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1 Zero-inflated Poisson regression

Assume response variable Y has a zero-inflated Poisson distribution, denote d1+
1 and d2+1-dimensional vectors Bi and Gi. The parameters µ = (µ1, µ2, ...µn)

⊺

and πi are modeled with log(µi) = B⊺β and logit(πi) = log(πi/(1− πi)) = G⊺

i ζ
for covariate matrix B and G, which can be different. To include an intercept,
let Bi0 = Gi0 = 1. Define Φ = (ζ⊺, β⊺)⊺ with length d = d1 + d2 + 2. The
log-likelihood function ℓZIP (Φ; y) is given by

ℓZIP (Φ; y) =
∑

yi=0

log(exp(G⊺

i ζ) + exp(−eB
⊺

i
β)) +

∑

yi>0

(yiB
⊺

i β − exp(B⊺

i β))

−
n
∑

i=1

log(1 + exp(G⊺

i ζ))−
∑

yi>0

log(yi!).

(1)
We minimize a penalized negative log-likelihood function for ZIP model:

pℓZIP (Φ; y) = −ℓZIP (Φ; y) + p(ζ, β), (2)

where

p(ζ, β) = n

d1
∑

j=1

(α1λ1|ζj |+
λ1(1− α1)

2
ζ2j )+n

d2
∑

k=1

(α2λ2|βk|+
λ2(1− α2)

2
β2
k). (3)

In the R package mpath, α1, α2 are labeled as alpha.zero, alpha.count, re-
spectively; λ1, λ2 are labeled as lambda.zero, lambda.count, respectively. A
point Φ̂ is a minimizer of pℓZIP (Φ; y) if and only if pℓZIP (Φ; y) is subdifferen-
tiable at Φ̂ and Φ = 0 is a subgradient of pℓZIP (Φ; y) at Φ̂. Take derivatives:
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∂ℓZIP (Φ; y)

∂ζj
=

∑

yi=0

exp(G⊺

i ζ)Gij

exp(G⊺

i ζ) + exp(− exp(B⊺

i β))
−

n
∑

i=1

exp(G⊺

i ζ)Gij

1 + exp(G⊺

i ζ)
,

∂ℓZIP (Φ; y)

∂βk

=
∑

yi=0

exp(− exp(B⊺

i β))(− exp(B⊺

i β))Bik

exp(G⊺

i ζ) + exp(− exp(B⊺

i β))

+
∑

yi>0

(yiBik − exp(B⊺

i β)Bik).

(4)

In this document, we take j = 1, ..., d1, k = 1, ..., d2 unless otherwise specified.
It is clear that nα1λ1sign(ζj)+λ1(1−α1)ζj is a subgradient of p(ζ, β) at ζ̂j 6= 0,

nα2λ2sign(βk)+λ2(1−α2)βk is a subgradient of p(ζ, β) at β̂k 6= 0, nα1λ1e1 for

e1 ∈ [−1, 1] is a subgradient of p(ζ, β) at ζ̂j = 0, and nα2λ2e2 for e2 ∈ [−1, 1]

is a subgradient of p(ζ, β) at β̂k = 0. If Φ̂ is a minimizer of pℓZIP (Φ; y), then
0 ∈ ∂pℓZIP (Φ̂; y), the subdifferential of pℓZIP (Φ; y) at Φ̂, which leads to the
KKT conditions:

if ζ̂j 6= 0 : −
∂ℓZIP (Φ; y)

∂ζj
+ nα1λ1sign(ζj) + λ1(1− α1)ζj = 0,

if ζ̂j = 0 : −
∂ℓZIP (Φ; y)

∂ζj
+ nα1λ1e1 = 0,

if β̂k 6= 0 : −
∂ℓZIP (Φ; y)

∂βk

+ nα2λ2sign(βk) + λ2(1− α2)βk = 0,

if β̂k = 0 : −
∂ℓZIP (Φ; y)

∂βk

+ nα2λ2e2 = 0.

(5)

Therefore, for ζ̂j = 0, β̂k = 0, it must be:

∣

∣

∣

∣

∂ℓZIP (Φ; y)

∂ζj

∣

∣

∣

∣

≤ nα1λ1,

∣

∣

∣

∣

∂ℓZIP (Φ; y)

∂βk

∣

∣

∣

∣

≤ nα2λ2. (6)

Denote λ1,max and λ2,max the smallest values of λ1 and λ2, respectively, such

that ζ̂j = 0, β̂k = 0, and (λ1,max, λ2,max) can be determined by (6) and the
following quantities:

∂ℓZIP (Φ; y)

∂ζj
=

∑

yi=0

exp(ζ0)Gij

exp(ζ0) + exp(− exp(β0))
−

n
∑

i=1

exp(ζ0)Gij

1 + exp(ζ0)
,

∂ℓZIP (Φ; y)

∂βk

=
∑

yi=0

exp(− exp(β0))(− exp(β0))Bik

exp(ζ0) + exp(− exp(β0))

+
∑

yi>0

(yiBik − exp(β0)Bik).

(7)

There is an alternative approach to construct (λ1,max, λ2,max) as in Wang et al.
(2014). In mixture models, the EM algorithm is set up by imposing missing
data into the problem. Suppose we could observe which zeros came from the
zero state and which came from Poisson state; i.e., suppose we knew zi = 1
when yi is from zero state, and zi = 0 when yi is from the Poisson state. Denote
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z = (z1, z2, ..., zn)
⊺. The complete data (y, z) log-likelihood function can be

written as

ℓcZIP (Φ; y, z) =

n
∑

i=1

{ziG
⊺

i ζ − log(1 + exp(G⊺

i ζ))}

+

n
∑

i=1

(1− zi) {yiB
⊺

i β − exp(B⊺

i β)− log(yi!)} .

(8)

The complete data penalized negative log-likelihood function is then given by

pℓcZIP (Φ; y, z) = −ℓcZIP + p(ζ, β). (9)

Taking derivatives of (8), we obtain

∂ℓcZIP (Φ; y, z)

∂ζj
=

n
∑

i=1

{

ziGij −
exp(G⊺

i ζ)Gij

1 + exp(G⊺

i ζ)

}

,

∂ℓcZIP (Φ; y, z)

∂βk

=

n
∑

i=1

(1− zi) {yiBik − exp(B⊺

i β)Bik} .

(10)

The KKT conditions of a minimizer Φ̂ of pℓcZIP (Φ; y, z) are given by:

if ζ̂j 6= 0 : −
∂ℓcZIP (Φ; y)

∂ζj
+ nα1λ1sign(ζj) + λ1(1− α1)ζj = 0,

if ζ̂j = 0 : −
∂ℓcZIP (Φ; y)

∂ζj
+ nα1λ1e1 = 0,

if β̂k 6= 0 : −
∂ℓcZIP (Φ; y)

∂βk

+ nα2λ2sign(βk) + λ2(1− α2)βk = 0,

if β̂k = 0 : −
∂ℓcZIP (Φ; y)

∂βk

+ nα2λ2e2 = 0.

(11)

Therefore, for ζ̂j = 0, β̂k = 0, it must be:

∣

∣

∣

∣

∂ℓcZIP (Φ; y)

∂ζj

∣

∣

∣

∣

≤ nα1λ1,

∣

∣

∣

∣

∂ℓcZIP (Φ; y)

∂βk

∣

∣

∣

∣

≤ nα2λ2. (12)

The EM algorithm estimates zi at iteration m by its conditional mean z
(m)
i

given below:

z
(m)
i =

{

[

1 + exp(−G⊺

i ζ
(m) − exp(B⊺

i β
(m))

]

−1
, if yi = 0,

0, if yi = 1, 2, ....
(13)

Let ζ(m) = ζ, β(m) = β, then (13) becomes

zi =

{

[1 + exp(−G⊺

i ζ − exp(B⊺

i β)]
−1

, if yi = 0,

0, if yi = 1, 2, ....
(14)

It is a simple exercise to show that the right hand side of (10) is the same as
that of (4) once (14) is plugged into (10). Hence, the KKT conditions (11)
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are the same as (5) once (14) is plugged into (10). These connections offer a

different method to derive (λ̂1,max, λ̂2,max) such that ζ̂j = 0, β̂k = 0 hold (Wang
et al., 2014). We first estimate ζ0, β0 for an intercept-only ZIP model, then (14)
reduces to

zi =

{

[1 + exp(−ζ0 − exp(β0)]
−1

, if yi = 0,

0, if yi = 1, 2, ....
(15)

Plugging in (15), (λ̂1,max, λ̂2,max) are computed based on (12). Furthermore,

we have shown that (λ1,max, λ2,max) = (λ̂1,max, λ̂2,max) holds, a special case of a
more general result (?).

2 Zero-inflated negative binomial regression

Assume response variable Y has a zero-inflated negative binomial distribution,
denote d1+1 and d2+1-dimensional vectors Bi and Gi, respectively. As before,
the first entry of these vectors is 1. In ZINB regression, assume log(µi) = B⊺

i β
and log( pi

1−pi
) = G⊺

i ζ where ζ = (ζ0, ζ1, ..., ζd1
) and β = (β0, β1, ..., βd2

) are
unknown parameters. Here ζ0 and β0 are intercepts. For n independent random
samples, denote Φ = (ζ⊺, β⊺, θ)⊺, the log-likelihood function is then given by

ℓZINB(Φ; y) =
∑

yi=0

log

[

pi + (1− pi)(
θ

µi + θ
)θ
]

+
∑

yi>0

log

[

(1− pi)
Γ(θ + yi)

Γ(yi + 1)Γ(θ)
(

µi

µi + θ
)yi(

θ

µi + θ
)θ
]

,

where µi = exp(B⊺

i β) and pi =
exp(G⊺

i
ζ)

1+exp(G⊺

i
ζ)
. The derivatives are given by:

∂ℓZINB(Φ; y)

∂ζj
=

∑

yi=0

∂pi

∂ζj
− ∂pi

∂ζj
( θ
µi+θ

)θ

pi + (1− pi)(
θ

µi+θ
)θ

−
∑

yi>0

∂pi
∂ζj

1

1− pi
,

∂ℓZINB(Φ; y)

∂βk

=
∑

yi=0

−(1− pi)
∂ui

∂βk

θ
(

θ
µi+θ

)θ

µi + θ

pi + (1− pi)(
θ

µi+θ
)θ

+
∑

yi>0

∂ui

∂βk

(
yi
µi

−
yi + θ

µi + θ
),

(16)

where
∂pi
∂ζj

=
Gij exp(G

⊺

i ζ)

(1 + exp(G⊺

i ζ))
2
,

∂ui

∂βk

= Bik exp(B
⊺

i β).

For variable selection, consider minimizing a penalized negative loss function:

pℓZINB(Φ; y) = −ℓ(Φ) + p(ζ, β), (17)

where p(ζ, β) is given by (3). The KKT conditions for a minimizer Φ̂ of

pℓZINB(Φ) can be derived. Therefore, for ζ̂j = 0, β̂k = 0, it must be:
∣

∣

∣

∣

∂ℓZINB(Φ; y)

∂ζj

∣

∣

∣

∣

≤ nα1λ1,

∣

∣

∣

∣

∂ℓZINB(Φ; y)

∂βk

∣

∣

∣

∣

≤ nα2λ2. (18)
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Denote λ1,max and λ2,max the smallest values of λ1 and λ2, respectively, such

that ζ̂j = 0, β̂k = 0, and (λ1,max, λ2,max) can be determined by (16), (18) and
the following quantities:

pi =
exp(ζ0)

1 + exp(ζ0)
,
∂pi
∂ζj

=
Gij exp(ζ0)

(1 + exp(ζ0))2
, µi = exp(β0),

∂ui

∂βk

= Bik exp(β0).

(19)
Consider an EM algorithm to optimize (17). Let zi = 1 if yi is from the zero state
and zi = 0 if yi is from the NB state. Since z = (z1, ..., zn)

T is not observable, it
is often treated as missing data. The EM algorithm is particularly attractive to
missing data problems. If complete data (y, z) are available, the complete data
log-likelihood function is given by

ℓcZINB(Φ; y) =

n
∑

i=1

{(ziG
⊺

i ζ − log(1 + exp(G⊺

i ζ)) + (1− zi) log(f(yi;β, θ))} ,

(20)
and the complete data penalized negative log-likelihood function is given by

pℓcZINB(Φ; y, z) = −ℓcZINB(Φ; y, z) + p(ζ, β),

where f(yi;β, θ) = Γ(θ+yi)
Γ(yi+1)Γ(θ) (

µi

µi+θ
)yi( θ

µi+θ
)θ and µi = exp(B⊺

i β). Taking

derivatives of (20), we obtain

∂ℓcZINB(Φ; y, z)

∂ζj
=

n
∑

i=1

{

ziGij −
exp(G⊺

i ζ)Gij

1 + exp(G⊺

i ζ)

}

,

∂ℓcZINB(Φ; y, z)

∂βk

=

n
∑

i=1

{

(1− zi)
∂ui

∂βk

(
yi
µi

−
yi + θ

µi + θ
)

}

.

(21)

The KKT conditions of a minimizer Φ̂ of ℓcZINB(Φ; y, z) can be derived. There-

fore, for ζ̂j = 0, β̂k = 0, it must be:

∣

∣

∣

∣

∂ℓcZINB(Φ; y)

∂ζj

∣

∣

∣

∣

≤ nα1λ1,

∣

∣

∣

∣

∂ℓcZINB(Φ; y)

∂βk

∣

∣

∣

∣

≤ nα2λ2. (22)

The conditional expectation of zi at iteration m is provided by

z
(m)
i =











(

1 + exp(−G⊺

i ζ
(m))

[

θ
exp(B⊺

i
β(m))+θ

]θ
)

−1

, if yi = 0

0, if yi > 0.

(23)

Let ζ(m) = ζ, β(m) = β, then (23) becomes

zi =











(

1 + exp(−G⊺

i ζ)
[

θ
exp(B⊺

i
β)+θ

]θ
)

−1

, if yi = 0

0, if yi > 0.

(24)

It is simple to show that the right hand side of (21) is the same as that of (16)
once (24) is plugged into (21). Hence, the KKT conditions (22) are the same as
(18) once (24) is plugged into (21). These connections offer a different method
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to derive (λ̂1,max, λ̂2,max) such that ζ̂j = 0, β̂k = 0 hold (Wang et al., 2015). We
first estimate ζ0, β0 for an intercept-only ZINB model, then (24) becomes

zi =











(

1 + exp(−ζ0)
[

θ
exp(β0)+θ

]θ
)

−1

, if yi = 0

0, if yi > 0.

(25)

Plugging in (25), (λ1,max, λ2,max) are computed based on (22). Furthermore, we

have shown that (λ1,max, λ2,max) = (λ̂1,max, λ̂2,max) holds.

References

Zhu Wang, Shuangge Ma, Ching-Yun Wang, Michael Zappitelli, Prasad De-
varajan, and Chirag Parikh. EM for regularized zero inflated regression
models with applications to postoperative morbidity after cardiac surgery
in children. Statistics in Medicine, 33(29):5192–5208, 2014. URL http:

//dx.doi.org/10.1002/sim.6314.

Zhu Wang, Shuangge Ma, and Ching-Yun Wang. Variable selection for zero-
inflated and overdispersed data with application to health care demand in
Germany. Biometrical Journal, 33(29):5192–208, 2015. URL http://dx.

doi.org/10.1002/bimj.201400143.

6

http://dx.doi.org/10.1002/sim.6314
http://dx.doi.org/10.1002/sim.6314
http://dx.doi.org/10.1002/bimj.201400143
http://dx.doi.org/10.1002/bimj.201400143

	Zero-inflated Poisson regression
	Zero-inflated negative binomial regression

