ) o iy =0 (23)
0, if y; > 0.

Let (™) = ¢, ™ = B, then (23) becomes

oN —1
T 0 £ —
2z = (1 + eXp(—Gi C) [W} ) s if Yi = 0 (24)
0, if y; > 0.
It is simple to show that the right hand side of (21) is the same as that of (16)

once (24) is plugged into (21). Hence, the KKT conditions (22) are the same as
(18) once (24) is plugged into (21). These connections offer a different method



to derive (lemax, S\Z,max) such that fj =0, Bk = 0 hold (Wang et al., 2015). We
first estimate (y, Sy for an intercept-only ZINB model, then (24) becomes

o\ —1
(1ot [dm] ) o wtw=o (25)

2

Plugging in (25), (A1 max, A2,max) are computed based on (22). Furthermore, we
have shown that (A1 max, A2,max) = (Xl,max, S\Q’max) holds.
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