
Package ‘momentfit’
August 26, 2025

Version 1.0

Date 2025-08-25

Title Methods of Moments

Author Pierre Chausse [aut, cre]

Maintainer Pierre Chausse <pchausse@uwaterloo.ca>

Description Several classes for moment-based models are defined. The classes are defined for mo-
ment conditions derived from a single equation or a system of equations. The condi-
tions can also be expressed as functions or formulas. Several methods are also offered to facili-
tate the development of different estimation techniques. The methods that are currently pro-
vided are the Generalized method of moments (Hansen 1982; <doi:10.2307/1912775>), for sin-
gle equations and systems of equation, and the Generalized Empirical Likeli-
hood (Smith 1997; <doi:10.1111/j.0013-0133.1997.174.x>, Kita-
mura 1997; <doi:10.1214/aos/1069362388>, Newey and Smith 2004; <doi:10.1111/j.1468-
0262.2004.00482.x>, and Anatolyev 2005 <doi:10.1111/j.1468-
0262.2005.00601.x>). Some work is being done to add tools to deal with weak and/or many in-
struments. This includes K-Class estimators (Limited Information Maximum Likeli-
hood and Fuller), Anderson and Rubin statistic test, etc.

Depends R (>= 3.5), sandwich

Imports stats, methods, parallel

Suggests lmtest, knitr, texreg, rmarkdown, ivmodel, nloptr

Collate 'allClasses.R' 'validity.R' 'momentData.R'
'momentModel-methods.R' 'momentModel.R'
'momentWeights-methods.R' 'gmmfit-methods.R'
'specTest-methods.R' 'summary-methods.R' 'rModel-methods.R'
'hypothesisTest-methods.R' 'sysMomentModel.R'
'sysMomentModel-methods.R' 'rsysMomentModel-methods.R'
'sgmmfit-methods.R' 'gmm4.R' 'gel.R' 'gelfit-methods.R'
'gel4.R' 'weak.R' 'minAlgo.R' 'utils.R'

License GPL (>= 2)

NeedsCompilation yes

VignetteBuilder knitr

Repository CRAN

Date/Publication 2025-08-26 20:30:02 UTC

1

https://doi.org/10.2307/1912775
https://doi.org/10.1111/j.0013-0133.1997.174.x
https://doi.org/10.1214/aos/1069362388
https://doi.org/10.1111/j.1468-0262.2004.00482.x
https://doi.org/10.1111/j.1468-0262.2004.00482.x
https://doi.org/10.1111/j.1468-0262.2005.00601.x
https://doi.org/10.1111/j.1468-0262.2005.00601.x

2 Contents

Contents
algoObj . 4
allNLModel-class . 5
bread-methods . 6
CigarettesSW . 7
coef-methods . 8
confint-class . 9
confint-methods . 10
ConsumptionG . 12
Dresiduals-methods . 13
DWH-methods . 14
estfun-methods . 15
evalDMoment-methods . 16
evalGel-methods . 18
evalGelObj-methods . 19
evalGmm-methods . 20
evalGmmObj-methods . 21
evalMoment-methods . 22
evalWeights-methods . 23
formulaModel-class . 24
functionModel-class . 25
gel4 . 27
gelfit-class . 29
gelFit-methods . 30
getImpProb-methods . 31
getRestrict-methods . 31
gmm4 . 33
gmmfit-class . 36
gmmFit-methods . 37
Griliches . 40
HealthRWM . 41
hypothesisTest-class . 43
hypothesisTest-methods . 44
kclassfit . 47
kclassfit-class . 48
kernapply-methods . 49
Klein . 50
LabourCR . 51
lambdaAlgo . 52
linearModel-class . 54
lse-methods . 55
lsefit-class . 56
ManufactCost . 56
mconfint-class . 57
meatGmm-methods . 58
merge-methods . 59
minAlgo-class . 61

Contents 3

minAlgoNlm-class . 61
minAlgoStd-class . 62
minFit-methods . 63
model.matrix-methods . 64
modelDims-methods . 65
modelResponse-methods . 66
momentModel . 67
momentModel-class . 69
momentStrength-methods . 70
momentWeights-class . 71
momFct-methods . 72
Mroz . 72
nonlinearModel-class . 74
plot-methods . 75
print-methods . 76
printRestrict-methods . 77
quadra-methods . 78
regModel-class . 80
residuals-methods . 80
restModel-methods . 81
rformulaModel-class . 84
rfunctionModel-class . 85
rhoFct . 86
rlinearModel-class . 87
rmomentModel-class . 89
rnonlinearModel-class . 89
rslinearModel-class . 91
rsnonlinearModel-class . 92
rsysModel-class . 94
setCoef-methods . 94
sfunctionModel-class . 95
sgmmfit-class . 96
show-methods . 97
simData . 98
slinearModel-class . 99
snonlinearModel-class . 101
solveGel-methods . 102
solveGmm-methods . 103
specTest-class . 105
specTest-methods . 106
sSpec-class . 107
stsls-class . 108
summary-methods . 109
summaryGel-class . 110
summaryGmm-class . 111
summaryKclass-class . 112
summarySysGmm-class . 113
sysModel-class . 114

4 algoObj

sysMomentModel . 115
sysMomentWeights-class . 117
systemGmm-doc . 118
ThreeSLS-methods . 119
tsls-class . 120
tsls-methods . 121
update-methods . 122
vcov-methods . 123
vcovHAC-methods . 126
weakTest . 127
[-methods . 129

Index 131

algoObj Constructor for minAlgo classes

Description

This function creates an object that defines minimization solvers. The purpose is to homogenize the
call of optimization solvers. These objects can be used by the method minFit to call the associated
solvers using the same arguments, and to return the solution using a list with the same names.

Usage

algoObj(algo, start, fct, grad, solution, value, message, convergence)

Arguments

algo The name of the solver function to be called in character format. All arguments
for the solver optim, nlminb, constrOptim and nlm are determined automati-
cally. The other arguments are only needed for solvers coming from other pack-
ages.

start The name of the argument representing the starting value in character format.

fct The name of the argument representing the function to minimize in character
format.

grad The name of the argument representing the gradient in character format.

solution The name of the element of the list returned by the solver that represents the
solution, in character format.

value The name of the element of the list returned by the solver that represents the
value of the function at the solution, in character format.

message The name of the element of the list returned by the solver that represents the
convergence message, in character format.

convergence The name of the element of the list returned by the solver that represents the
convergence code, in character format.

allNLModel-class 5

Value

An object of class minAlgo.

See Also

minFit for examples on how to use this class object.

Examples

The optim algorithm:
algo1 <- algoObj("optim")

The nlminb algorithm:
algo2 <- algoObj("nlminb")

Defining the algorithm lbfgs from the nloptr package

Not run:
algo3 <- algoObj(algo="lbfgs", start="x0", fct="fn",

grad="gr", solution="par", value="value",
message="message", convergence="convergence")

End(Not run)

allNLModel-class Class "allNLModel"

Description

A union class for all nonlinear models. It includes "nonlinearModel", "formulaModel", and
"functionModel".

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

solveGmm signature(object = "allNLModel", wObj = "momentWeights"): ...

Examples

showClass("allNLModel")

6 bread-methods

bread-methods ~~ Methods for Function bread in Package sandwich ~~

Description

It computes the bread in the sandwich representation of the covariance matrix of the GMM estima-
tor.

Usage

S4 method for signature 'gmmfit'
bread(x, ...)

S4 method for signature 'sgmmfit'
bread(x, ...)

S4 method for signature 'tsls'
bread(x, ...)

Arguments

x GMM fit object
... Arguments to pass to other methods

Methods

signature(x = "gmmfit")

signature(x = "sgmmfit")

signature(x = "tsls")

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

res <- gmmFit(model1)
m <- meatGmm(res)
b <- bread(res)

Sandwich vcov
b

TSLS
model2 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="iid")
res <- tsls(model2)
bread(res)

CigarettesSW 7

CigarettesSW Cigarette Consumption Panel Data

Description

Panel data on cigarette consumption for the 48 continental US States from 1985–1995.

Usage

data("CigarettesSW")

Format

A data frame containing 48 observations on 7 variables for 2 periods.

state Factor indicating state.

year Factor indicating year.

cpi Consumer price index.

population State population.

packs Number of packs per capita.

income State personal income (total, nominal).

tax Average state, federal and average local excise taxes for fiscal year.

price Average price during fiscal year, including sales tax.

taxs Average excise taxes for fiscal year, including sales tax.

Source

Online complements to Stock and Watson (2007). The dataset and this help file comes from the
AER package.

References

Stock, J.H. and Watson, M.W. (2007). Introduction to Econometrics, 2nd ed. Boston: Addison
Wesley.

Christian Kleiber and Achim Zeileis (2008). Applied Econometrics with R. New York: Springer-
Verlag. ISBN 978-0-387-77316-2. URL https://CRAN.R-project.org/package=AER

Examples

Stock and Watson (2007)
data and transformations
data(CigarettesSW)
CigarettesSW$rprice <- with(CigarettesSW, price/cpi)
CigarettesSW$rincome <- with(CigarettesSW, income/population/cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax)/cpi)
c1985 <- subset(CigarettesSW, year == "1985")

8 coef-methods

c1995 <- subset(CigarettesSW, year == "1995")

Equation 12.15
model1 <- momentModel(log(packs)~log(rprice)+log(rincome),

~log(rincome)+tdiff, data = c1995, vcov="MDS")
res1 <- gmmFit(model1)

HC0 robust se (different from the textbook)
summary(res1, sandwich=TRUE)

HC1 robust se (like in the textbook)
A little harder to get, but is it really worth it
in the case of GMM?

summary(res1, sandwich=TRUE, df.adj=TRUE)@coef

Equation 12.16
model2<- momentModel(log(packs)~log(rprice)+log(rincome),

~log(rincome)+tdiff+I(tax/cpi), data = c1995,
centeredVcov=FALSE, vcov="MDS")

res2<- tsls(model2)
summary(res2, sandwich=TRUE, df.adj=TRUE)

Table 12.1
data <- data.frame(dQ=log(c1995$pack/c1985$pack),

dP=log(c1995$rprice/c1985$rprice),
dTs=c1995$tdiff-c1985$tdiff,
dT=c1995$tax/c1995$cpi-c1985$tax/c1985$cpi,
dInc=log(c1995$rincome/c1985$rincome))

model1 <- momentModel(dQ~dP+dInc, ~dInc+dTs, vcov="MDS", data=data)
model2 <- momentModel(dQ~dP+dInc, ~dInc+dT, vcov="MDS", data=data)
model3 <- momentModel(dQ~dP+dInc, ~dInc+dTs+dT, vcov="MDS", data=data)

res1 <- tsls(model1)
summary(res1, TRUE, TRUE)
res2 <- tsls(model2)
summary(res2, TRUE, TRUE)
res3 <- tsls(model3)
summary(res3, TRUE, TRUE)

coef-methods ~~ Methods for Function coef in Package stats ~~

Description

It extract the coefficient estimates of some moment-based models.

Methods

signature(object = "gmmfit")

confint-class 9

signature(object = "gelfit")

signature(object = "sgmmfit")

signature(object = "momentModel")

signature(object = "rlinearModel") It gives the unrestricted representation of a restricted model.
See examples.

signature(object = "rslinearModel") It gives the unrestricted representation of a restricted
model.

signature(object = "rsnonlinearModel") It gives the unrestricted representation of a restricted
model.

signature(object = "rfunctionModel") It gives the unrestricted representation of a restricted
model. See examples.

signature(object = "rformulaModel") It gives the unrestricted representation of a restricted
model. See examples.

signature(object = "rnonlinearModel") It gives the unrestricted representation of a restricted
nonlinear model.

Examples

data(simData)
model1 <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)
res1 <- gmmFit(model1)
coef(res1)

Restricted models
rmodel1 <- restModel(model1, R=c("x1=1", "x2=2*x3"))
res2 <- gmmFit(rmodel1)
res2
coef(rmodel1, coef(res2))

confint-class Class "confint"

Description

A class to store a confidence interval result.

Objects from the Class

Objects can be created by calls of the form new("confint", ...). It is generated by the "confint"
method (see confint-methods).

Slots

interval: Object of class "matrix" ~~
type: Object of class "character" ~~
level: Object of class "numeric" ~~
theta: Object of class "numeric" ~~

10 confint-methods

Methods

print signature(x = "confint"): ...

show signature(object = "confint"): ...

Examples

showClass("confint")

confint-methods ~~ Methods for Function confint in Package stats ~~

Description

Method to contruct confidence intervals for objects of class "gmmfit" and "gelfit".

Usage

S4 method for signature 'gmmfit'
confint(object, parm, level = 0.95, vcov=NULL,

area=FALSE, npoints=50, ...)

S4 method for signature 'gelfit'
confint(object, parm, level = 0.95, lambda = FALSE,

type = c("Wald", "invLR", "invLM", "invJ"),
fact = 3, corr = NULL, vcov=NULL,
area = FALSE, npoints = 20, cores=4, ...)

S4 method for signature 'numeric'
confint(object, parm, level = 0.95, gelType="EL",

type = c("Wald", "invLR", "invLM", "invJ"),
fact = 3, vcov="iid", BartlettCorr = FALSE)

S4 method for signature 'data.frame'
confint(object, parm, level = 0.95, gelType="EL",

type = c("Wald", "invLR", "invLM", "invJ"),
fact = 3, corr = NULL, vcov="iid", npoints=10,
cores=4)

S4 method for signature 'matrix'
confint(object, parm, level = 0.95, gelType="EL",

type = c("Wald", "invLR", "invLM", "invJ"),
fact = 3, corr = NULL, vcov="iid", npoints=10,
cores=4)

S4 method for signature 'ANY'
confint(object, parm, level = 0.95, ...)

confint-methods 11

Arguments

object Object of class "gmmfit", "gelfit", "numeric" or "data.frame".

parm Vector of integers or characters for selecting the elements for which the intervals
should be computed.

level The confidence level.

lambda Should be compute intervals for the Lagrange multipliers?

type The type of confidence intervals. The default is the Wald interval, and the others
are computed by inverting the LR, LM or J specification test.

fact For the inversion of the specification tests, uniroot searches within fact stan-
dard error of the coefficient estimates

corr Correction to apply to the specification tests

vcov For Wald intervals, an optional covariance matrix can be provided. For "numeric"
or "data.frame", it specifies the type of observations.

cores The number of cores for mclapply. It is set to 1 for Windows OS.

gelType Type of GEL confidence interval.

npoints Number of equally spaced points for the confidence region

area If TRUE, a cnnfidence region is computed. The length of "parm" must be 2 in
that case.

BartlettCorr Should we apply the Bartlett correction proposed by DiCiccio et all (1991).
Currently only available for intervals on the mean.

... Other arguments to pass to gmmFit or gelFit.

Methods

signature(object = "ANY") The method from the stats in used in that case.

signature(object = "gelfit") Method for any GEL fit class.

signature(object = "gmmfit") Method for any GMM fit class.

signature(object = "numeric") It computes the GEL confidence interval for the mean.

signature(object = "data.frame") It computes the 2D GEL confidence region for the means
of two variables.

signature(object = "matrix") It converts the object into a data.frame and call its method.

References

DiCiccio, T. and Hall, P. and Romano, J. (1991), Empirical Likelihood is Bartlett Correctable, The
Annals of Statistics, 19, 2, 1053–1061.

12 ConsumptionG

ConsumptionG Consumption data from Greene (2012) applications.

Description

Quarterly macroeconomic US data from 1950 to 2000.

Usage

data("ConsumptionG")

Format

A data frame with 204 observations on the following 14 variables.

YEAR Year

QTR Quarter

REALGDP Read GDP

REALCONS Real Consumption

REALINVS Real Investment

REALGOVT Real public expenditure

REALDPI ector

CPI_U CPI

M1 Money stock

TBILRATE Interest rate

UNEMP Unemployment rate

POP Population

INFL Inflation

REALINT Real interest rate.

Source

Greene (2012) online resources: (http://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm)

References

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

Dresiduals-methods 13

Examples

data(ConsumptionG)
Get the data ready for Table 8.2 of Greene (2012)
Y <- ConsumptionG$REALDPI
C <- ConsumptionG$REALCONS
n <- nrow(ConsumptionG)
Y1 <- Y[-c(1,n)]; Y2 <- Y[-c(n-1,n)]; Y <- Y[-c(1:2)]
C1 <- C[-c(1,n)]; C <- C[-(1:2)]
dat <- data.frame(Y=Y,Y1=Y1,Y2=Y2,C=C,C1=C1)

Starting at the NLS estimates (from the table)
theta0=c(alpha=468, beta=0.0971, gamma=1.24)

Greene (2012) seems to assume iid errors (probably wrong assumption here)
model <- momentModel(C~alpha+beta*Y^gamma, ~C1+Y1+Y2, data=dat, theta0=theta0, vcov="iid")

Scaling the parameters increase the speed of convergence
res <- gmmFit(model, control=list(parscale=c(1000,.1,1)))

It also seems that there is a degree of freedom adjustment for the
estimate of the variance of the error term.
summary(res, df.adj=TRUE)@coef

Dresiduals-methods ~~ Methods for Function Dresiduals in Package Gmm ~~

Description

It returns the matrix of derivatives of the residuals with respect to the coefficients.

Methods

signature(object = "linearModel")

signature(object = "nonlinearModel")

signature(object = "rsnonlinearModel")

signature(object = "sysMomentModel")

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

Dresiduals(model1, theta)[1:3,]

14 DWH-methods

DWH-methods ~~ Methods for Function DWH in Package momentfit ~~

Description

It performs the Durbin-Wu-Hausman test on GMM fit models.

Usage

S4 method for signature 'gmmfit,missing'
DWH(object1, object2)

S4 method for signature 'gmmfit,lm'
DWH(object1, object2,
tol=sqrt(.Machine$double.eps), v1=NULL, v2=NULL, ...)

S4 method for signature 'gmmfit,gmmfit'
DWH(object1, object2,
tol=sqrt(.Machine$double.eps), v1=NULL, v2=NULL, ...)

Arguments

object1 Object of class "gmmfit".

object2 Object of class "gmmfit" or "lm". If missing, the DWH test is a two step test
in which the fitted endogenous variables from the first step are added to the
regression. In that case, the test a a test of significance of the coefficients of the
fitted endogenous variables.

v1 Alternatively, we can provide a different covariance matrix for object1

v2 Alternatively, we can provide a different covariance matrix for object2

tol Tolerance for the Moore-Penrose generalized inverse

... Argument to pass to vcov

Methods

signature(object1 = "gmmfit", object2 = "lm")

signature(object1 = "gmmfit", object2 = "gmmfit")

signature(object1 = "gmmfit", object2 = "missing")

References

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

estfun-methods 15

Examples

Exampe 8.7 of Greene (2012)
data(ConsumptionG)
Y <- ConsumptionG$REALDPI
C <- ConsumptionG$REALCONS
n <- nrow(ConsumptionG)
Y1 <- Y[-n]; Y <- Y[-1]
C1 <- C[-n]; C <- C[-1]
dat <- data.frame(Y=Y,Y1=Y1,C=C,C1=C1)

model1 <- momentModel(C~Y, ~Y, data=dat, vcov="iid")
model2 <- momentModel(C~Y, ~Y1+C1, data=dat, vcov="iid")
res1 <- tsls(model1)
res2 <- tsls(model2)
res <- lm(C~Y)

Exampke 8.7-2. The difference is explained by the rounding
error in Greene. Only the first the 3 digits of the t-test are used.
DWH(res2)

Example 8.7-1. Not quite the same.
DWH(res2, res1)

using lm object to compare OLS and 2SLS:
The same adjustment on the vcov must be done (it is by default in lm)
otherwise the different in the covariance matrices is mostly caused by the
different ways to compute them.
DWH(res2, res, df.adj=TRUE)

To reproduce the same results as Exampke 8.7-1,
we need to specify the variance.
But it is not necessary as the above way is
asymptotically equivalent
X <- model.matrix(model1)
Xhat <- qr.fitted(res2@wObj@w, X)
s2 <- sum(residuals(res)^2)/(res$df.residual)
v1 <- solve(crossprod(Xhat))*s2
v2 <- solve(crossprod(X))*s2
DWH(res2, res, v1=v1, v2=v2)

estfun-methods ~~ Methods for Function estfun in Package sandwich ~~

Description

Estimating equations for moment models.

16 evalDMoment-methods

Methods

signature(x = "momentModel")

evalDMoment-methods ~~ Methods for Function evalDMoment in Package momentfit ~~

Description

It computes the matrix of derivatives of the sample moments with respect to the coefficients.

Usage

S4 method for signature 'functionModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'rfunctionModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'rnonlinearModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'formulaModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'rformulaModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'regModel'
evalDMoment(object, theta, impProb=NULL,
lambda=NULL)

S4 method for signature 'sysModel'
evalDMoment(object, theta)

S4 method for signature 'rslinearModel'
evalDMoment(object, theta)

S4 method for signature 'rsnonlinearModel'
evalDMoment(object, theta, impProb=NULL)

evalDMoment-methods 17

Arguments

object An model object

theta A numerical vector of coefficients

impProb If a vector of implied probablities is provided, the sample means are computed
using them. If not provided, the means are computed using the uniform weight

lambda A vector of Lagrange multipliers associated with the moment conditions. Its
length must therefore match the number of conditions. See details below.

Details

Without the argument lambda, the method returns a q × k matrix, where k is the number of coeffi-
cients, and q is the number of moment conditions. That matrix is the derivative of the sample mean
of the moments with respect to the coefficient.

If lambda is provided, the method returns an n× k matrix, where n is the sample size. The ith row
is G′

iλ, where G_i is the derivative of the moment function evaluated at the ith observation. For
now, this option is used to compute robust-to-misspecified standard errors of GEL estimators.

Methods

signature(object = "functionModel")

signature(object = "rfunctionModel") The theta vector must match the number of coeffi-
cients in the restricted model.

signature(object = "formulaModel")

signature(object = "rformulaModel") The theta vector must match the number of coefficients
in the restricted model.

signature(object = "regModel")

signature(object = "sysModel")

signature(object = "rslinearModel")

Examples

data(simData)
theta <- c(1,1)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
G <- evalDMoment(model1, theta)

A nonlinearModel
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
G <- evalDMoment(model2, c(beta0=1, beta1=2))

A functionModel
fct <- function(tet, x)

{
m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)

18 evalGel-methods

m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)

}
dfct <- function(tet, x)

{
jacobian <- matrix(c(1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],

-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}

X <- rnorm(200)
model3 <- momentModel(fct, X, theta0=c(beta0=1, beta1=2), grad=dfct)
G <- evalDMoment(model3, c(beta0=1, beta1=2))

evalGel-methods ~~ Methods for Function evalGel in Package modelfit ~~

Description

Method to simply evaluate a GEL model at a fixed coefficient vector. It creates a "gelfit" object
using that fixed vector.

Usage

S4 method for signature 'momentModel'
evalGel(model, theta, lambda=NULL,

gelType="EL", rhoFct=NULL,
lamSlv=NULL, lControl=list(), ...)

Arguments

model An object of class "momentModel".

theta A vector of coefficients at which the model is estimated

lambda The Lagrange multiplier vector. If not provided, the optimal vector is obtained
for the given theta

gelType The type of GEL. It is either "EL", "ET", "EEL", "HD", "ETEL" or "ETHD".

rhoFct An alternative objective function for GEL. This argument is only used if we
want to fit the model with a different GEL method. see rhoFct.

lamSlv An alternative solver for the Lagrange multiplier. By default, either Wu_lam,
EEL_lam, REEL_lam or getLambda is used.

lControl A list of controls for the Lagrange multiplier algorithm.

... Other arguments to pass. Not used for the moment.

Methods

signature(model = "momentModel")

evalGelObj-methods 19

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

A linear model with optimal lambda
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
evalGel(model1, c(1,1))

A nonlinear model with fixed lambda
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
evalGel(model2, theta=c(beta1=2, beta0=0.5), lambda=c(.1,.2,.3), gelType="ET")

evalGelObj-methods ~~ Methods for Function evalGelObj in Package Gmm ~~

Description

~~ Methods to compute the GEL objective function. ~~

Usage

S4 method for signature 'momentModel,numeric,numeric'
evalGelObj(object, theta,

lambda, gelType,
rhoFct=NULL, ...)

Arguments

object An object of class "momentModel"

theta The vector for coefficients.

lambda Vector of Lagrange multiplier.

gelType The type of GEL. It is either "EL", "ET", "EEL", "HD", "ETEL" or "ETHD".

rhoFct An alternative objective function for GEL. This argument is only used if we
want to fit the model with a different GEL method. see rhoFct.

... Arguments to pass to other methods

Methods

signature(object = "momentModel", theta = "numeric", lambda = "numeric")

20 evalGmm-methods

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
evalGelObj(model1, theta, c(.2,.3,.4), gelType="EL")

evalGmm-methods ~~ Methods for Function evalGmm in Package modelfit ~~

Description

Method to simply evaluate a GMM model at a fixed coefficient vector. It creates a "gmmfit" object
using that fixed vector.

Usage

S4 method for signature 'momentModel'
evalGmm(model, theta, wObj=NULL, ...)
S4 method for signature 'sysModel'
evalGmm(model, theta, wObj=NULL, ...)

Arguments

model An object of class "momentModel".

theta A vector of coefficients at which the model is estimated

wObj An object of class "momentWeights". If not provided, the optimal weights based
on the specification of the model evaluated at theta will be computed.

... Other arguments to pass. Not used for the moment.

Methods

signature(model = "momentModel")

signature(model = "sysModel")

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

A linear model
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
evalGmm(model1, c(1,1))

A nonlinear model
g <- y~beta0+x1^beta1

evalGmmObj-methods 21

h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
evalGmm(model2, theta=c(beta1=2, beta0=0.5))

A function model
fct <- function(tet, x)

{
m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)
m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)

}
dfct <- function(tet, x)

{
jacobian <- matrix(c(1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],

-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}

model3 <- momentModel(fct, simData$x3, theta0=c(beta0=1, beta1=2), grad=dfct)
evalGmm(model3, theta=c(beta1=.1, beta0=0.3))

evalGmmObj-methods ~~ Methods for Function evalGmmObj in Package momentfit ~~

Description

~~ Methods to compute the GMM objective function. ~~

Usage

S4 method for signature 'momentModel,numeric,momentWeights'
evalGmmObj(object, theta,
wObj, ...)

S4 method for signature 'sysModel,list,sysMomentWeights'
evalGmmObj(object, theta,
wObj, ...)

Arguments

object An object of class "momentModel", or "sysMomentModels".

theta The vector for coefficients for single equation, or a list of vector for system of
equations.

wObj An object of class "momentWeights" or "sysMomentWeights".

... Arguments to pass to other methods

22 evalMoment-methods

Methods

signature(object = "momentModel", theta = "numeric", wObj = "momentWeights")

signature(object = "sysModel", theta = "list", wObj = "sysMomentWeights")

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
w <- evalWeights(model1, theta)
evalGmmObj(model1, theta, w)

evalMoment-methods ~~ Methods for Function evalMoment in Package momentfit ~~

Description

Method to evaluate the moment matrix at a given coefficient vector.

Methods

signature(object = "functionModel")

signature(object = "formulaModel")

signature(object = "regModel")

signature(object = "sysModel")

signature(object = "rsysModel")

Examples

data(simData)
theta <- c(1,1)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
gt <- evalMoment(model1, theta)

A nonlinearGmm
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
gt <- evalMoment(model2, c(beta0=1, beta1=2))

A functionGmm
fct <- function(tet, x)

{
m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)

evalWeights-methods 23

m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)

}
dfct <- function(tet, x)

{
jacobian <- matrix(c(1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],

-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}

X <- rnorm(200)
model3 <- momentModel(fct, X, theta0=c(beta0=1, beta1=2), grad=dfct)
gt <- evalMoment(model3, c(beta0=1, beta1=2))

evalWeights-methods Methods for Function evalWeights in Package Gmm

Description

This is a constructor for objects of class momentWeights

Usage

S4 method for signature 'momentModel'
evalWeights(object, theta=NULL, w="optimal",
...)

S4 method for signature 'sysModel'
evalWeights(object, theta = NULL, w="optimal",
wObj=NULL)

S4 method for signature 'rslinearModel'
evalWeights(object, theta = NULL, w="optimal",
wObj=NULL)

Arguments

object Object of class momentModel

theta The vector of coefficients to compute the optimal weights. If NULL, theta0 for
the object is used.

w A matrix for fixed weights, one of "optimal" or "ident"

wObj An object of class "sysMomentWeights". Providing it avoid having to recom-
pute Z’Z.

... Arguments to pass to other methods

24 formulaModel-class

Methods

signature(object = "momentModel")

signature(object = "sysModel")

signature(object = "rslinearModel") System of equations with restrictions on the coefficients.
It only affects the computation of the weights when there are cross-equation restrictions.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

Identity weights object
wObj1 <- evalWeights(model1, w="ident")

Identity weights object (an alternative way less efficient)
wObj1 <- evalWeights(model1, w=diag(3))

Optimal weights
wObj1 <- evalWeights(model1, theta, w="optimal")

formulaModel-class Class "formulaModel"

Description

Class for moment-based models for which moments are expressed using formulas.

Objects from the Class

Objects can be created by calls of the form new("formulaModel", ...). It is generated my
momentModel.

Slots

modelF: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

functionModel-class 25

fRHS: Object of class "list" ~~

fLHS: Object of class "list" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

isMDE: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "allNLModel", directly. Class "momentModel", directly.

Methods

[signature(x = "formulaModel", i = "numeric", j = "missing"): ...

evalDMoment signature(object = "formulaModel"): ...

evalMoment signature(object = "formulaModel"): ...

gmmFit signature(model = "formulaModel"): ...

modelDims signature(object = "formulaModel"): ...

momentStrength signature(object = "formulaModel"): ...

restModel signature(object = "formulaModel"): ...

subset signature(x = "formulaModel"): ...

Examples

showClass("formulaModel")

functionModel-class Class "functionModel"

Description

Class for moment-based models for which moment conditions are defined using a function.

Objects from the Class

Objects can be created by calls of the form new("functionModel", ...). It is generated my
momentModel.

26 functionModel-class

Slots

X: Object of class "ANY" ~~

fct: Object of class "function" ~~

dfct: Object of class "functionORNULL" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "allNLModel", directly. Class "momentModel", directly.

Methods

[signature(x = "functionModel", i = "numeric", j = "missing"): ...

evalDMoment signature(object = "functionModel"): ...

evalMoment signature(object = "functionModel"): ...

modelDims signature(object = "functionModel"): ...

momentStrength signature(object = "functionModel"): ...

restModel signature(object = "functionModel"): ...

subset signature(x = "functionModel"): ...

Examples

showClass("functionModel")

gel4 27

gel4 GEL estimation

Description

The main functions and methods to fit any model with GEL. As opposed to gelFit, models don’t
need to be created. It is all done by the functions. It is meant to be more user friendly.

Usage

gel4(g, x=NULL, theta0=NULL,lambda0=NULL, getVcov=FALSE,
gelType = c("EL","ET","EEL","HD", "REEL","ETEL","ETHD"),
vcov = c("MDS","iid","HAC"), grad=NULL,
vcovOptions=list(), centeredVcov = TRUE,
cstLHS=NULL, cstRHS=NULL, lamSlv=NULL,
rhoFct=NULL, initTheta=c("gmm", "theta0"),
data = parent.frame(),
coefSlv=c("optim","nlminb","constrOptim"),
smooth=FALSE,
lControl=list(), tControl=list())

Arguments

g A function of the form g(θ, x) and which returns a n × q matrix with typical
element gi(θ, xt) for i = 1, ...q and t = 1, ..., n. This matrix is then used to
build the q sample moment conditions. It can also be a formula if the model is
linear (see detailsbelow).

x The matrix or vector of data from which the function g(θ, x) is computed. If
"g" is a formula, it is an n×Nh matrix of instruments or a formula (see details
below).

theta0 A k × 1 vector of starting values. It is required only when "g" is a function,
a formula or a list of formulas. For these cases, they are needed to create the
"momentModel" object.

lambda0 The q × 1 vector of starting values for the Lagrange multipliers. By default a
zero vector is used.

getVcov Should the method computes the covariance matrices of the coefficients and
Lagrange multipliers.

gelType A character string specifying the type of GEL.

vcov Assumption on the properties of the moment conditions.

grad A function of the form G(θ, x) which returns a q × k matrix of derivatives of
ḡ(θ) with respect to θ.

vcovOptions A list of options for the covariance matrix of the moment conditions. See
vcovHAC for the default values.

28 gel4

centeredVcov Should the moment function be centered when computing its covariance matrix.
Doing so may improve inference.

cstLHS The left hand side of the constraints to impose on the coefficients. See restModel
for more details.

cstRHS The right hand side of the constraints to impose on the coefficients. See restModel
for more details.

lamSlv An alternative solver for the Lagrange multiplier. By default, either Wu_lam,
EEL_lam, REEL_lam or getLambda is used. See the vignette for the required
format.

rhoFct An optional function that return ρ(v). This is for users who want a GEL model
that is not built in the package. The four arguments of the function must be
"gmat", the matrix of moments, "lambda", the vector of Lagrange multipliers,
"derive", which specify the order of derivative to return, and k a numeric scale
factor required for time series and kernel smoothed moments.

initTheta Method to obtain the starting values for the coefficient vector. By default the
GMM estimate with identity matrix is used. The second argument means that
"theta0" is used instead.

data A required data.frame, in which all variables in g and x can be found.

smooth If TRUE, "vcov" is set to "MDS" and the moment conditions are smoothed using
a kernel. See the vignette for more details.

coefSlv Minimization solver for the coefficient vector.

lControl A list of controls for the Lagrange multiplier algorithm.

tControl A list of controls for the coefficient algorithm.

Value

It returns an object of class "gelfit"

References

Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73,
983-1002.

Andrews DWK (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Esti-
mation. Econometrica, 59, 817–858.

Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The
Annals of Statistics, 25, 2084-2102.

Kitamura, Y. and Otsu, T. and Evdokimov, K. (2013), Robustness, Infinitesimal Neighborhoods and
Moment Restrictions. Econometrica, 81, 1185-1201.

Newey, W.K. and Smith, R.J. (2004), Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators. Econometrica, 72, 219-255.

Smith, R.J. (2004), GEL Criteria for Moment Condition Models. Working paper, CEMMAP.

See Also

gelFit, momentModel

gelfit-class 29

Examples

data(simData)
res <- gel4(y~x1, ~z1+z2, vcov="MDS", gelType="ET", data=simData)
res

gelfit-class Class "gelfit"

Description

A class to store fitted models obtained using a GEL method.

Objects from the Class

Objects can be created by calls of the form new("gelfit", ...). It is created by gelFit.

Slots

theta: Object of class "numeric" ~~

convergence: Object of class "numeric" ~~

lambda: Object of class "numeric" ~~

lconvergence: Object of class "numeric" ~~

call: Object of class "callORNULL" ~~

gelType: Object of class "list" ~~

vcov: Object of class "list" ~~

model: Object of class "momentModel" ~~

restrictedLam: Object of class "integer" ~~

argsCall: Object of class "list" ~~

Methods

coef signature(object = "gelfit"): ...

confint signature(object = "gelfit"): ...

getImpProb signature(object = "gelfit"): ...

momFct signature(eta = "numeric", object = "gelfit"): ...

print signature(x = "gelfit"): ...

residuals signature(object = "gelfit"): ...

show signature(object = "gelfit"): ...

specTest signature(object = "gelfit", which = "missing"): ...

summary signature(object = "gelfit"): ...

update signature(object = "gelfit"): ...

vcov signature(object = "gelfit"): ...

30 gelFit-methods

Examples

showClass("gelfit")

gelFit-methods ~~ Methods for Function gelFit in Package momentfit ~~

Description

Method to fit a model using GEL, from an object of class "momentModel" or its restricted counter-
part.

Usage

S4 method for signature 'momentModel'
gelFit(model, gelType="EL", rhoFct=NULL,

initTheta=c("gmm", "modelTheta0"), theta0=NULL,
lambda0=NULL, vcov=FALSE, ...)

S4 method for signature 'rmomentModel'
gelFit(model, gelType="EL", rhoFct=NULL,

initTheta=c("gmm", "modelTheta0"), theta0=NULL,
lambda0=NULL, vcov=FALSE, ...)

Arguments

model A model class object

gelType The type of GEL. It is either "EL", "ET", "EEL", "HD", "ETEL" or "ETHD".

rhoFct An alternative objective function for GEL. This argument is only used if we
want to fit the model with a different GEL method. see rhoFct.

initTheta Method to obtain the starting values for the coefficient vector. By default the
GMM estimate with identity matrix is used. The second argument means that
the theta0 of the object, if any, should be used.

theta0 An optional initial vector for optim when the model is nonlinear. If provided,
the argument "initTheta" is ignored.

lambda0 Manual starting values for the Lagrange multiplier. By default, it is a vector of
zeros.

vcov Should the method computes the covariance matrices of the coefficients and
Lagrange multipliers.

... Arguments to pass to other methods (mostly the optimization algorithm)

Methods

signature(model = "momentModel") The main method for all moment-based models.

signature(model = "rmomentModel") The main method for all restricted moment-based models.

getImpProb-methods 31

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

EL estimate
res1 <- gelFit(model1)
res1

ET estimate
res2 <- gelFit(model1, gelType="ET")
res2

Restricted models by EL
using the Brent method
R <- matrix(c(0,1), ncol=2)
q <- 2
rmodel1 <- restModel(model1, R, q)
gelFit(rmodel1, tControl=list(method="Brent", lower=-10, upper=10))

getImpProb-methods ~~ Methods for Function getImpProb in Package momenfit ~~

Description

Method to evaluate the implied probabilities of GEL.

Methods

signature(object = "gelfit")

getRestrict-methods ~~ Methods for Function getRestrict in Package momentfit ~~

Description

It computes the matrices related to linear and nonlinear contraints. Those matrices are used to
perform hypothesis tests.

32 getRestrict-methods

Usage

S4 method for signature 'rlinearModel'
getRestrict(object, theta)

S4 method for signature 'rslinearModel'
getRestrict(object, theta)

S4 method for signature 'rsnonlinearModel'
getRestrict(object, theta)

S4 method for signature 'rnonlinearModel'
getRestrict(object, theta)

S4 method for signature 'rformulaModel'
getRestrict(object, theta)

S4 method for signature 'momentModel'
getRestrict(object, theta, R, rhs=NULL)

S4 method for signature 'sysModel'
getRestrict(object, theta, R, rhs=NULL)

S4 method for signature 'rfunctionModel'
getRestrict(object, theta)

Arguments

object Object of class included in momentModel, rmomentModel, and rsysModel.

theta A vector of coefficients for the unrestricted model (see examples).

R A matrix, character or list of formulas that specifies the contraints to impose on
the coefficients. See restModel for more details.

rhs The right hand side for the restriction on the coefficients. See restModel for
more details. It is ignored for objects of class "nonlinearModel".

Methods

signature(object = "momentModel") A restricted model is created from the constraints, and the
restriction matrices are returned. The methods is applied to linear and nonlinear models in a
regression form.

signature(object = "sysModel") A restricted model is created from the constraints, and the
restriction matrices are returned. The methods is applied to systems of linear and nonlinear
models.

signature(object = "rlinearModel") The restriction matrices are evaluated at the coefficient
vector theta of the unrestricted representation.

signature(object = "rslinearModel") The restriction matrices are evaluated at the coefficient
vector theta of the unrestricted representation.

gmm4 33

signature(object = "rsnonlinearModel") The restriction matrices are evaluated at the coeffi-
cient vector theta of the unrestricted representation.

signature(object = "rnonlinearModel") The restriction matrices are evaluated at the coeffi-
cient vector theta of the unrestricted representation.

signature(object = "rfunctionModel") The restriction matrices are evaluated at the coefficient
vector theta of the unrestricted representation.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)

The restricted model
R1 <- c("x1","2*x2+z1=2", "4+x3*5=3")
res <- gmmFit(model1)
rest <- getRestrict(model1, coef(res), R1)

it allows to test the restriction
g <- rest$R-rest$q
v <- rest$dR%*%vcov(res)%*%t(rest$dR)
(test <- crossprod(g, solve(v, g)))
(pv <- 1-pchisq(test, length(rest$R)))

Delta Method:
To impose nonlinear restrictions, we need to convert
the linear model into a nonlinear one
NLmodel <- as(model1, "nonlinearModel")
R1 <- c("theta2=2", "theta3=theta4^2")
res <- gmmFit(NLmodel)
rest <- getRestrict(NLmodel, coef(res), R1)

g <- rest$R-rest$q
v <- rest$dR%*%vcov(res)%*%t(rest$dR)
(test <- crossprod(g, solve(v, g)))
(pv <- 1-pchisq(test, length(rest$R)))

See hypothesisTest method for an easier approach.

gmm4 GMM estimation

Description

The main functions and methods to fit any model with GMM. As opposed to gmmFit, models don’t
need to be created. It is all done by the functions. It is meant to be more user friendly. This
document needs to changed. It is just a copy and paste from the gmm package

34 gmm4

Usage

gmm4(g, x, theta0 = NULL, grad = NULL,
type = c("twostep", "iter", "cue", "onestep"),
vcov = c("iid", "HAC", "MDS", "TrueFixed", "CL"),
initW = c("ident", "tsls", "EbyE"), weights = "optimal",
itermaxit = 50, cstLHS=NULL, cstRHS=NULL,
vcovOptions=list(), survOptions=list(),
itertol = 1e-07, centeredVcov = TRUE,
data = parent.frame(), ...)

S4 method for signature 'formula'
tsls(model, x, vcov = c("iid", "HAC", "MDS", "CL"),

vcovOptions=list(), survOptions=list(), centeredVcov = TRUE,
data = parent.frame())

S4 method for signature 'list'
tsls(model, x=NULL, vcov = c("iid", "HAC", "MDS",

"CL"), vcovOptions=list(), survOptions=list(),
centeredVcov = TRUE, data = parent.frame())

S4 method for signature 'list'
ThreeSLS(model, x=NULL, vcov = c("iid", "HAC", "MDS",

"CL"), vcovOptions=list(), survOptions=list(),
centeredVcov = TRUE, data = parent.frame())

Arguments

model A formula or a list of formulas.

g A function of the form g(θ, x) and which returns a n × q matrix with typical
element gi(θ, xt) for i = 1, ...q and t = 1, ..., n. This matrix is then used to
build the q sample moment conditions. It can also be a formula if the model is
linear or nonlinear, or a list of formulas for systems of equations.

x The matrix or vector of data from which the function g(θ, x) is computed. If
"g" is a formula, it is an n×Nh matrix of instruments or a formula (see details
below).

theta0 A k × 1 vector of starting values. It is required only when "g" is a function or
a nonlinear equation defined by a formula, in which case, it must be a named
vector

grad A function of the form G(θ, x) which returns a q×k matrix of derivatives of ḡ(θ)
with respect to θ. By default, the numerical algorithm numericDeriv is used.
It is of course strongly suggested to provide this function when it is possible.
This gradient is used to compute the asymptotic covariance matrix of θ̂ and to
obtain the analytical gradient of the objective function if the method is set to
"CG" or "BFGS" in optim and if "type" is not set to "cue". If "g" is a formula,
the gradiant is not required (see the details below).

type What GMM methods should we use? for type=="onestep", if "weights" is
not a matrix, the model will be estimated with the weights equals to the identity

gmm4 35

matrix
vcov Assumption on the properties of the random vector x. By default, x is a weakly

dependant process. The "iid" option will avoid using the HAC matrix which will
accelerate the estimation if one is ready to make that assumption. The option
"TrueFixed" is used only when the matrix of weights is provided and it is the
optimal one. For type CL, clustered covariance matrix is computed. The options
are then included in vcovOptions (see meatCL).

initW How should be compute the initial coefficient vector in the first. It only makes a
difference for linear models for which the choice is GMM with identity matrix
or two-stage least quares.

weights What weighting matrix to use? The choices are "optimal", in which case it is
the inverse of the moment vovariance matrix, "ident" for the identity matrix,
or a fixed matrix.

itermaxit Maximum iterations for iterative GMM
itertol Tolance for the stopping rule in iterative GMM
centeredVcov Should the moment function be centered when computing its covariance matrix.

Doing so may improve inference.
data A data.frame or a matrix with column names (Optional).
cstLHS The left hand side of the constraints to impose on the coefficients. See restModel

for more details.
cstRHS The right hand side of the constraints to impose on the coefficients. See restModel

for more details.
vcovOptions A list of options for the covariance matrix of the moment conditions. See

vcovHAC for the default values.
survOptions If needed, a list with the type of survey weights and the weights as a numeric

vector, data.frame or formula. The type is either "sampling" or "fequency".
... Arguments to pass to optim when the model is nonlinear.

Value

It returns an object of class "gmmfit"

References

Zeileis A (2006), Object-oriented Computation of Sandwich Estimators. Journal of Statistical Soft-
ware, 16(9), 1–16. URL doi:10.18637/jss.v016.i09.

Andrews DWK (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Esti-
mation. Econometrica, 59, 817–858.

Newey WK & West KD (1987), A Simple, Positive Semi-Definite, Heteroskedasticity and Auto-
correlation Consistent Covariance Matrix. Econometrica, 55, 703–708.

Newey WK & West KD (1994), Automatic Lag Selection in Covariance Matrix Estimation. Review
of Economic Studies, 61, 631-653.

Hansen, L.P. (1982), Large Sample Properties of Generalized Method of Moments Estimators.
Econometrica, 50, 1029-1054,

Hansen, L.P. and Heaton, J. and Yaron, A.(1996), Finite-Sample Properties of Some Alternative
GMM Estimators. Journal of Business and Economic Statistics, 14 262-280.

https://doi.org/10.18637/jss.v016.i09

36 gmmfit-class

See Also

gmmFit, momentModel

Examples

data(simData)

res <- gmm4(y~x1, ~z1+z2, vcov="MDS", type="iter", data=simData)
res

gmmfit-class Class "gmmfit"

Description

A class to store a fitted model obtained using GMM.

Objects from the Class

Objects can be created by calls of the form new("gmmfit", ...). Generated by gmmFit.

Slots

theta: Object of class "numeric" ~~

convergence: Object of class "list" ~~

convIter: Object of class "numericORNULL" ~~

call: Object of class "callORNULL" ~~

type: Object of class "character" ~~

wObj: Object of class "momentWeights" ~~

niter: Object of class "integer" ~~

efficientGmm: Object of class "logical" ~~

model: Object of class "momentModel" ~~

Methods

bread signature(x = "gmmfit"): ...

coef signature(object = "gmmfit"): ...

confint signature(object = "gmmfit"): ...

DWH signature(object1 = "gmmfit", object2 = "gmmfit"): ...

DWH signature(object1 = "gmmfit", object2 = "lm"): ...

DWH signature(object1 = "gmmfit", object2 = "missing"): ...

hypothesisTest signature(object.u = "gmmfit", object.r = "gmmfit"): ...

hypothesisTest signature(object.u = "gmmfit", object.r = "missing"): ...

gmmFit-methods 37

hypothesisTest signature(object.u = "missing", object.r = "gmmfit"): ...

meatGmm signature(object = "gmmfit"): ...

print signature(x = "gmmfit"): ...

residuals signature(object = "gmmfit"): ...

show signature(object = "gmmfit"): ...

specTest signature(object = "gmmfit", which = "missing"): ...

specTest signature(object = "gmmfit", which = "numeric"): ...

summary signature(object = "gmmfit"): ...

update signature(object = "gmmfit"): ...

vcov signature(object = "gmmfit"): ...

Examples

showClass("gmmfit")

gmmFit-methods ~~ Methods for Function gmmFit in Package momentfit ~~

Description

Method to fit a model using GMM, from an object of class "momentModel" or "sysModel".

Usage

S4 method for signature 'momentModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, ...)

S4 method for signature 'formulaModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, ...)

S4 method for signature 'sysModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls", "EbyE"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, EbyE=FALSE, ...)

S4 method for signature 'rnonlinearModel'
gmmFit(model, type=c("twostep", "iter","cue",

38 gmmFit-methods

"onestep"), itertol=1e-7, initW=c("ident", "tsls"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, ...)

S4 method for signature 'rlinearModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, ...)

S4 method for signature 'rformulaModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, ...)

S4 method for signature 'rslinearModel'
gmmFit(model, type=c("twostep", "iter","cue",

"onestep"), itertol=1e-7, initW=c("ident", "tsls", "EbyE"),
weights="optimal", itermaxit=100,
efficientWeights=FALSE, theta0=NULL, EbyE=FALSE, ...)

Arguments

model A model class object.

type What GMM methods should we use? for type=="onestep", if "weights" is
not a matrix, the model will be estimated with the weights equals to the identity
matrix. For restricted

itertol Tolance for the stopping rule in iterative GMM

initW How should be compute the initial coefficient vector in the first. For single equa-
tion GMM, it only makes a difference for linear models for which the choice is
GMM with identity matrix or two-stage least quares. For system of equations,
"tsls", refers to equation by equation two-stage least squares. It is also possi-
ble to start at the equation by equation estimate using the same GMM type as
specified by "type".

weights What weighting matrix to use? The choices are "optimal", in which case it
is the inverse of the moment vovariance matrix, "ident" for the identity ma-
trix, or a fixed matrix. It is also possible for weights to be an object of class
gmmWeights.

itermaxit Maximum iterations for iterative GMM

EbyE Should the system be estimated equation by equation?
efficientWeights

If weights is a matrix or a gmmWeights class object, setting efficientWeights
to TRUE implies that the resulting one-step GMM is efficient. As a result, the
default covariance matrix for the coefficient estimates will not be a sandwich
type.

gmmFit-methods 39

theta0 An optional initial vector for optim when the model is nonlinear. By default,
the theta0 argument of the model is used

... Arguments to pass to other methods (mostly the optimization algorithm)

Methods

signature(model = "momentModel") The main method for all moment-based models.

signature(model = "rnonlinearModel") It makes a difference only if the number of contraints
is equal to the number of coefficients, in which case, the method evalGmm is called at the
contrained vector. If not, the next method is called.

signature(model = "rformulaModel") It makes a difference only if the number of contraints
is equal to the number of coefficients, in which case, the method evalGmm is called at the
contrained vector. If not, the next method is called.

signature(model = "rlinearModel") It makes a difference only if the number of contraints is
equal to the number of coefficients, in which case, the method evalGmm is called at the con-
trained vector. If not, the next method is called.

signature(model = "sysModel") Method to estimate system of equations using GMM methods.

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

Efficient GMM with HAC vcov and tsls as first step.
res1 <- gmmFit(model1, init="tsls")

GMM with identity. Two ways.
res2 <- gmmFit(model1, type="onestep")
res3 <- gmmFit(model1, weights=diag(3))

nonlinear regression with iterative GMM.
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)
res4 <- gmmFit(model2, type="iter")

GMM for with no endogenous vaiables is
OLS with Robust standard error

library(lmtest)
model3 <- momentModel(y~x1, ~x1, data=simData, vcov="MDS")
resGmm <- gmmFit(model3)
resLm <- lm(y~x1, simData)
summary(resGmm)
coeftest(resLm, vcov=vcovHC(resLm, "HC0"))
summary(resGmm, df.adj=TRUE)
coeftest(resLm, vcov=vcovHC(resLm, "HC1"))

40 Griliches

All constrained
R <- diag(2)
q <- c(1,2)
rmodel1 <- restModel(model1, R, q)
gmmFit(rmodel1)

Only one constraint
R <- matrix(c(0,1), ncol=2)
q <- 2
rmodel1 <- restModel(model1, R, q)
gmmFit(rmodel1)

Griliches Return to Education Data

Description

Labour data on 758 young workers between 16 and 30 years hold. Each observation provides
information on one individual at two points in time: in 1980 (variable with 80) and in the year given
be the YEAR (variable without 80).

Usage

data("Griliches")

Format

A data.frame with 758 observations and 20 variables.

RNS, RNS80 Dummy for residency in the southern states

MRT, MRT80 Dummy for marital status (1 if married)

SMSA, SMSA80 Dummy for residency in metropolitan areas

MED Mother’s education in years

IQ IQ score

KWW "Knowledge of the World of Work" test score

Year The year of the first observation

AGE, AGE80 Age in years

S, S80 Completed years of schooling

EXPR, EXPR80 Experience in years

TENURE, TENURE80 Tenure im years

LW, LW80 log wage

Source

Online complements of Fumio Hayashi (2000)

HealthRWM 41

References

Griliches, Z. (1976). Wages of Very Young Men. Journal of Political Economy, 84, S69–S85.

Blackburn, M. and Neumark, D. (1992). Unobserved Ability, Efficiency Wages, and Interindustry
Wage Differentials. Quarterly Journal of Economics, 107, 1421–1436.

Hayashi, F. (2000). Econometrics, New Jersey: Princeton University Press.

HealthRWM Health data from Greene (2012) applications.

Description

The dataset is used in Greene (2012) and is taken from Riphahn, Wambach, Million (2003).

Usage

data("HealthRWM")

Format

A data frame with 27326 observations on the following 25 variables.

ID Person-identification number

female Female=1; male=0

year Calendar year of the observation

age Age in years

hsat Health satisfaction, coded 0 (low) to 10 (high)

handdum Handicapped=1; otherwise=0

handper Degree of handicap in percent (0 to 100)

hhninc Household nominal monthly net income in German marks/10,000

hhkids Children under age 16 in the household=1; otherwise=0

educ Years of schooling

married Married=1; otherwise=0

haupts Highest schooling degree is Hauptschul degree=1; otherwise=0

reals Highest schooling degree is Realschul degree=1; otherwise=0

fachhs Highest schooling degree is Polytechnical degree=1; otherwise=0

abitur Highest schooling degree is Abitur=1; otherwise=0

univ Highest schooling degree is university degree=1; otherwise=0

working Employed=1; otherwise=0

bluec Blue-collar employee=1; otherwise=0

whitec White-collar employee=1; otherwise=0

42 HealthRWM

self Self-employed=1; otherwise=0

beamt Civil servant=1; otherwise=0

docvis Number of doctor visits in last three months,

hospvis Number of hospital visits in last calendar year,

public Insured in public health insurance=1; otherwise=0

addon Insured by add-on insurance=1; otherwise=0

Source

On Greene (2012) online resources, and on the Journal of Applied Econometrics website (http://qed.econ.queensu.ca/jae/2003-
v18.4/riphahn-wambach-million/).

References

Riphahn, R.T. and Wambach, A. and Million, A. (2003), Incentive Effects in the Demand for Health
Care: A Bivariate Panel Count Data Estimation, Journal of Applied Econometrics, Vol. 18, No. 4,
387–405.

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

Examples

Example 13.7 of Greene (2012)
####################################

Selecting the same data point and scaling income
##########
data(HealthRWM)
dat88 <- subset(HealthRWM, year==1988 & hhninc>0)
dat88$hhninc <- dat88$hhninc/10000

A guess start
thet0 <- c(b0=log(mean(dat88$hhninc)),b1=0,b2=0,b3=0)

Table 13.2 First column
g <- hhninc~exp(b0+b1*age+b2*educ+b3*female)
res0 <- nls(g, dat88, start=thet0, control=list(maxiter=100))
summary(res0)$coef

Table 13.2 Second column
Trying very hard to reproduce the results,
Who is right?
h1 <- ~age+educ+female
model1 <- momentModel(g, h1, thet0, vcov="MDS", data=dat88)
res1 <- gmmFit(model1, control=list(reltol=1e-10, abstol=1e-10))
summary(res1)@coef

Table 13.2 third column (close enough)
Here a sandwich vcov is required because it is not
efficient GMM
h2 <- ~age+educ+female+hsat+married

hypothesisTest-class 43

model2 <- momentModel(g, h2, thet0, vcov="MDS", data=dat88)
res2 <- gmmFit(model2, type="onestep")
summary(res2, sandwich=TRUE)@coef

Table 13.2 fourth column (Can't get closer than that)
res3 <- gmmFit(model2)
summary(res3)@coef

Lets see what happens if we start on Greene solution

update(res3, theta0=c(b0=-1.61192, b1=.00092, b2=.04647, b3=-.01517))

No...

hypothesisTest-class Class "hypothesisTest"

Description

A class to store results form an hypothesis test.

Objects from the Class

Objects can be created by calls of the form new("hypothesisTest", ...). It is created by hypothesisTest.

Slots

test: Object of class "numeric" ~~

hypothesis: Object of class "character" ~~

dist: Object of class "character" ~~

df: Object of class "integer" ~~

pvalue: Object of class "numeric" ~~

type: Object of class "character" ~~

Methods

print signature(x = "hypothesisTest"): ...

show signature(object = "hypothesisTest"): ...

Examples

showClass("hypothesisTest")

44 hypothesisTest-methods

hypothesisTest-methods

~~ Methods for Function hypothesisTest in Package momentfit ~~

Description

Performs hypothesis tests on the coefficients estimated by any GMM fit method.

Usage

S4 method for signature 'gmmfit,missing'
hypothesisTest(object.u, object.r, R,
rhs=NULL, vcov=NULL, ...)

S4 method for signature 'sgmmfit,missing'
hypothesisTest(object.u, object.r, R,
rhs=NULL, vcov=NULL, ...)

S4 method for signature 'gmmfit,gmmfit'
hypothesisTest(object.u, object.r,
type=c("Wald", "LR", "LM"), sameVcov=TRUE, vcov=NULL,
firstStepWeight=FALSE, wObj=NULL, ...)

S4 method for signature 'sgmmfit,sgmmfit'
hypothesisTest(object.u, object.r,
type=c("Wald", "LR", "LM"), sameVcov=TRUE, vcov=NULL,
firstStepWeight=FALSE, wObj=NULL, ...)

S4 method for signature 'missing,gmmfit'
hypothesisTest(object.u, object.r, wObj=NULL)

S4 method for signature 'missing,sgmmfit'
hypothesisTest(object.u, object.r, wObj=NULL)

Arguments

object.u An object of class gmmfit or sgmmfit obtained using an unrestricted "momentModel"
or "sysModel".

object.r An object of class gmmfit obtained using a restricted "momentModel" or "sysModel".

R If it is an object of class gmmfit, one of the model fit must be the restricted
version of the other. The restrictions are then tested. If R is a character type, it
expresses the restrictions using the coefficient names. If it numeric, it must be a
matrix and the restrictions are Rθ = 0 for NULL rhs, or Rθ = rhs otherwise. If
missing, the gmmfit must be a fitted restricted model, in which case, a LM test
is performed.

rhs A vector of right hand sides if R is numeric

hypothesisTest-methods 45

type Should we perform a Wald, LR or LM test?

sameVcov For the LR test, should we use the same estimate of the covariance matrix of the
moment conditions? See details below.

vcov For the Wald test, it is possible to provide the method with the covariance matrix
of the coefficients.

wObj For the LR test, it is possible to provide the gmmWeights object. In that case, the
provided gmm weights object if used for the restricted and unrestricted models.

... Other argument to pass to specTest.
firstStepWeight

Should we use the first step weighting matrix to compute the test (By default,
the optimal weighting matrix is recomputed using the final vector of coefficient
estimates). See details below.

Details

The LR test is the difference between the J-tests of the restricted and unrestricted models. It is
therefore nḡ′rWrḡr − nḡ′uWuḡu, where ḡr and ḡu are respectively the restricted and unrestricted
sample mean of the moment conditions, and Wr and Wu their respective optimal weigthing matrix.
The test is therefore invalid if either of the weighting matrices does not converge to the inverse
of the covariance matrix of the moment conditions. The restricted and unrestricted models must
therefore be estimated by efficient GMM. This is not required for the Wald test.

Asymptotically, it makes no difference which consistent estimate of Wu or Wr is used. However, it
will make a difference in finite samples.

If sameVcov=TRUE, both Wr and Wu are equal to the the optimal weighting matrix from the un-
restricted model if firstStepWeight=FALSE, and they are equal to the first step weighting matrix
(or the last step for iteratice GMM) of the unrestricted model if it is TRUE. For CUE, the value of
firstStepWeight makes no difference since the weighting matrix and coefficients are computed
simultaneously. Having Wr = Wu prevents the test to be negative in small samples.

If wObj is provided, both Wr and Wu are equal to it. Of cource, wObj must be a consistent estimate
of the optimal weighting matrix for the test to be valid.

Methods

signature(object.u = "gmmfit", object.r = "gmmfit") Used to test a restricted model against
an unrestricted one.

signature(object.u = "sgmmfit", object.r = "sgmmfit") Used to test a restricted model against
an unrestricted one (for systems of equations).

signature(object.u = "missing", object.r= "gmmfit") Used to test a restricted model using
the LM test.

signature(object.u = "missing", object.r= "sgmmfit") Used to test a restricted model us-
ing the LM test (for systems of equations).

signature(object.u = "gmmfit", object.r = "missing") Perform a Wald test using an unre-
stricted model and a restriction matrix or vector.

signature(object.u = "sgmmfit", object.r = "missing") Perform a Wald test using an unre-
stricted model and a restriction matrix or vector in systems of linear equations.

46 hypothesisTest-methods

Examples

data(simData)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3, ~x2+x3+z1+z2+z3, data=simData, vcov="MDS")
res1 <- gmmFit(model1)

Wald test
R <- c("x1=0.5","x2=x3")
hypothesisTest(object.u=res1, R=R)

LR tests

rmodel1 <- restModel(model1, R)
res2 <- gmmFit(rmodel1)
hypothesisTest(object.u=res1, object.r=res2, type="LR")

LR and Wald should be the same as long as the same weighting
matrix if used for both GMM fits, for the LR and Wald as well

Unrestricted model and save the weights
res1 <- gmmFit(model1)
w <- res1@wObj
estimate models with the same weights
res2 <- gmmFit(rmodel1, weights=w)

LR test with the same weights
hypothesisTest(res1, res2, type="LR", wObj=w)

Wald test with vcov based on the same weights (or the bread)
hypothesisTest(object.u=res1, R=R, breadOnly=TRUE)

Another example with real data
data(Mroz)
model <- momentModel(log(wage)~educ+exper+I(exper^2),

~exper+I(exper^2)+fatheduc+motheduc, vcov="MDS",
data=Mroz, centeredVcov=FALSE)

R <- c("educ=0","I(exper^2)=0")
rmodel <- restModel(model, R)

res1 <- gmmFit(model)
res2 <- gmmFit(rmodel, weights=res1@wObj)

hypothesisTest(object.u=res1, object.r=res2, type="LR", wObj=res1@wObj)
hypothesisTest(object.u=res1, object.r=res2, type="Wald",
vcov=vcov(res1, breadOnly=TRUE))

LM test (identical to the other two tests as well)

hypothesisTest(object.r=res2)
or
hypothesisTest(object.u=res1, object.r=res2, type="LM")

kclassfit 47

Wald with the Delta Method:
To impose nonlinear restrictions, we need to convert
the linear model into a nonlinear one
NLmodel <- as(model1, "nonlinearModel")
R1 <- c("theta2=2", "theta3=theta4^2")
rNLmodel <- restModel(NLmodel, R1)
res.u <- gmmFit(NLmodel)
res.r <- gmmFit(rNLmodel)
hypothesisTest(object.u=res.u, R=R1)

LM

hypothesisTest(object.r=res.r)

LR

hypothesisTest(object.r=res.r, object.u=res.u, type="LR")

kclassfit K-Class Estimation Method

Description

It estimates linearModel objects using the K-Class method. It includes LIML, Fuller, TSLS and
OLS.

Usage

kclassfit(object, k, type = c("LIML", "Fuller", "BTSLS"), alpha = 1)

getK(object, alpha = 1, returnRes = FALSE)

Arguments

object A model of class linearModel

k The numeric value of k for the K-Class estimator. If missing, the value for LIML
or Fuller is used.

type Which value of k should we use to fit the model? Only used if k is missing.

alpha A parameter for the Fuller method

returnRes Should the function return the matrix of residuals from the first stage regression?

48 kclassfit-class

Details

Let the model be Y = Xβ + U and the matrix of instruments be Z. The K-Class estimator is
(X ′(I − kMz)X)−1(X ′(I − kMz)Y). The function getK can be used to compute the value of
k for both LIML and Fuller. When type="BTSLS", the bias-adjusted TSLS of Nagar (1959) is
computed.

Value

The function returns an object of class kclassfit.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
kclassfit(model1, type="LIML")

kclassfit-class Class "kclassfit"

Description

This is the object that stores the estimation result from the K-Class estimation method. The class
includes the Limited Information Maximum Likelihood (LIML) and its modified version proposed
by Fuller (1977).

Objects from the Class

Objects can be created by calls of the form new("kclassfit", ...). It is created by the kclassfit
function.

Slots

kappa: Object of class "numeric" ~~

method: Object of class "character" ~~

origModel: Object of class "linearModel" ~~

theta: Object of class "numeric" ~~

convergence: Object of class "numericORNULL" ~~

convIter: Object of class "numericORNULL" ~~

call: Object of class "callORNULL" ~~

type: Object of class "character" ~~

wObj: Object of class "momentWeights" ~~

niter: Object of class "integer" ~~

efficientGmm: Object of class "logical" ~~

model: Object of class "momentModel" ~~

kernapply-methods 49

Extends

Class "gmmfit", directly.

Methods

print signature(x = "kclassfit"): ...

show signature(object = "kclassfit"): ...

specTest signature(object = "kclassfit", which = "missing"): ...

summary signature(object = "kclassfit"): ...

Examples

showClass("kclassfit")

kernapply-methods A kernel smoothing utility for "momentModel" classes

Description

It either generates the optimal bandwidth and kernel weights or the smoothed moments of moment
based models.

Usage

S4 method for signature 'momentModel'
kernapply(x, theta=NULL, smooth=TRUE, ...)

Arguments

x An object of class "momentModel".

theta An optional vector of coefficients. For smooth=FALSE, it is used to obtain the
optimal bandwidth. If NULL, the bandwidth is obtained using one step GMM
with the identity matrix as weights. For smooth=TRUE, the coefficient is re-
quired since the function returns the smoothed moments at a given vector of
coefficients.

smooth By default, it returns the smoothed moment matrix. If FALSE, it computes the
optimal bandwidth and kernel weights.

... Other arguments to pass. Currently not used

Value

It return an object of class "sSpec".

50 Klein

References

Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73,
983-1002.

Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The
Annals of Statistics, 25, 2084-2102.

Smith, R.J. (2011), GEL Criteria for Moment Condition Models. Econometric Theory, 27(6), 1192–
1235.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

A linearModel
model1 <- momentModel(y~x1, ~z1+z2, data=simData,vcov="HAC",vcovOptions=list(kernel="Bartlett"))

get the bandwidth
Notice that the kernel name is the not the same
That's because a Truncated kernel for smoothing
lead to a Bartlett kernel for the HAC of the moments
See Smith (2011)
kernapply(model1, smooth=FALSE)

Adding the kernel option to the model

model2 <- momentModel(y~x1, ~z1+z2,
data=simData,vcov="HAC",vcovOptions=list(kernel="Bartlett"), smooth=TRUE)

kernapply(model2, theta)$smoothx[1:5,]

Klein Klein (1950) macro data.

Description

The data is used to reproduce examples of Greene (2012)

Usage

data("Klein")

Format

A data frame with 22 observations on the following 10 variables.

YEAR a numeric vector

LabourCR 51

C a numeric vector

P a numeric vector

WP a numeric vector

I a numeric vector

K1 a numeric vector

X a numeric vector

WG a numeric vector

G a numeric vector

T a numeric vector

Source

On Greene (2012) online resources.

References

Klein, L. (1950), Economic Fluctuations in the United-States 1921-1941, New York: John Wiley
and Sons.

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

Examples

data(Klein)

LabourCR Labour data from Greene (2012) applications,

Description

A panel data set of 565 individuals from 1976 to 1982 used by Cornwell and Rupert (1988)

Usage

data("LabourCR")

Format

A data frame with 4165 observations on the following 12 variables.

EXP Year of full time experience.

WKS Weeks worked.

OCC 1 if blue-collar occupation, 0 otherwise.

IND 1 if works in a manufacture industry, 0 otherwise.

SOUTH 1 if resides in the south, 0 otherwise.

52 lambdaAlgo

SMSA 1 if resides in an SMSA, 0 otherwise.

MS 1 if married, 0 otherwise.

FEM 1 if the individual is a female and 0 otherwise.

UNION 1 if wage is set by a union contract and 0 otherwise.

ED Years of education.

BLK 1 if the individual is black and 0 otherwise.

LWAGE Log wage.

Source

Greene (2012) online resources: (http://pages.stern.nyu.edu/~wgreene/Text/Edition7/tablelist8new.htm)

References

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

Cornwell, C. and Rupert, P. (1988), Efficient Estimation with Panel Data: An Empirical Compari-
sion of Instrumental Variable Estimators, Journal of Applied Econometrics, No.3, 149–155.

Examples

data(LabourCR)
Table 8.1 of Greene (2012)
Model with Z2 (iid is assumed in Table 8.1 given the s.e.)
model2 <- momentModel(WKS~LWAGE+ED+UNION+FEM, ~IND+ED+UNION+FEM+SMSA, vcov="iid",

data=LabourCR)
Model with Z1 using the subsetting method '['
model1 <- model2[-6L]

Second column
res1 <- tsls(model1)
summary(res1)@coef

Third column
res2 <- tsls(model2)
summary(res2)@coef

lambdaAlgo Algorithms to solve for the Lagrange multiplier

Description

The algorithms finds the vector or Lagrange multipliers that maximizes the GEL objective function
for a given vector of coefficient θ.

lambdaAlgo 53

Usage

Wu_lam(gmat, tol=1e-8, maxiter=50, k=1)

EEL_lam(gmat, k=1)

REEL_lam(gmat, tol=NULL, maxiter=50, k=1)

ETXX_lam(gmat, lambda0, k, gelType, algo, method, control)

getLambda(gmat, lambda0=NULL, gelType=NULL, rhoFct=NULL,
tol = 1e-07, maxiter = 100, k = 1, method="BFGS",
algo = c("nlminb", "optim", "Wu"), control = list(),
restrictedLam=integer(), ...)

Arguments

gmat The n× q matrix of moments
lambda0 The q × 1 vector of starting values for the Lagrange multipliers.
tol A tolerance level for the stopping rule in the Wu algorithm
maxiter The maximum number of iteration in the Wu algorithm
gelType A character string specifying the type of GEL. The available types are "EL",

"ET", "EEL", "HD" and "REEL". For the latter, the algorithm restricts the im-
plied probabilities to be non negative.

rhoFct An optional function that return ρ(v). This is for users who want a GEL model
that is not built in the package. The four arguments of the function must be
"gmat", the matrix of moments, "lambda", the vector of Lagrange multipliers,
"derive", which specify the order of derivative to return, and k a numeric scale
factor required for time series and kernel smoothed moments.

k A numeric scaling factor that is required when "gmat" is a matrix of time series
which require smoothing. The value depends on the kernel and is automatically
set when the "gelModels" is created.

method This is the method for optim.
algo Which algorithm should be used to maximize the GEL objective function. If set

to "Wu", which is only for "EL", the Wu (2005) algorithm is used.
control A list of control to pass to either optim or nlminb.
restrictedLam A vector of integers indicating which "lambda" are restricted to be equal to 0.
... Arguments to pass to other methods. Currently not used.

Details

The ETXX_lam is used for ETEL and ETHD. In general, it computes lambda using ET, and returns
the value of the objective function determined by the gelType.

Value

It returns the vector ρ(gmatλ) when derive=0, ρ′(gmatλ) when derive=1 and ρ′′(gmatλ) when
derive=2.

54 linearModel-class

References

Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73,
983-1002.

Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The
Annals of Statistics, 25, 2084-2102.

Kitamura, Y. and Otsu, T. and Evdokimov, K. (2013), Robustness, Infinitesimal Neighborhoods and
Moment Restrictions. Econometrica, 81, 1185-1201.

Newey, W.K. and Smith, R.J. (2004), Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators. Econometrica, 72, 219-255.

Smith, R.J. (2011), GEL Criteria for Moment Condition Models. Econometric Theory, 27(6), 1192–
1235.

Wu, C. (2005), Algorithms and R codes for the pseudo empirical likelihood method in survey
sampling. Survey Methodology, 31(2), page 239.

linearModel-class Class "linearModel"

Description

Class for moment-based models for which moment conditions are linear and expressed by a for-
mula.

Objects from the Class

Objects can be created by calls of the form new("linearModel", ...). It is generated my momentModel.

Slots

modelF: Object of class "data.frame" ~~
instF: Object of class "data.frame" ~~
vcov: Object of class "character" ~~
n: Object of class "integer" ~~
q: Object of class "integer" ~~
k: Object of class "integer" ~~
parNames: Object of class "character" ~~
momNames: Object of class "character" ~~
vcovOptions: Object of class "list" ~~
centeredVcov: Object of class "logical" ~~
varNames: Object of class "character" ~~
isEndo: Object of class "logical" ~~
omit: Object of class "integer" ~~
survOptions: Object of class "list" ~~
sSpec: Object of class "sSpec" ~~
smooth: Object of class "logical" ~~

lse-methods 55

Extends

Class "regModel", directly. Class "momentModel", directly.

Methods

Dresiduals signature(object = "linearModel"): ...

merge signature(x = "linearModel", y = "linearModel"): ...

merge signature(x = "slinearModel", y = "linearModel"): ...

model.matrix signature(object = "linearModel"): ...

modelDims signature(object = "linearModel"): ...

modelResponse signature(object = "linearModel"): ...

momentStrength signature(object = "linearModel"): ...

residuals signature(object = "linearModel"): ...

restModel signature(object = "linearModel"): ...

solveGmm signature(object = "linearModel", wObj = "momentWeights"): ...

tsls signature(model = "linearModel"): ...

Examples

showClass("linearModel")

lse-methods Least Squares Methods for Moment Models

Description

It estimates models defined in the package by least squares. At the moment, it only applies to
linearModel objects and it is estimated using lm.

Methods

signature(model = "linearModel") It ignores the instruments and simply fits the linear model
with LSE.

Examples

data(simData)
mod <- momentModel(y~x1, ~z1+z2, vcov="MDS", data=simData)
lse(mod)

56 ManufactCost

lsefit-class Class "lsefit"

Description

A class for least squares estimate of different momentModel objects.

Objects from the Class

Objects can be created by calls of the form new("lsefit", ...). It is created by lse. It includes
the information about the model being estimated and the estimation based on lm.

Slots

model: Object of class "linearModel" ~~

.S3Class: Object of class "character" ~~

Extends

Class "lm", directly. Class "oldClass", by class "lm", distance 2.

Methods

print signature(x = "lsefit"): ...

show signature(object = "lsefit"): ...

Examples

showClass("lsefit")

ManufactCost Manufacturing Costs data from Bernt and Wood (1975)

Description

The data is used to reproduce examples of Greene (2012)

Usage

data("ManufactCost")

mconfint-class 57

Format

A data frame with 25 observations on the following 10 variables.

Year a numeric vector
Cost a numeric vector
K a numeric vector
L a numeric vector
E a numeric vector
M a numeric vector
Pk a numeric vector
Pl a numeric vector
Pe a numeric vector
Pm a numeric vector

Source

On Greene (2012) online resources.

References

Berndt, E. and Wood, D. (1975), Technology, Prices, and the Derived Demand for Energy, Review
of Economics and Statistics, Vol. 57, 376–384.

Green, W.H.. (2012). Econometric Analysis, 7th edition, Prentice Hall.

Examples

data(ManufactCost)

mconfint-class Class "mconfint"

Description

A class to store confidence region.

Objects from the Class

Objects can be created by calls of the form new("mconfint", ...). It is created by the "confint"
method with the option area=TRUE (see confint-methods).

Slots

areaPoints: Object of class "matrix" ~~
type: Object of class "character" ~~
level: Object of class "numeric" ~~
theta: Object of class "numeric" ~~

58 meatGmm-methods

Methods

plot signature(x = "mconfint"): ...

print signature(x = "mconfint"): ...

show signature(object = "mconfint"): ...

Examples

showClass("mconfint")

meatGmm-methods ~~ Methods for Function meatGmm in Package momentfit ~~

Description

It computes the meat in the sandwich representation of the covariance matrix of the GMM estimator.

Usage

S4 method for signature 'gmmfit'
meatGmm(object, robust=FALSE)

S4 method for signature 'sgmmfit'
meatGmm(object, robust=FALSE)

S4 method for signature 'tsls'
meatGmm(object, robust=FALSE)

Arguments

object GMM fit object

robust If TRUE, the meat is robust to the failure of the assumption that the weighting
matrix is the inverse of the covariance matrix of the moment conditions. (see
details)

Details

If robust=FALSE, then the meat is G′V −1G, where G and V are respectively the sample mean
of the derivatives and the covariance matrix of the moment conditions. If it is TRUE, the meat is
G′WVWG, where W is the weighting matrix.

For tsls objects, the function makes use of the QR representation of the weighting matrix. It is
simply possible to get the meat in a more stable way. In that case, W = (σ2Z ′Z/n)−1. If robust
is FALSE, V is assumed to be σ2Z ′Z/n which is the inverse of the bread. Therefore, a sandwich
covariance matrix with robust=FALSE will result in a non-sandwich matrix.

For sgmmfit, the covariance is for the vectorized coefficient vector of all equations.

merge-methods 59

Methods

signature(object = "gmmfit") General GMM fit.

signature(object = "tsls") For model estimated by two-stage least squares.

signature(object = "sgmmfit") For system of equations.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

res <- gmmFit(model1)
meatGmm(res)

It is a slightly different because the weighting matrix
is computed using the first step estimate and the covariance
matrix of the moment conditions is based on the final estimate.
They should, however, be asymptotically equivalent.

meatGmm(res, robust=TRUE)

TSLS
res2 <- tsls(model1)

Robust meat
meatGmm(res2, TRUE)

It makes no difference is the model is assumed iid
model2 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="iid")
res2 <- tsls(model2)
meatGmm(res2, FALSE)
meatGmm(res2, TRUE)

merge-methods ~~ Methods for Function merge in Package base ~~

Description

It allows to merge momentModel classes into system objects.

Usage

S4 method for signature 'linearModel,linearModel'
merge(x, y, ...)

S4 method for signature 'nonlinearModel,nonlinearModel'

60 merge-methods

merge(x, y, ...)

S4 method for signature 'slinearModel,linearModel'
merge(x, y, ...)

S4 method for signature 'snonlinearModel,nonlinearModel'
merge(x, y, ...)

Arguments

x An object on which the other objects are merged to.

y An object to be merged to x.

... Other objects of the same class as y to be merged to x.

Methods

signature(x = "linearModel", y = "linearModel") Merging linear models into a system of
equations.

signature(x = "nonlinearModel", y = "nonlinearModel") Merging nonlinear models into a
system of equations.

signature(x = "slinearModel", y = "linearModel") Adding linear equations to a system of
linear equations.

signature(x = "snonlinearModel", y = "nonlinearModel") Adding nonlinear equations to a
system of nonlinear equations.

Examples

data(simData)
g1 <- y1~x1+x4; h1 <- ~z1+z2+z3+z4+x4
g2 <- y2~x1+x2+x3; h2 <- ~z1+z2+z3+z4+x3
g3 <- y3~x2+x3+x4; h3 <- ~z2+z3+z4+x3+x4
Linear models
m1 <- momentModel(g1, h1, data=simData)
m2 <- momentModel(g2, h2, data=simData)
m3 <- momentModel(g3, h3, data=simData)

##
(sys1 <- merge(m1, m2))

add an equation to the model

(sys2 <- merge(sys1, m3))

want to get back the first?

sys2[1:2]

Nonlinear (not really, just written as nonlinear)

minAlgo-class 61

nlg <- list(y1~theta0+theta1*x1+theta2*x4,
y2~alpha0+alpha1*x1+alpha2*x2+alpha3*x3,
y3~beta0+beta1*x2+beta2*x3+beta3*x4)

theta0 <- list(c(theta0=1,theta1=2,theta2=3),
c(alpha0=1,alpha1=2,alpha2=3, alpha3=4),
c(beta0=1,beta1=2,beta2=3,beta3=4))

nm1 <- momentModel(nlg[[1]], h1, theta0[[1]], data=simData)
nm2 <- momentModel(nlg[[2]], h2, theta0[[2]], data=simData)
nm3 <- momentModel(nlg[[3]], h3, theta0[[3]], data=simData)

merge(nm1, nm2, nm3)

minAlgo-class Class "minAlgo"

Description

A union class for all minimization algorithms. It is created by algoObj.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

print signature(x = "minAlgo"): ...

show signature(object = "minAlgo"): ...

Examples

showClass("minAlgo")

minAlgoNlm-class Class "minAlgoNlm"

Description

Class for algorithm to minimize multivariate functions that have the same format as nlm.

Objects from the Class

Objects can be created by calls of the form new("minAlgoNlm", ...). It is generated my algoObj.

62 minAlgoStd-class

Slots

algo: Object of class "character" ~~

start: Object of class "character" ~~

fct: Object of class "character" ~~

solution: Object of class "character" ~~

value: Object of class "character" ~~

message: Object of class "character" ~~

convergence: Object of class "character" ~~

Extends

Class "minAlgo", directly.

Methods

minFit signature(object = "minAlgoNlm"): ...

Examples

showClass("minAlgoNlm")

minAlgoStd-class Class "minAlgoStd"

Description

Class for standard algorithm to minimize multivariate functions. By standard, we mean algorithms
with the main function and its gradient input separately. Specifically, it follows optim, not nlm.

Objects from the Class

Objects can be created by calls of the form new("minAlgoStd", ...). It is generated my algoObj.

Slots

algo: Object of class "character" ~~

start: Object of class "character" ~~

fct: Object of class "character" ~~

grad: Object of class "character" ~~

solution: Object of class "character" ~~

value: Object of class "character" ~~

message: Object of class "character" ~~

convergence: Object of class "character" ~~

minFit-methods 63

Extends

Class "minAlgo", directly.

Methods

minFit signature(object = "minAlgoStd"): ...

Examples

showClass("minAlgoStd")

minFit-methods Methods for Function minFit in Package momentfit ~~

Description

This is a method to minimize a function using an algorithm defined by the minAlgo class. This
is way of homogenizing the call of minimization functions. It is used by solveGmm to offer the
possibility of using external solvers.

Usage

S4 method for signature 'minAlgoNlm'
minFit(object, start, fct, gr,
...)

S4 method for signature 'minAlgoStd'
minFit(object, start, fct, gr,
...)

Arguments

object A object of class minAlgo created by algoObj.
start A vector of starting values.
fct The function to minimize.
gr An optional function that returns the gradient. The arguments of fct and gr

must be identical.
... Arguments to pass the optimization algorithm and to the functions fct and gr.

Value

A list with the following elements:

solution The vector of solution for the minimization problem.
value The value of the function at the solution.
message The convergence message from the solver.
convergence The convergence code from the solver.

64 model.matrix-methods

Methods

signature(model = "minAlgoStd") This class includes all solvers that have a standard set of ar-
guments. These arguments are the function, the gradient and the starting values (e.g. optim).

signature(model = "minAlgoNlm") This method is for solvers like nlm. The solver is quite dif-
ferent from any other solvers, because the gradient is returned by the main function as an
attribute. That’s why it needs a different method to use it.

Examples

f <- function(x, a=2, b=4) (x[1]-a)^2+(x[2]-b)^2
g <- function(x, a=2, b=4) c(2*(x[1]-a), 2*(x[2]-b))

Using optim

algo1 <- algoObj("optim")
minFit(algo1, start=c(1,1), fct=f, gr=g, method="BFGS", b=6)

Using nlm: very different structure, but same call

algo2 <- algoObj("nlm")
minFit(algo2, start=c(1,1), fct=f, gr=g, b=6)

model.matrix-methods ~~ Methods for Function model.matrix in Package stats ~~

Description

Model matrix form momentModel. It returns the matrix of regressors or the instruments. In restricted
models, it returns the reduced matrix of regressors.

Usage

S4 method for signature 'linearModel'
model.matrix(object,
type=c("regressors","instruments","excludedExo", "includedExo", "includedEndo"))
S4 method for signature 'rlinearModel'
model.matrix(object,
type=c("regressors","instruments"))
S4 method for signature 'nonlinearModel'
model.matrix(object,
type=c("regressors","instruments"))
S4 method for signature 'slinearModel'
model.matrix(object,
type=c("regressors","instruments"))
S4 method for signature 'rslinearModel'
model.matrix(object,

modelDims-methods 65

type=c("regressors","instruments"))
S4 method for signature 'rsnonlinearModel'
model.matrix(object,
type=c("regressors","instruments"))
S4 method for signature 'snonlinearModel'
model.matrix(object,
type=c("regressors","instruments"))

Arguments

object Object of class linearModel, rlinearModel or any system of equations class.

type Should the function returns the matrix of instruments or the matrix of regressors.
For nonlinearModel classes, type=’regressors’ will produce an error message,
because there is no such model matrix in this case, at least not for now.

Methods

signature(object = "linearModel") Linear models with not restrictions.

signature(object = "nonlinearModel") Nonlinear models with not restrictions.

signature(object = "rlinearModel") linear models with restrictions.

signature(object = "slinearModel") System of linear equations with no restrictions.

signature(object = "rslinearModel") System of linear equations with restrictions.

signature(object = "rsnonlinearModel") System of nonlinear equations with restrictions.

signature(object = "snonlinearModel") System of nonlinear equations with no restrictions.

Examples

data(simData)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3, ~x2+x3+z1+z2, data=simData)
model.matrix(model1)[1:3,]

Restrictions change the response
R <- c("x2=2","x3+x1=3")
rmodel1 <- restModel(model1, R)
rmodel1
model.matrix(rmodel1)[1:3,]

modelDims-methods Methods for Function modelDims

Description

It extracts important information from the model. It is mostly used by other methods when a
modelModel has been modifed. An example is when restrictions have been imposed on coefficients.

66 modelResponse-methods

Methods

signature(object = "rlinearModel")

signature(object = "rnonlinearModel")

signature(object = "rfunctionModel")

signature(object = "linearModel")

signature(object = "nonlinearModel")

signature(object = "functionModel")

signature(object = "formulaModel")

signature(object = "rformulaModel")

signature(object = "slinearModel")

signature(object = "rslinearModel")

signature(object = "rsnonlinearModel")

signature(object = "snonlinearModel")

signature(object = "sfunctionModel")

Examples

data(simData)

model1 <- momentModel(y~x1+x2, ~x2+z1+z2, data=simData)
modelDims(model1)

Unrestricted model

rmodel1 <- restModel(model1, R=c("x1+x2=4"))
modelDims(rmodel1)

modelResponse-methods ~~ Methods for Function modelResponse in Package momentfit ~~

Description

Return the response vector in models with and without restrictions

Methods

signature(object = "linearModel") For linear models without restrictions on the coefficients.

signature(object = "slinearModel") For system of linear models without restrictions on the
coefficients.

signature(object = "rslinearModel") For system of linear models with restrictions on the co-
efficients.

signature(object = "rlinearModel") For linear models with restrictions on the coefficients.

momentModel 67

Examples

data(simData)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3, ~x2+x3+z1+z2, data=simData)
y <- modelResponse(model1)

Restrictions change the response
R <- c("x2=2","x3=3")
rmodel1 <- restModel(model1, R)
rmodel1
restY <- modelResponse(rmodel1)

momentModel Constructor for "momentModel" classes

Description

It builds an object class "momentModel", which is a union class for "linearModel", "nonlinearModel",
"formulaModel" and "functionModel" classes. These are classes for moment based models. This
is the first step before running any estimation algorithm.

Usage

momentModel(g, x=NULL, theta0=NULL,grad=NULL,
vcov = c("iid", "HAC", "MDS", "CL"),
vcovOptions=list(), centeredVcov = TRUE, data=parent.frame(),
na.action="na.omit", survOptions=list(), smooth=FALSE)

Arguments

g A function of the form g(θ, x) and which returns a n × q matrix with typical
element gi(θ, xt) for i = 1, ...q and t = 1, ..., n. This matrix is then used to
build the q sample moment conditions. It can also be a formula if the model is
linear (see detailsbelow).

x The matrix or vector of data from which the function g(θ, x) is computed. If
"g" is a formula, it is an n×Nh matrix of instruments or a formula (see details
below).

theta0 A k × 1 vector of starting values. It is required only when "g" is a function
because only then a numerical algorithm is used to minimize the objective func-
tion. If the dimension of θ is one, see the argument "optfct".

grad A function of the form G(θ, x) which returns a q×k matrix of derivatives of ḡ(θ)
with respect to θ. By default, the numerical algorithm numericDeriv is used.
It is of course strongly suggested to provide this function when it is possible.
This gradient is used to compute the asymptotic covariance matrix of θ̂ and to
obtain the analytical gradient of the objective function if the method is set to

68 momentModel

"CG" or "BFGS" in optim and if "type" is not set to "cue". If "g" is a formula,
the gradiant is not required (see the details below).

vcov Assumption on the properties of the moment conditions. By default, they are
weakly dependant processes. For MDS, we assume that the conditions are mar-
tingale difference sequences, which implies they are serially uncorrelated, but
may be heteroscedastic. There is a difference between iid and MDS only when
g is a formula. In that case, residuals are assumed homoscedastic as well as se-
rially uncorrelated. For type CL, clustered covariance matrix is computed. The
options are then included in vcovOptions (see meatCL).

vcovOptions A list of options for the covariance matrix of the moment conditions. See
vcovHAC for the default values.

centeredVcov Should the moment function be centered when computing its covariance matrix.
Doing so may improve inference.

data A data.frame or a matrix with column names (Optional).

na.action Action to take for missing values. If missing values are present and the option
is set to "na.pass", the model won’t be estimable.

survOptions If needed, a list with the type of survey weights and the weights as a numeric
vector, data.frame or formula. The type is either "sampling" or "fequency".

smooth If TRUE, the moment function is smoothed using a kernel method.

Value

’momentModel’ returns an object of one of the subclasses of "momentModel".

References

Andrews DWK (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Esti-
mation. Econometrica, 59, 817–858.

Newey WK & West KD (1987), A Simple, Positive Semi-Definite, Heteroskedasticity and Auto-
correlation Consistent Covariance Matrix. Econometrica, 55, 703–708.

Newey WK & West KD (1994), Automatic Lag Selection in Covariance Matrix Estimation. Review
of Economic Studies, 61, 631-653.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

A linearModel
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

A nonlinearModel
g <- y~beta0+x1^beta1
h <- ~z1+z2
model2 <- momentModel(g, h, c(beta0=1, beta1=2), data=simData)

A functionModel

momentModel-class 69

fct <- function(tet, x)
{

m1 <- (tet[1] - x)
m2 <- (tet[2]^2 - (x - tet[1])^2)
m3 <- x^3 - tet[1]*(tet[1]^2 + 3*tet[2]^2)
f <- cbind(m1, m2, m3)
return(f)

}
dfct <- function(tet, x)

{
jacobian <- matrix(c(1, 2*(-tet[1]+mean(x)), -3*tet[1]^2-3*tet[2]^2,0, 2*tet[2],

-6*tet[1]*tet[2]), nrow=3,ncol=2)
return(jacobian)
}

model3 <- momentModel(fct, simData$x3, theta0=c(beta0=1, beta1=2), grad=dfct)

momentModel-class Class "momentModel"

Description

A union class for all moment based models. It is created by momentModel.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

[signature(x = "momentModel", i = "missing", j = "missing"): ...

coef signature(object = "momentModel"): ...

evalGel signature(model = "momentModel"): ...

evalGelObj signature(object = "momentModel", theta = "numeric", lambda = "numeric"):
...

evalGmm signature(model = "momentModel"): ...

evalGmmObj signature(object = "momentModel", theta = "numeric", wObj = "momentWeights"):
...

evalWeights signature(object = "momentModel"): ...

gelFit signature(model = "momentModel"): ...

getRestrict signature(object = "momentModel"): ...

gmmFit signature(model = "momentModel"): ...

kernapply signature(x = "momentModel"): ...

print signature(x = "momentModel"): ...

show signature(object = "momentModel"): ...

70 momentStrength-methods

solveGel signature(object = "momentModel"): ...

update signature(object = "momentModel"): ...

vcov signature(object = "momentModel"): ...

vcovHAC signature(x = "momentModel"): ...

Examples

showClass("momentModel")

momentStrength-methods

~~ Methods for Function momentStrength in Package momentfit ~~

Description

It produces measures of the strength of the moment conditions.

Usage

S4 method for signature 'linearModel'
momentStrength(object, theta)

Arguments

object An object of class "linearModel"

theta Coefficient vector at which the strength must be measured. It does not impact
the measure for objects of class linearModel.

Details

For now, the method only exists for linear models. It returns the F-statistics from the first stage
regression. The type of covariance matrix used to compute the statistics depends on the specification
of the model. If the argument vcov of the model is set to "iid", a non robust estimator is used. If
it is set to "MDS", "HAC", or "CL", the appropriate robust estimator is used. To use a different type,
use the method update to change the argument vcov of the model object. See the example below.

Methods

signature(object = "functionModel") Not implemented yet. In that case, we want some mea-
sure of the rank of the matrix of derivatives.

signature(object = "formulaModel") Not implemented yet. In that case, we want some mea-
sure of the rank of the matrix of derivatives.

signature(object = "linearModel") It returns the F-test of the first stage regression. It is a
measure of the strength of the instruments.

signature(object = "rlinearModel") Returns nothing for now.

signature(object = "nonlinearModel") Not implemented yet.

momentWeights-class 71

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="iid")
momentStrength(model1)
changing the type of vcov to get robust tests
momentStrength(update(model1, vcov="MDS"))

momentWeights-class Class "momentWeights"

Description

A class to store the weighting matrix of a set of moment conditions.

Objects from the Class

Objects can be created by calls of the form new("momentWeights", ...). It is created my evalWeights.

Slots

w: Object of class "ANY" ~~

type: Object of class "character" ~~

wSpec: Object of class "list" ~~

Methods

[signature(x = "momentWeights", i = "missing", j = "missing"): ...

[signature(x = "momentWeights", i = "numeric", j = "missing"): ...

evalGmmObj signature(object = "momentModel", theta = "numeric", wObj = "momentWeights"):
...

print signature(x = "momentWeights"): ...

quadra signature(w = "momentWeights", x = "matrixORnumeric", y = "matrixORnumeric"):
...

quadra signature(w = "momentWeights", x = "matrixORnumeric", y = "missing"): ...

quadra signature(w = "momentWeights", x = "missing", y = "missing"): ...

show signature(object = "momentWeights"): ...

solveGmm signature(object = "allNLModel", wObj = "momentWeights"): ...

solveGmm signature(object = "linearModel", wObj = "momentWeights"): ...

Examples

showClass("momentWeights")

72 Mroz

momFct-methods Methods for Function momFct in Package momentfit

Description

The methods computes the moment matrix. It is use to create special moment functions

Usage

S4 method for signature 'numeric,gelfit'
momFct(eta, object)

Arguments

eta A vector that includes the coefficient and the Lagrange multipliers

object An object of class "gmmfit"

Methods

signature(eta = "numeric", object = "gelfit")

Mroz Labour data on married women

Description

The dataset was used by Mroz (1987) and in examples in Wooldridge (2016)

Usage

data("Mroz")

Format

A data frame with 753 observations on the following 22 variables.

inlf =1 if in lab frce, 1975

hours hours worked, 1975

kidslt6 number of kids < 6 years

kidsge6 number of kids 6-18

age woman’s age in years

educ years of schooling

wage Estimated wage from earnings and hours

repwage reported wage at interview in 1976

Mroz 73

hushrs hours worked by husband, 1975

husage husband’s age

huseduc husband’s years of schooling

huswage husband’s hourly wage, 1975

faminc family income, 1975

mtr federal marginal tax rate facing woman

motheduc mother’s years of schooling

fatheduc father’s years of schooling

unem unemployment rate in county of residence

city =1 if live in SMSA

exper actual labor market experience

nwifeinc (faminc− wage ∗ hours)/1000

Source

From Wooldridge (2016) online resources.

References

Mroz, T.A. (1987), The Sensitivity of an Empirical Model of Married Women’s Hours of Work to
Economic and Statistical Assumptions, Econometrica, 55, 657–678. 387–405.

Wooldridge, J.M. (2016). Introductory Econometrics, A Modern Approach, 6th edition, Cengage
Learning.

Examples

Example 15.1 of Wooldridge (2016)

data(Mroz)
Mroz <- subset(Mroz, hours>0)
I guess IID is assumed (That's how we get the same s.e.)
By default a sandwich vcov is computed because it is
a just-identified model.
res4 <- gmm4(log(wage)~educ, ~fatheduc, vcov="iid", data=Mroz)
summary(res4)

If we adjust the variance of the residuals, however,
we are a little off (very little)

summary(res4, df.adj=TRUE)

Example 15.5 of Wooldridge (2016)
Need to adjust for degrees of freedom in order
to get the same s.e.
The first stage F-test is very different though
Cannot get the same even if do it manually

74 nonlinearModel-class

with the linearHypothesis from the car package
model <- momentModel(log(wage)~educ+exper+I(exper^2),
~exper+I(exper^2)+fatheduc+motheduc, vcov="iid", data=Mroz)
res <- tsls(model)
summary(res, df.adj=TRUE)

nonlinearModel-class Class "nonlinearModel"

Description

Class for moment-based models for which moment conditions are orthogonality conditions between
instruments and the residuals from a nonlinear regression.

Objects from the Class

Objects can be created by calls of the form new("nonlinearModel", ...). It is generated my
momentModel.

Slots

modelF: Object of class "data.frame" ~~

instF: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

fRHS: Object of class "expression" ~~

fLHS: Object of class "expressionORNULL" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

plot-methods 75

Extends

Class "regModel", directly. Class "allNLModel", directly. Class "momentModel", directly.

Methods

Dresiduals signature(object = "nonlinearModel"): ...

merge signature(x = "nonlinearModel", y = "nonlinearModel"): ...

merge signature(x = "snonlinearModel", y = "nonlinearModel"): ...

model.matrix signature(object = "nonlinearModel"): ...

modelDims signature(object = "nonlinearModel"): ...

momentStrength signature(object = "nonlinearModel"): ...

residuals signature(object = "nonlinearModel"): ...

restModel signature(object = "nonlinearModel"): ...

Examples

showClass("nonlinearModel")

plot-methods ~~ Methods for Function plot from package graphics ~~

Description

It plots the confidence region.

Usage

S4 method for signature 'ANY'
plot(x, y, ...)

S4 method for signature 'mconfint'
plot(x, y, main=NULL, xlab=NULL, ylab=NULL,

pch=21, bg=1, Pcol=1, ylim=NULL, xlim=NULL,
add=FALSE, addEstimates=TRUE, ...)

Arguments

x An object to plot

y On used for "ANY".

main Optional title

xlab Optional label for the x-axis.

ylab Optional label for the y-axis.

pch Type of points (see points).

76 print-methods

bg Background color for points.

Pcol The color for the points. If col is used, it is passed to polygon

xlim Optional range for the x-axis.

ylim Optional range for the y-axis.

add If TRUE, the region is added to an existing plot.

addEstimates Should we add the point estimate to the confidence region? This option is only
used when add is FALSE.

... Arguments to pass to polygon

Methods

signature(object = "ANY") It uses the plot from package graphics
signature(object = "mconfint") Plot the 2D confidence region.

print-methods Methods for Function print in Package base

Description

Print methods for all "momentModel", "gmmfit", "summaryGmm" "hypothesisTest" and "specTest"
objects.

Methods

signature(x = "ANY")

signature(x = "momentModel")

signature(x = "sSpec")

signature(x = "confint")

signature(x = "mconfint")

signature(x = "sysModel")

signature(x = "sysMomentWeights")

signature(x = "gmmfit")

signature(x = "gelfit")

signature(x = "sgmmfit")

signature(x = "summaryGmm")

signature(x = "summaryGel")

signature(x = "summarySysGmm")

signature(x = "specTest")

signature(x = "rlinearModel")

signature(x = "rformulaModel")

printRestrict-methods 77

signature(x = "rslinearModel")

signature(x = "rsnonlinearModel")

signature(x = "rnonlinearModel")

signature(x = "rfunctionModel")

signature(x = "hypothesisTest")

signature(x = "momentWeights")

signature(x = "minAlgo")

printRestrict-methods ~~ Methods for Function printRestrict in Package momentfit ~~

Description

It prints the detailed restrictions imposed on "momentModel" classes.

Methods

signature(object = "rgelModels")

signature(object = "rlinearModel")

signature(object = "rnonlinearModel")

signature(object = "rfunctionModel")

signature(object = "rformulaModel")

signature(object = "rslinearModel")

signature(object = "rsnonlinearModel")

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)

restricted model
R <- matrix(c(1,1,0,0,0,0,0,2,0,0,0,0,0,1,-1),3,5, byrow=TRUE)
q <- c(0,1,3)
rmodel1 <- restModel(model1, R, q)
printRestrict(rmodel1)

78 quadra-methods

quadra-methods ~~ Methods for Function quadra in Package momentfit ~~

Description

~~ Computes the quadratic form, where the center matrix is a class momentWeights object ~~

Usage

S4 method for signature 'momentWeights,missing,missing'
quadra(w, x, y, genInv=FALSE)

S4 method for signature 'momentWeights,matrixORnumeric,missing'
quadra(w, x, y,
genInv=FALSE)

S4 method for signature 'momentWeights,matrixORnumeric,matrixORnumeric'
quadra(w, x,
y, genInv=FALSE)

S4 method for signature 'sysMomentWeights,matrixORnumeric,matrixORnumeric'
quadra(w,
x, y)

S4 method for signature 'sysMomentWeights,matrixORnumeric,missing'
quadra(w, x, y)

S4 method for signature 'sysMomentWeights,missing,missing'
quadra(w, x, y)

Arguments

w An object of class "momentWeights"

x A matrix or numeric vector

y A matrix or numeric vector

genInv Should we invert the center matrix using a generalized inverse?

Value

It returns a single numeric value.

quadra-methods 79

Methods

signature(w = "momentWeights", x = "matrixORnumeric", y = "matrixORnumeric") It com-
putes x′Wy, where W is the weighting matrix.

signature(w = "momentWeights", x = "matrixORnumeric", y = "missing") It computes x′Wx,
where W is the weighting matrix.

signature(w = "momentWeights", x = "missing", y = "missing") It computes W , where W is
the weighting matrix. When W is the inverse of the covariance matrix of the moment con-
ditions, it is saved as either a QR decompisition, a Cholesky decomposition or a covariance
matrix into the momentWeights object. The quadra method with no y and x is therefore a way
to invert it. The same applies to system of equations

References

Courrieu P (2005), Fast Computation of Moore-Penrose Inverse Matrices. Neural Information Pro-
cessing - Letters and Reviews, 8(2), 25–29.

Examples

data(simData)

theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

gbar <- evalMoment(model1, theta)
gbar <- colMeans(gbar)

Objective function of GMM with identity matrix
wObj <- evalWeights(model1, w="ident")
quadra(wObj, gbar)

Objective function of GMM with efficient weights
wObj <- evalWeights(model1, theta)
quadra(wObj, gbar)

Linearly dependent instruments

simData$z3 <- simData$z1+simData$z2
model2 <- momentModel(y~x1, ~z1+z2+z3, data=simData)
gbar2 <- evalMoment(model2, theta)
gbar2 <- colMeans(gbar2)

A warning is printed about the singularity of the weighting matrix
wObj <- evalWeights(model2, theta)

The regular inverse using the QR decomposition:
quadra(wObj)

The regular inverse using the generalized inverse:
quadra(wObj, genInv=TRUE)

80 residuals-methods

regModel-class Class "regModel"

Description

A union class for "linearModel" and "nonlinearModel" classes.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

[signature(x = "regModel", i = "numeric", j = "missing"): ...

evalDMoment signature(object = "regModel"): ...

evalMoment signature(object = "regModel"): ...

subset signature(x = "regModel"): ...

Examples

showClass("regModel")

residuals-methods ~~ Methods for Function residuals in Package stats ~~

Description

It computes the residual for a given coefficient vector, when the model is a linear of nonlinear re-
gression with instruments. The method can be called on a momentModel class for a given coefficient
theta or on a gmmfit object.

Methods

signature(object = "rsysModel")

signature(object = "linearModel")

signature(object = "nonlinearModel")

signature(object = "gmmfit")

signature(object = "gelfit")

signature(object = "sgmmfit")

signature(object = "sysModel")

restModel-methods 81

Examples

x <- rchisq(200,5)
z1 <- rnorm(200)
z2 <- .2*x+rnorm(200)
y <- x+rnorm(200)
dat <- data.frame(y=y,z1=z1,x=x,z2=z2)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x, ~z1+z2, data=dat)

residuals for a given theta
e <- residuals(model1, theta)

residuals of the fit
res <- gmmFit(model1)
e <- residuals(res)

restModel-methods ~~ Methods for Function restModel in Package momentfit ~~

Description

It converts momentModel objects into its restricted counterpart.

Usage

S4 method for signature 'linearModel'
restModel(object, R, rhs=NULL)

S4 method for signature 'slinearModel'
restModel(object, R, rhs=NULL)

S4 method for signature 'snonlinearModel'
restModel(object, R, rhs=NULL)

S4 method for signature 'nonlinearModel'
restModel(object, R, rhs=NULL)

S4 method for signature 'formulaModel'
restModel(object, R, rhs=NULL)

S4 method for signature 'functionModel'
restModel(object, R, rhs=NULL)

82 restModel-methods

Arguments

object An object of class "momentModel" or "sysModel".

R Either a matrix or a vector of characters for linear models and a list of formulas
for nonlinear models. See details below.

rhs The right hand side of the linear restrictions. It is ignored for nonlinear models.

Details

For linear models and linear restrictions, R is in general a matrix. In that case, the restrictions are
in the form Rθ = q, where θ is the vector of coefficients. It is also possible, for linear models,
to define R as a character vector with the restrictions being expressed explicitly. In that case, the
names of the coefficients are the names of the variables. For example, if we want the sum of the
coefficients of the variables x1 and x2 to be equal to 0, we can set R to "x1+x2=0".

Nonlinear restrictions are not allowed for linear models. However, it is possible by converting linear
models into nonlinear models before imposing the nonlinear restrictions. This is done by using the
as method. For example, we can convert the linear model mod to a nonlinear model using the
command mod <- as(mod, "nonlinearModel").

For all other types (nonlinearModel, formulaModel and functionModel), restrictions in R must be
in the form: one coefficient as a function of the others. We can express the restriction as a formula
(or a list of formula for more than one restriction) or a character vector. Note that it is the names
of the coefficients that appear in the R, not the names of the variables. For example, the following
is a valid restriction: "theta1=theta2*theta3+1". Although the following is the same restriction, it
is not a valid entry for R: "theta1-theta2*theta3=1". This condition is part of the validity test when
restricted model are created. If it is not satisfied, an error message is returned.

Methods

signature(object = "linearModel") Method for object of class linearModel.

signature(object = "linearGel") Method for all classes related to linearGel.

signature(object = "slinearModel") Method for object of class slinearModel.

signature(object = "snonlinearModel") Method for object of class snonlinearModel.

signature(object = "nonlinearModel") Method for object of class nonlinearModel.

signature(object = "nonlinearGel") Method for object of class nonlinearGel.

signature(object = "functionModel") Method for object of class functionModel.

signature(object = "functionGel") Method for object of class functionGel.

signature(object = "formulaModel") Method for object of class formulaModel.

signature(object = "formulaGel") Method for object of class formulaGel.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)

Unrestricted model
model1 <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)

restModel-methods 83

Using matrix R
R <- matrix(c(1,1,0,0,0,0,0,2,0,0,0,0,0,1,-1),3,5, byrow=TRUE)
q <- c(0,1,3)

rmodel1 <- restModel(model1, R, q)
rmodel1

Using character
Many ways to write the constraints

R1 <- c("x1","2*x2+z1=2", "4+x3*5=3")
rmodel1 <- restModel(model1, R1)
rmodel1

Works with interaction and identity function I()

model1 <- momentModel(y~x1*x2+exp(x3)+I(z1^2), ~x1+x2+z1+z2+z3+z4, data=simData)
R1 <- c("x1","exp(x3)+2*x1:x2", "I(z1^2)=3")
rmodel1 <- restModel(model1, R1)
rmodel1

nonlinear constraints on a linear model
we need to convert the linear model into a nonlinear one

model <- momentModel(y~x1+x2+x3+z1, ~x1+x2+z1+z2+z3+z4, data=simData)
NLmodel <- as(model, "nonlinearModel")

To avoid having unconventional parameter names, which happens
when I() is used or with interaction, the X's and coefficients are
renamed

NLmodel@parNames

Restriction can be a list of formula or vector of characters
For the latter, it will be converted into a list of formulas

R1 <- c("theta2=2", "theta3=theta4^2")
rmod1 <- restModel(NLmodel, R1)
res1 <- gmmFit(rmod1)
res1
recover the orignial form
coef(rmod1, coef(res1))

with formulas

R2 <- list(theta2~2, theta3~1/theta4)
rmod2 <- restModel(NLmodel, R2)
res2 <- gmmFit(rmod2)
res2
coef(rmod2, coef(res2))

The same can be done with function based models

84 rformulaModel-class

rformulaModel-class Class "rformulaModel"

Description

A class for restricted moment-based models for which moment conditions are expressed using a list
of formulas.

Objects from the Class

Objects can be created by calls of the form new("rformulaModel", ...). It is created by restModel-methods.

Slots

R: Object of class "list" ~~

cstSpec: Object of class "list" ~~

modelF: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

fRHS: Object of class "list" ~~

fLHS: Object of class "list" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

isMDE: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "formulaModel", directly. Class "rmomentModel", directly. Class "allNLModel", by class
"formulaModel", distance 2. Class "momentModel", by class "formulaModel", distance 2.

rfunctionModel-class 85

Methods

coef signature(object = "rformulaModel"): ...

evalDMoment signature(object = "rformulaModel"): ...

getRestrict signature(object = "rformulaModel"): ...

gmmFit signature(model = "rformulaModel"): ...

modelDims signature(object = "rformulaModel"): ...

print signature(x = "rformulaModel"): ...

printRestrict signature(object = "rformulaModel"): ...

Examples

showClass("rformulaModel")

rfunctionModel-class Class "rfunctionModel"

Description

A restricted moment-based model for which moment conditions are defined by a function.

Objects from the Class

Objects can be created by calls of the form new("rfunctionModel", ...). It is created by restModel-methods.

Slots

R: Object of class "list" ~~

cstSpec: Object of class "list" ~~

X: Object of class "ANY" ~~

fct: Object of class "function" ~~

dfct: Object of class "functionORNULL" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

86 rhoFct

isEndo: Object of class "logical" ~~
omit: Object of class "integer" ~~
survOptions: Object of class "list" ~~
sSpec: Object of class "sSpec" ~~
smooth: Object of class "logical" ~~

Extends

Class "functionModel", directly. Class "rmomentModel", directly. Class "allNLModel", by class
"functionModel", distance 2. Class "momentModel", by class "functionModel", distance 2.

Methods

[signature(x = "rfunctionModel", i = "numeric", j = "missing"): ...
coef signature(object = "rfunctionModel"): ...
evalDMoment signature(object = "rfunctionModel"): ...
getRestrict signature(object = "rfunctionModel"): ...
modelDims signature(object = "rfunctionModel"): ...
print signature(x = "rfunctionModel"): ...
printRestrict signature(object = "rfunctionModel"): ...

Examples

showClass("rfunctionModel")

rhoFct GEL objective functions

Description

Functions that returns the GEL function ρ(g(θ, x)′λ) and its derivatives.

Usage

rhoET(gmat, lambda, derive = 0, k = 1)

rhoETEL(gmat, lambda, derive = 0, k = 1)

rhoEL(gmat, lambda, derive = 0, k = 1)

rhoEEL(gmat, lambda, derive = 0, k = 1)

rhoREEL(gmat, lambda, derive = 0, k = 1)

rhoHD(gmat, lambda, derive = 0, k = 1)

rhoETHD(gmat, lambda, derive = 0, k = 1)

rlinearModel-class 87

Arguments

gmat The n× q matrix of moments

lambda The q × 1 vector of Lagrange multipliers.

derive An integer which indicates which derivative to return

k A numeric scaling factor that is required when "gmat" is a matrix of time series
which require smoothing. The value depends on the kernel and is automatically
set when the "gelModels" is created.

Value

It returns the vector ρ(gmatλ) when derive=0, ρ′(gmatλ) when derive=1 and ρ′′(gmatλ) when
derive=2.

References

Anatolyev, S. (2005), GMM, GEL, Serial Correlation, and Asymptotic Bias. Econometrica, 73,
983-1002.

Kitamura, Yuichi (1997), Empirical Likelihood Methods With Weakly Dependent Processes. The
Annals of Statistics, 25, 2084-2102.

Kitamura, Y. and Otsu, T. and Evdokimov, K. (2013), Robustness, Infinitesimal Neighborhoods and
Moment Restrictions. Econometrica, 81, 1185-1201.

Newey, W.K. and Smith, R.J. (2004), Higher Order Properties of GMM and Generalized Empirical
Likelihood Estimators. Econometrica, 72, 219-255.

Smith, R.J. (2011), GEL Criteria for Moment Condition Models. Econometric Theory, 27(6), 1192–
1235.

rlinearModel-class Class "rlinearModel"

Description

A class for restricted moment-based models for which moment conditions are orthogonality condi-
tions between instruments and the residuals from a linear regression.

Objects from the Class

Objects can be created by calls of the form new("rlinearModel", ...). It is created by restModel-methods.

Slots

cstLHS: Object of class "matrix" ~~

cstRHS: Object of class "numeric" ~~

cstSpec: Object of class "list" ~~

modelF: Object of class "data.frame" ~~

88 rlinearModel-class

instF: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "linearModel", directly. Class "rmomentModel", directly. Class "regModel", by class
"linearModel", distance 2. Class "momentModel", by class "linearModel", distance 2.

Methods

coef signature(object = "rlinearModel"): ...

getRestrict signature(object = "rlinearModel"): ...

gmmFit signature(model = "rlinearModel"): ...

model.matrix signature(object = "rlinearModel"): ...

modelDims signature(object = "rlinearModel"): ...

modelResponse signature(object = "rlinearModel"): ...

momentStrength signature(object = "rlinearModel"): ...

print signature(x = "rlinearModel"): ...

printRestrict signature(object = "rlinearModel"): ...

Examples

showClass("rlinearModel")

rmomentModel-class 89

rmomentModel-class Class "rmomentModel"

Description

A union class for all restricted moment-based models.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

gelFit signature(model = "rmomentModel"): ...

Examples

showClass("rmomentModel")

rnonlinearModel-class Class "rnonlinearModel"

Description

A class for restricted moment-based models for which moment conditions are orthogonality condi-
tions between instruments and the residuals from a nonlinear regression.

Objects from the Class

Objects can be created by calls of the form new("rnonlinearModel", ...). It is created by
restModel-methods.

Slots

R: Object of class "list" ~~

cstSpec: Object of class "list" ~~

modelF: Object of class "data.frame" ~~

instF: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

theta0: Object of class "numeric" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

90 rnonlinearModel-class

parNames: Object of class "character" ~~

momNames: Object of class "character" ~~

fRHS: Object of class "expression" ~~

fLHS: Object of class "expressionORNULL" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

varNames: Object of class "character" ~~

isEndo: Object of class "logical" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "nonlinearModel", directly. Class "rmomentModel", directly. Class "regModel", by class
"nonlinearModel", distance 2. Class "allNLModel", by class "nonlinearModel", distance 2. Class
"momentModel", by class "nonlinearModel", distance 2.

Methods

coef signature(object = "rnonlinearModel"): ...

evalDMoment signature(object = "rnonlinearModel"): ...

getRestrict signature(object = "rnonlinearModel"): ...

gmmFit signature(model = "rnonlinearModel"): ...

modelDims signature(object = "rnonlinearModel"): ...

print signature(x = "rnonlinearModel"): ...

printRestrict signature(object = "rnonlinearModel"): ...

Examples

showClass("rnonlinearModel")

rslinearModel-class 91

rslinearModel-class Class "rslinearModel"

Description

A class for restricted system of linear equations.

Objects from the Class

Objects can be created by calls of the form new("rslinearModel", ...). It is created by restModel-methods.

Slots

cstLHS: Object of class "matrix" ~~

cstRHS: Object of class "numeric" ~~

cstSpec: Object of class "list" ~~

modelT: Object of class "list" ~~

instT: Object of class "list" ~~

data: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "list" ~~

momNames: Object of class "list" ~~

eqnNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

sameMom: Object of class "logical" ~~

SUR: Object of class "logical" ~~

varNames: Object of class "list" ~~

isEndo: Object of class "list" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "slinearModel", directly. Class "rsysModel", directly. Class "sysModel", by class "slin-
earModel", distance 2.

92 rsnonlinearModel-class

Methods

[signature(x = "rslinearModel", i = "numeric", j = "missing"): ...

coef signature(object = "rslinearModel"): ...

evalDMoment signature(object = "rslinearModel"): ...

evalMoment signature(object = "rslinearModel"): ...

evalWeights signature(object = "rslinearModel"): ...

getRestrict signature(object = "rslinearModel"): ...

gmmFit signature(model = "rslinearModel"): ...

model.matrix signature(object = "rslinearModel"): ...

modelDims signature(object = "rslinearModel"): ...

modelResponse signature(object = "rslinearModel"): ...

print signature(x = "rslinearModel"): ...

printRestrict signature(object = "rslinearModel"): ...

residuals signature(object = "rslinearModel"): ...

solveGmm signature(object = "rslinearModel", wObj = "sysMomentWeights"): ...

ThreeSLS signature(model = "rslinearModel"): ...

Examples

showClass("rslinearModel")

rsnonlinearModel-class

Class "rsnonlinearModel"

Description

A class for restricted systems of nonlinear equations.

Objects from the Class

Objects can be created by calls of the form new("rsnonlinearModel", ...). It is created by
restModel-methods.

Slots

R: Object of class "list" ~~

cstSpec: Object of class "list" ~~

data: Object of class "data.frame" ~~

instT: Object of class "list" ~~

vcov: Object of class "character" ~~

rsnonlinearModel-class 93

theta0: Object of class "list" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "list" ~~

momNames: Object of class "list" ~~

fRHS: Object of class "list" ~~

fLHS: Object of class "list" ~~

eqnNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

sameMom: Object of class "logical" ~~

SUR: Object of class "logical" ~~

varNames: Object of class "list" ~~

isEndo: Object of class "list" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "snonlinearModel", directly. Class "rsysModel", directly. Class "sysModel", by class
"snonlinearModel", distance 2.

Methods

No methods defined with class "rsnonlinearModel" in the signature.

Examples

showClass("rsnonlinearModel")

94 setCoef-methods

rsysModel-class Class "rsysModel"

Description

A union class for all systems of equations. (see link{systemGmm})

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "rsysModel" in the signature.

Examples

showClass("rsysModel")

setCoef-methods Methods for Function setCoef in Package momentfit ~~

Description

The method validates the coefficient theta and returns a coefficient object in a format that satisfies
the moment model.

Usage

S4 method for signature 'momentModel'
setCoef(model, theta)
S4 method for signature 'sysModel'
setCoef(model, theta)

Arguments

model A moment model object.
theta A coefficient object. The type depends on the model object. See the examples

below.

Methods

signature(object = "momentModel") Methods for all single equation models including the re-
stricted ones.

signature(object = "sysModel") Methods for all system of equations models including the re-
stricted ones.

sfunctionModel-class 95

Examples

A few system of equation models:
data(simData)
h <- list(~z1+z2+z3, ~x3+z1+z2+z3+z4, ~x3+x4+z1+z2+z3)
nlg <- list(Supply=y1~theta0+theta1*x1+theta2*z2,

Demand1=y2~alpha0+alpha1*x1+alpha2*x2+alpha3*x3,
Demand2=y3~beta0+beta1*x3+beta2*x4+beta3*z1)

g <- list(Supply=y1~x1+z2, Demand1=y2~x1+x2+x3, Demand2=y3~x3+x4+z1)
theta0 <- list(c(theta0=1,theta1=2,theta2=3),

c(alpha0=1,alpha1=2,alpha2=3, alpha3=4),
c(beta0=1,beta1=2,beta2=3,beta3=4))

nlin <- sysMomentModel(nlg, h, theta0, data=simData)
lin <- sysMomentModel(g, h, data=simData)

from numeric vector to the proper format with names:
setCoef(nlin, 1:11)

reorder the equation and name the coefficients
setCoef(nlin, list(Demand1=1:4, Supply=1:3, Demand2=1:4))

reorder the coefficint to match the order in the model
tet <- do.call("c", theta0)
set.seed(112233)
setCoef(nlin, tet[sample(11)])

It validates length and names and provide source of errors
Not run:
setCoef(nlin, list(Demand1=1:4, Supply=1:2, Demand2=1:4))
names(tet)[4] <- "gamma3"
setCoef(nlin, tet)
setCoef(nlin, list(Demand1=1:4, Supply=1:3, Demand4=1:4))

End(Not run)

a single equation model
single <- momentModel(nlg[[1]], h[[1]], theta0[[1]], data=simData)
setCoef(single, c(theta1=4, theta0=6, theta2=8))
setCoef(single, 1:3)

sfunctionModel-class Class "sfunctionModel"

Description

A class for systems of nonlinear equations.

Objects from the Class

Objects can be created by calls of the form new("sfunctionModel", ...). It is created by momentModel.

96 sgmmfit-class

Slots

X: Object of class "ANY" ~~

fct: Object of class "list" ~~

dfct: Object of class "list" ~~

vcov: Object of class "character" ~~

theta0: Object of class "list" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "list" ~~

momNames: Object of class "list" ~~

eqnNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

sameMom: Object of class "logical" ~~

SUR: Object of class "logical" ~~

varNames: Object of class "list" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "sysModel", directly.

Examples

showClass("sfunctionModel")

sgmmfit-class Class "sgmmfit"

Description

Class to store fitted system of equations obtained using the GMM method.

Objects from the Class

Objects can be created by calls of the form new("sgmmfit", ...). It is created by gmmFit.

show-methods 97

Slots

theta: Object of class "list" ~~

convergence: Object of class "list" ~~

convIter: Object of class "numericORNULL" ~~

call: Object of class "callORNULL" ~~

type: Object of class "character" ~~

wObj: Object of class "sysMomentWeights" ~~

niter: Object of class "integer" ~~

efficientGmm: Object of class "logical" ~~

model: Object of class "sysModel" ~~

Methods

bread signature(x = "sgmmfit"): ...

coef signature(object = "sgmmfit"): ...

hypothesisTest signature(object.u = "missing", object.r = "sgmmfit"): ...

hypothesisTest signature(object.u = "sgmmfit", object.r = "missing"): ...

hypothesisTest signature(object.u = "sgmmfit", object.r = "sgmmfit"): ...

meatGmm signature(object = "sgmmfit"): ...

print signature(x = "sgmmfit"): ...

residuals signature(object = "sgmmfit"): ...

show signature(object = "sgmmfit"): ...

specTest signature(object = "sgmmfit", which = "missing"): ...

summary signature(object = "sgmmfit"): ...

vcov signature(object = "sgmmfit"): ...

Examples

showClass("sgmmfit")

show-methods ~~ Methods for Function show in Package methods ~~

Description

Display method for all objects.

98 simData

Methods

signature(object = "ANY")

signature(object = "confint")

signature(object = "mconfint")

signature(object = "sSpec")

signature(object = "momentModel")

signature(object = "sysModel")

signature(object = "gmmfit")

signature(object = "gelfit")

signature(object = "sgmmfit")

signature(object = "specTest")

signature(object = "summarySysGmm")

signature(object = "summaryGmm")

signature(object = "summaryGel")

signature(object = "hypothesisTest")

signature(object = "momentWeights")

signature(object = "sysMomentWeights")

signature(object = "minAlgo")

simData Simulated data.

Description

This dataset is used in several documentation files to illustrate the different functionality of the
package.

Usage

data("simData")

Format

A data frame with 50 observations on the following 12 variables. See the examples for the method
used to generate them.

y a numeric vector

y1 a numeric vector

y3 a numeric vector

y2 a numeric vector

z1 a numeric vector

slinearModel-class 99

x1 a numeric vector

z2 a numeric vector

x2 a numeric vector

z3 a numeric vector

x3 a numeric vector

x4 a numeric vector

z4 a numeric vector

z5 a numeric vector

Examples

Here is how the data was simulated
set.seed(1122)
n <- 50
x1 <- rchisq(n,5)
x2 <- rchisq(n,5)
x3 <- rnorm(n)
x4 <- rnorm(n)
z1 <- .2*x1+rnorm(n)
z2 <- .2*x2+rnorm(n)
z3 <- rnorm(n)
z4 <- rnorm(n)
z5 <- rnorm(n)
y <- y1 <- x1+rnorm(n)
y2 <- 2*x1+rnorm(n)
y3 <- 0.5*x2+rnorm(n)
simData <- data.frame(y=y, y1=y1,y3=y3,y2=y2, z1=z1,x1=x1,z2=z2,x2=x2,z3=z3,x3=x3,

x4=x4,z4=z4,z5=z5)

slinearModel-class Class "slinearModel"

Description

A class for systems of linear equations.

Objects from the Class

Objects can be created by calls of the form new("slinearModel", ...). It is created by momentModel.

Slots

modelT: Object of class "list" ~~

instT: Object of class "list" ~~

data: Object of class "data.frame" ~~

vcov: Object of class "character" ~~

100 slinearModel-class

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "list" ~~

momNames: Object of class "list" ~~

eqnNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

sameMom: Object of class "logical" ~~

SUR: Object of class "logical" ~~

varNames: Object of class "list" ~~

isEndo: Object of class "list" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "sysModel", directly.

Methods

[signature(x = "slinearModel", i = "numeric", j = "missing"): ...

merge signature(x = "slinearModel", y = "linearModel"): ...

model.matrix signature(object = "slinearModel"): ...

modelDims signature(object = "slinearModel"): ...

modelResponse signature(object = "slinearModel"): ...

restModel signature(object = "slinearModel"): ...

solveGmm signature(object = "slinearModel", wObj = "sysMomentWeights"): ...

ThreeSLS signature(model = "slinearModel"): ...

tsls signature(model = "slinearModel"): ...

Examples

showClass("slinearModel")

snonlinearModel-class 101

snonlinearModel-class Class "snonlinearModel"

Description

A class for systems of nonlinear equations.

Objects from the Class

Objects can be created by calls of the form new("snonlinearModel", ...). It is created by
momentModel.

Slots

data: Object of class "data.frame" ~~

instT: Object of class "list" ~~

vcov: Object of class "character" ~~

theta0: Object of class "list" ~~

n: Object of class "integer" ~~

q: Object of class "integer" ~~

k: Object of class "integer" ~~

parNames: Object of class "list" ~~

momNames: Object of class "list" ~~

fRHS: Object of class "list" ~~

fLHS: Object of class "list" ~~

eqnNames: Object of class "character" ~~

vcovOptions: Object of class "list" ~~

centeredVcov: Object of class "logical" ~~

sameMom: Object of class "logical" ~~

SUR: Object of class "logical" ~~

varNames: Object of class "list" ~~

isEndo: Object of class "list" ~~

omit: Object of class "integer" ~~

survOptions: Object of class "list" ~~

sSpec: Object of class "sSpec" ~~

smooth: Object of class "logical" ~~

Extends

Class "sysModel", directly.

102 solveGel-methods

Methods

[signature(x = "snonlinearModel", i = "numeric", j = "missing"): ...

merge signature(x = "snonlinearModel", y = "nonlinearModel"): ...

model.matrix signature(object = "snonlinearModel"): ...

modelDims signature(object = "snonlinearModel"): ...

solveGmm signature(object = "snonlinearModel", wObj = "sysMomentWeights"): ...

Examples

showClass("snonlinearModel")

solveGel-methods ~~ Methods for Function solveGel in Package momentfit ~~

Description

It fits a moment-based model using GEL methods.

Usage

S4 method for signature 'momentModel'
solveGel(object, gelType="EL", theta0=NULL,

lambda0=NULL, lamSlv=NULL,
coefSlv=c("optim","nlminb","constrOptim"),
rhoFct=NULL,
lControl=list(), tControl=list())

Arguments

object An object of class "gelModels"

gelType The type of GEL. It is either "EL", "ET", "EEL", "HD", "ETEL" or "ETHD".

theta0 The vector of coefficients for the starting values used in minimization algorithm.
If NULL, the starting values in the object is used. For linear models, it must be
provided because "linearGel" objects do not have a theta0 slot.

lambda0 The q × 1 vector of starting values for the Lagrange multipliers. By default a
zero vector is used.

lamSlv An alternative solver for the Lagrange multiplier. By default, either Wu_lam,
EEL_lam, REEL_lam or getLambda is used.

coefSlv Minimization solver for the coefficient vector.

rhoFct An alternative objective function for GEL. This argument is only used if we
want to fit the model with a different GEL method. see rhoFct.

lControl A list of controls for the Lagrange multiplier algorithm.

tControl A list of controls for the coefficient algorithm.

solveGmm-methods 103

Value

A list with the following:

theta The vector of solution

lambda The vector of Lagrange multiplier

lconvergence convergence code for the Lagrange multiplier. 0 means normal convergence.

convergence convergence code for the coefficients. 0 means normal convergence. For higher
numbers, see optim, constrOptim or nlminb

Methods

signature(object = "momentModel") The method applies to all GEL classes.

Examples

data(simData)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

Get a good starting value
theta0 <- gmmFit(model1)@theta

EL by default, with Wu algorithm
res2 <- solveGel(model1, theta0=theta0)

Change solver parameters
res3 <- solveGel(model1, theta0=theta0,

tControl=list(method="Nelder", control=list(maxit=2000)))

solveGmm-methods ~~ Methods for Function solveGmm in Package momentfit ~~

Description

The main function to get the GMM solution for a given weighting matrix.

Usage

S4 method for signature 'linearModel,momentWeights'
solveGmm(object, wObj, theta0=NULL,
...)

S4 method for signature 'allNLModel,momentWeights'
solveGmm(object, wObj, theta0=NULL,
algo=algoObj("optim"), ...)

S4 method for signature 'rnonlinearModel,momentWeights'

104 solveGmm-methods

solveGmm(object, wObj, theta0=NULL,
...)

S4 method for signature 'slinearModel,sysMomentWeights'
solveGmm(object, wObj,
theta0=NULL, ...)

S4 method for signature 'rslinearModel,sysMomentWeights'
solveGmm(object, wObj,
theta0=NULL, ...)

S4 method for signature 'snonlinearModel,sysMomentWeights'
solveGmm(object, wObj,
theta0=NULL, algo=algoObj("optim"), ...)

S4 method for signature 'sfunctionModel,sysMomentWeights'
solveGmm(object, wObj,
theta0=NULL, algo=algoObj("optim"), ...)

Arguments

object A moment-based model

theta0 The vector of coefficients for the starting values used in optim. If NULL, the
starting values in the object if used. For system of equations, it is a list of vectors.

wObj An object of class "momentWeights" or "sysMomentWeights".

algo The numerical algorithm to minimize the objective function. It must be a class
minAlgo object created by algoObj.

... Arguments to pass to optim.

Value

A list with the following:

theta The vector of solution

convergence convergence code. 0 means normal convergence. For higher numbers, see optim

Methods

signature(object = "allNLMoment", wObj = "momentWeights") Method to solve either non-
linear regressions or models in which moments are computed with a function. The objective
is minimized using optim.

signature(object = "rnonlinearModel", wObj = "momentWeights") Method to solve restricted
nonlinear models. It computes the analytical solution.

signature(object = "linearModel", wObj = "momentWeights") Method to solve linear mod-
els. It computes the analytical solution.

signature(object = "slinearModel", wObj = "sysMomentWeights") Method to solve system
of linear models. It computes the analytical solution.

specTest-class 105

signature(object = "rslinearModel", wObj = "sysMomentWeights") Method to solve system
of linear models in which restrictions have been imposed on the coefficients. It computes the
analytical solution.

signature(object = "slinearModel", wObj = "sysMomentWeights") Method to solve system
of nonlinear models. The solution is obtained with optim using the analytical derivatives.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

A manual two-step GMM
w0 <- evalWeights(model1, w="ident")
theta0 <- solveGmm(model1, w0)$theta
w <- evalWeights(model1, theta0)
theta1 <- solveGmm(model1, w)$theta

specTest-class Class "specTest"

Description

A class to store results from a specification test.

Objects from the Class

Objects can be created by calls of the form new("specTest", ...). It is created my specTest-methods.

Slots

test: Object of class "matrix" ~~

testname: Object of class "character" ~~

Methods

print signature(x = "specTest"): ...

show signature(object = "specTest"): ...

Examples

showClass("specTest")

106 specTest-methods

specTest-methods ~~ Methods for Function specTest in Package momentfit ~~

Description

It computes tests of specification for GMM fit.

Usage

S4 method for signature 'gmmfit,missing'
specTest(object, which, df.adj=FALSE, wObj=NULL)

S4 method for signature 'sgmmfit,missing'
specTest(object, which, df.adj=FALSE, wObj=NULL)

S4 method for signature 'gmmfit,numeric'
specTest(object, which)

S4 method for signature 'gelfit,missing'
specTest(object, which,

type = c("All", "LR", "LM", "J"))

Arguments

object GMM or GEL fit object

which Which sub-moment conditions to test.

df.adj Should we adjust the covariance matrix of the moment conditions for degrees
of freedom. If TRUE the covariance matrix is multiplied by n/(n-k), where n is
the sample size and k is the number of coefficients. For heteroscedastic robust
covariance matrix, adjusting is equivalent to computing HC1 while not adjusting
is HC0.

wObj An object of class gmmWeights. If NULL (the recommended value), the optimal
weights is computed at the fitted coefficient estimates. It is used by hypothesisTest
if one wants the LR statistics to be computed using the same weights for the re-
stricted and unrestricted model.

type For GEL, three specification tests are available

Methods

signature(object = "gmmfit", which="missing")

signature(object = "sgmmfit", which="missing")

signature(object = "gmmfit", which="numeric")

sSpec-class 107

References

Eichenbaum, M. and Hansen L. and Singleton, K. (1985). A time Series Analysis of Representa-
tive Agent Models of Consumption and Leisure Choise under Uncertainty. Quarterly Journal of
Economics, 103, 51–78.

Hayashi, F. (2000). Econometrics, New Jersey: Princeton University Press.

Examples

data(simData)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

res <- gmmFit(model1)
specTest(res)

Hayashi Example 3.3 (there is not result in the book but
that's how we would do it for YEAR=1967
data(Griliches)
dat <- subset(Griliches, YEAR==67)
model <- momentModel(LW~S+EXPR+IQ, ~S+EXPR+AGE+MED, data=dat, vcov="MDS")
res <- gmmFit(model)
testing the orthogonality conditions of S
specTest(res, 2)

sSpec-class Class "sSpec"

Description

A class to store the specifications of the kernel used to smooth moment conditions.

Objects from the Class

Objects can be created by calls of the form new("sSpec", ...). It is created by kernapply-methods.

Slots

k: Object of class "numeric" ~~

kernel: Object of class "character" ~~

bw: Object of class "numeric" ~~

w: Object of class "tskernel" ~~

bwMet: Object of class "character" ~~

Methods

print signature(x = "sSpec"): ...

show signature(object = "sSpec"): ...

108 stsls-class

Examples

showClass("sSpec")

stsls-class Class "stsls"

Description

A class to store a fitted system of equations obtained using the two-stage least squares method.

Objects from the Class

Objects can be created by calls of the form new("stsls", ...). It is created my tsls-methods.

Slots

theta: Object of class "list" ~~

convergence: Object of class "numericORNULL" ~~

convIter: Object of class "numericORNULL" ~~

call: Object of class "callORNULL" ~~

type: Object of class "character" ~~

wObj: Object of class "sysMomentWeights" ~~

niter: Object of class "integer" ~~

efficientGmm: Object of class "logical" ~~

model: Object of class "sysModel" ~~

Extends

Class "sgmmfit", directly.

Methods

No methods defined with class "stsls" in the signature.

Examples

showClass("stsls")

summary-methods 109

summary-methods ~~ Methods for Function summary in Package base ~~

Description

Compute several results from a moment based model fit.

Usage

S4 method for signature 'gmmfit'
summary(object, testStrength=TRUE, ...)

S4 method for signature 'gelfit'
summary(object, ...)

S4 method for signature 'sgmmfit'
summary(object, testStrength=TRUE, ...)

Arguments

object A fit object from the package (GMM and GEL are the only methods for now)

testStrength Should the first stage F-statistics be computed?

... Other arguments to pass to vcov-methods

Methods

signature(object = "gmmfit")

signature(object = "gmmfit")

signature(object = "sgmmfit")

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

res <- gmmFit(model1)
summary(res)

Fixed and True Weights matrix
Consider the moment of a normal distribution:
Using the first three non centered moments

g <- function(theta, x)
{
mu <- theta[1]
sig2 <- theta[2]

110 summaryGel-class

m1 <- x-mu
m2 <- x^2-mu^2-sig2
m3 <- x^3-mu^3-3*mu*sig2
cbind(m1,m2,m3)
}

dg <- function(theta, x)
{
mu <- theta[1]
sig2 <- theta[2]
G <- matrix(c(-1,-2*mu,-3*mu^2-3*sig2, 0, -1, -3*mu),3,2)
}

x <- simData$x3
model <- momentModel(g, x, c(mu=.1, sig2=1.5), vcov="iid")
res1 <- gmmFit(model)
summary(res1)
Same results (that's because the moment vcov is centered by default)
W <- solve(var(cbind(x,x^2,x^3)))
res2 <- gmmFit(model, weights=W)
res2
If is therefore more efficient in this case to do the following:
summary(res2, breadOnly=TRUE)

summaryGel-class Class "summaryGel"

Description

Class to store the summary of a model fitted by GEL.

Objects from the Class

Objects can be created by calls of the form new("summaryGel", ...). It is created by link{summary-methods}.

Slots

coef: Object of class "matrix" ~~

specTest: Object of class "specTest" ~~

model: Object of class "momentModel" ~~

lambda: Object of class "matrix" ~~

convergence: Object of class "numeric" ~~

lconvergence: Object of class "numeric" ~~

impProb: Object of class "list" ~~

gelType: Object of class "list" ~~

restrictedLam: Object of class "integer" ~~

summaryGmm-class 111

Methods

print signature(x = "summaryGel"): ...

show signature(object = "summaryGel"): ...

Examples

showClass("summaryGel")

summaryGmm-class Class "summaryGmm"

Description

A class to store the summary of a model fitted by GMM.

Objects from the Class

Objects can be created by calls of the form new("summaryGmm", ...). It is created by link{summary-methods}.

Slots

coef: Object of class "matrix" ~~

specTest: Object of class "specTest" ~~

strength: Object of class "list" ~~

model: Object of class "momentModel" ~~

sandwich: Object of class "logical" ~~

type: Object of class "character" ~~

convergence: Object of class "list" ~~

convIter: Object of class "numericORNULL" ~~

wSpec: Object of class "list" ~~

niter: Object of class "integer" ~~

df.adj: Object of class "logical" ~~

breadOnly: Object of class "logical" ~~

Methods

print signature(x = "summaryGmm"): ...

show signature(object = "summaryGmm"): ...

Examples

showClass("summaryGmm")

112 summaryKclass-class

summaryKclass-class Class "summaryKclass"

Description

The class that stores the summary statistics of model fitted by K-Class estimators.

Objects from the Class

Objects can be created by calls of the form new("summaryKclass", ...). It is the summary statis-
tics of models estimated by kclassfit.

Slots

kappa: Object of class "numeric" ~~

method: Object of class "character" ~~

origModel: Object of class "linearModel" ~~

coef: Object of class "matrix" ~~

specTest: Object of class "specTest" ~~

strength: Object of class "list" ~~

model: Object of class "momentModel" ~~

sandwich: Object of class "logical" ~~

type: Object of class "character" ~~

convergence: Object of class "numericORNULL" ~~

convIter: Object of class "numericORNULL" ~~

wSpec: Object of class "list" ~~

niter: Object of class "integer" ~~

df.adj: Object of class "logical" ~~

breadOnly: Object of class "logical" ~~

Extends

Class "summaryGmm", directly.

Methods

print signature(x = "summaryKclass"): ...

show signature(object = "summaryKclass"): ...

Examples

showClass("summaryKclass")

summarySysGmm-class 113

summarySysGmm-class Class "summarySysGmm"

Description

A class to store the summary of a system of equations fitted by GMM.

Objects from the Class

Objects can be created by calls of the form new("summarySysGmm", ...). It is created by summary-methods.

Slots

coef: Object of class "list" ~~

specTest: Object of class "specTest" ~~

strength: Object of class "list" ~~

model: Object of class "sysModel" ~~

sandwich: Object of class "logical" ~~

type: Object of class "character" ~~

convergence: Object of class "list" ~~

convIter: Object of class "numericORNULL" ~~

wSpec: Object of class "list" ~~

niter: Object of class "integer" ~~

df.adj: Object of class "logical" ~~

breadOnly: Object of class "logical" ~~

Methods

print signature(x = "summarySysGmm"): ...

show signature(object = "summarySysGmm"): ...

Examples

showClass("summarySysGmm")

114 sysModel-class

sysModel-class Class "sysModel"

Description

A union class for all systems of equations.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

[signature(x = "sysModel", i = "missing", j = "list"): ...

[signature(x = "sysModel", i = "missing", j = "missing"): ...

[signature(x = "sysModel", i = "numeric", j = "list"): ...

Dresiduals signature(object = "sysModel"): ...

evalDMoment signature(object = "sysModel"): ...

evalGmmObj signature(object = "sysModel", theta = "list", wObj = "sysMomentWeights"):
...

evalMoment signature(object = "sysModel"): ...

evalWeights signature(object = "sysModel"): ...

getRestrict signature(object = "sysModel"): ...

gmmFit signature(model = "sysModel"): ...

print signature(x = "sysModel"): ...

residuals signature(object = "sysModel"): ...

show signature(object = "sysModel"): ...

subset signature(x = "sysModel"): ...

vcov signature(object = "sysModel"): ...

Examples

showClass("sysModel")

sysMomentModel 115

sysMomentModel Constructor for "sysMomentModel" classes

Description

It builds the object of either class "slinearModel" or "snonlinearModel", which are system of
equations based on moment conditions.

Usage

sysMomentModel(g, h=NULL, theta0=NULL, grad=NULL,
vcov = c("iid", "HAC", "MDS", "CL"),
vcovOptions=list(), centeredVcov = TRUE,
data=parent.frame(),na.action="na.omit",
survOptions=list())

Arguments

g A list of linear or nonlinear regression formulas for each equation in the system.

h A list of linear formulas for the instruments in each equation in the system.

theta0 A list of vectors of starting values. It is required only when the equations are
nonlinear, in which case, it must be a list of named vector, with the names cor-
responding to the coefficient names in the regression formulas.

grad A list of functions that returns the derivative of the moment functions. Only
used if g is a list of functions.

vcov Assumption on the properties of the moment conditions. By default, they are
weakly dependant processes. For MDS, we assume that the conditions are mar-
tingale difference sequences, which implies they are serially uncorrelated, but
may be heteroscedastic. There is a difference between iid and MDS only when
g is a formula. In that case, residuals are assumed homoscedastic as well as se-
rially uncorrelated. For type CL, clustered covariance matrix is computed. The
options are then included in vcovOptions (see meatCL).

vcovOptions A list of options for the covariance matrix of the moment conditions. See
vcovHAC for the default values.

centeredVcov Should the moment function be centered when computing its covariance matrix.
Doing so may improve inference.

data A data.frame or a matrix with column names (Optional).

na.action Action to take for missing values. If missing values are present and the option
is set to "na.pass", the model won’t be estimable.

survOptions If needed, a list with the type of survey weights and the weights as a numeric
vector, data.frame or formula. The type is either "sampling" or "fequency".

Value

’sysMomentModel’ returns an object of one of the subclasses of "sysMomentModel".

116 sysMomentModel

References

Hayashi, F. (2000). Econometrics, New Jersey: Princeton University Press.

Andrews DWK (1991), Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Esti-
mation. Econometrica, 59, 817–858.

Newey WK & West KD (1987), A Simple, Positive Semi-Definite, Heteroskedasticity and Auto-
correlation Consistent Covariance Matrix. Econometrica, 55, 703–708.

Newey WK & West KD (1994), Automatic Lag Selection in Covariance Matrix Estimation. Review
of Economic Studies, 61, 631-653.

Examples

set.seed(1122)
x1 <- rchisq(50,5)
x2 <- rchisq(50,5)
x3 <- rnorm(50)
x4 <- rnorm(50)
z1 <- .2*x1+rnorm(50)
z2 <- .2*x2+rnorm(50)
z3 <- rnorm(50)
z4 <- rnorm(50)
z5 <- rnorm(50)
y1 <- x1+rnorm(50)
y2 <- 2*x1+rnorm(50)
y3 <- 0.5*x2+rnorm(50)
dat <- data.frame(y1=y1,y3=y3,y2=y2, z1=z1,x1=x1,z2=z2,x2=x2,z3=z3,x3=x3,

x4=x4,z4=z4,z5=z5)

g1 <- y1~x1+x4; h1 <- ~z1+z2+z3+z4+x4
g2 <- y2~x1+x2+x3; h2 <- ~z1+z2+z3+z4+x3
g3 <- y3~x2+x3+x4; h3 <- ~z2+z3+z4+x3+x4
g <- list(g1,g2,g3)
h <- list(h1,h2,h3)

smodel <- sysMomentModel(g, h, data=dat)

not really nonlinear
nlg <- list(y1~theta0+theta1*x1+theta2*x4,

y2~alpha0+alpha1*x1+alpha2*x2+alpha3*x3,
y3~beta0+beta1*x2+beta2*x3+beta3*x4)

theta0 <- list(c(theta0=1,theta1=2,theta2=3),
c(alpha0=1,alpha1=2,alpha2=3, alpha3=4),
c(beta0=1,beta1=2,beta2=3,beta3=4))

snmodel <- sysMomentModel(nlg, h, theta0, data=dat)

sysMomentWeights-class 117

sysMomentWeights-class

Class "sysMomentWeights"

Description

A class to store the weighting matrix of the moment conditions from a system of equations.

Objects from the Class

Objects can be created by calls of the form new("sysMomentWeights", ...). It is created by the
evalWeights method.

Slots

w: Object of class "ANY" ~~
type: Object of class "character" ~~
wSpec: Object of class "list" ~~
Sigma: Object of class "ANY" ~~
momNames: Object of class "list" ~~
eqnNames: Object of class "character" ~~
sameMom: Object of class "logical" ~~

Methods

[signature(x = "sysMomentWeights", i = "missing", j = "list"): ...
[signature(x = "sysMomentWeights", i = "numeric", j = "list"): ...
[signature(x = "sysMomentWeights", i = "numeric", j = "missing"): ...
evalGmmObj signature(object = "sysModel", theta = "list", wObj = "sysMomentWeights"):

...
print signature(x = "sysMomentWeights"): ...
quadra signature(w = "sysMomentWeights", x = "matrixORnumeric", y = "matrixORnumeric"):

...
quadra signature(w = "sysMomentWeights", x = "matrixORnumeric", y = "missing"): ...
quadra signature(w = "sysMomentWeights", x = "missing", y = "missing"): ...
show signature(object = "sysMomentWeights"): ...
solveGmm signature(object = "rslinearModel", wObj = "sysMomentWeights"): ...
solveGmm signature(object = "slinearModel", wObj = "sysMomentWeights"): ...
solveGmm signature(object = "snonlinearModel", wObj = "sysMomentWeights"): ...

Examples

showClass("sysMomentWeights")

118 systemGmm-doc

systemGmm-doc A guide to estimating systems of equations

Description

This document is meant to describe how to create system of equations objects, estimating them and
peforming hypothesis tests.

Details

Instead of repeating the same example for each method, we are going through all methods and
classes for systems of equations.

Examples

data(simData)

first, we create an sysGmm object
g1 <- y1~x1+x4; h1 <- ~x4+z1+z2+z3+z4
g2 <- y2~x1+x2+x3; h2 <- ~x3+z1+z2+z3+z4
g3 <- y3~x2+x3+x4; h3 <- ~x3+x4+z1+z2+z3+z4
g <- list(g1,g2,g3)
h <- list(h1,h2,h3)
smodel <- sysMomentModel(g, h, data=simData, vcov="MDS")

The show or print method
smodel

The ']' method
smodel[1:2]
smodel[1] ## becomes a one equation model

equation by equation 2SLS
tsls(smodel)

or manually
lapply(1:3, function(i) coef(tsls(smodel[i])))

Fitting the model by two-step GMM
res <- gmmFit(smodel)

testing Overidentifying restrictions
specTest(res)

All info using the summary method
which includes equation by equation measures of
the instrument stengths
Not run: summary(res)

When the error id iid (homoscedastic), we have a

ThreeSLS-methods 119

FIVE estimator with 2SLS as the first step
smodel <- sysMomentModel(g, h, data=simData, vcov="iid")
gmmFit(smodel)

When the error is iid (homoscedastic),
all instruments are the same, and the first step is 2SLS,
we have 3SLS
smodel <- sysMomentModel(g, ~x4+z1+z2+z3+z4, data=simData, vcov="iid")
gmmFit(smodel, initW='tsls')

When the error is iid (homoscedastic),
the instruments are the same and are the union of all regressors,
we have SUR
smodel <- sysMomentModel(g, NULL, data=simData, vcov="iid")
gmmFit(smodel, initW='tsls')

############ Restricted models ##################

unrestricted
smodel <- sysMomentModel(g, h, data=simData, vcov="MDS")
res <- gmmFit(smodel)

no cross-equation restrictions
R1 <- list(c("x1=-12*x4"), character(), c("x2=0.8", "x4=0.3"))
rm1 <- restModel(smodel, R1)
(res1 <- gmmFit(rm1))

Cross equation restrictions
R2<- c("Eqn1.x1=1", "Eqn2.x1=Eqn3.x2")
rm2 <- restModel(smodel, R2)
(es2 <- gmmFit(rm2))## no longer expressed as a system

testing the restriction

Not run: hypothesisTest(res, res1, type="LR")
Not run: hypothesisTest(res, res1, type="LM")
Not run: hypothesisTest(res, res1, type="Wald")

ThreeSLS-methods ~~ Methods for Function ThreeSLS in Package momentfit ~~

Description

Method to estimate system of equations by Three-Stage least squares (3SLS) or, as a special case,
by Seemingly Unrelatd Regressions (SUR).

Usage

S4 method for signature 'slinearModel'

120 tsls-class

ThreeSLS(model, coefOnly=FALSE, qrZ=NULL,
Sigma=NULL)
S4 method for signature 'rslinearModel'
ThreeSLS(model, coefOnly=FALSE, qrZ=NULL,
Sigma=NULL)

Arguments

model An object of class "slinearModel" in which instruments are the same in each
equation and the error terms are homoscedastic.

coefOnly Should the method return the only the coefficients or create an object of class
"sgmmfit".

qrZ The qr decomposition of the common instruments. It is mostly used by gmmFit
to avoid recomputing it in iterative GMM or CUE. It should not be used directly
unless the user knows what he is doing.

Sigma The covariance matrix of the residuals. If not provided, it is computed using the
residuals of the equation by equation two-stage least squares. It should not be
used directly unless the user knows what he is doing.

Methods

signature(model = "slinearModel") The method is specifically for system of linear models
with the same instruments and homoscedastic errors. It becomes SUR as a special case when
the instruments are the union of all regressors.

signature(model = "rslinearModel") This method is for restricted models that does not impose
cross-equation restrictions. With such restrictions 3SLS is not possible as we can no longer
write the model as a system of equations.

tsls-class Class "tsls"

Description

Class that contains a fitted model using two-stage least squares

Objects from the Class

Objects can be created by calls of the form new("tsls", ...). It is created my the

Slots

theta: Object of class "numeric" ~~

convergence: Object of class "numericORNULL" ~~

convIter: Object of class "numericORNULL" ~~

call: Object of class "callORNULL" ~~

tsls-methods 121

type: Object of class "character" ~~

wObj: Object of class "momentWeights" ~~

niter: Object of class "integer" ~~

efficientGmm: Object of class "logical" ~~

model: Object of class "momentModel" ~~

Extends

Class "gmmfit", directly.

Examples

showClass("tsls")

tsls-methods ~~ Methods for Function tsls in Package momentfit ~~

Description

It estimates a linear model using two-stage least squares.

Usage

S4 method for signature 'linearModel'
tsls(model)

S4 method for signature 'slinearModel'
tsls(model)

Arguments

model An object of class linearModel or slinearModel.

Methods

signature(model = "linearModel")

signature(model = "slinearModel") 2SLS for equation by equation estimation of a system of
equations.

122 update-methods

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
res <- tsls(model1)
summary(res)

Econometrics, Fumio Hayashi (2000)
Empirical exercises (b) and (c)
data(Griliches)
Griliches$YEAR <- as.factor(Griliches$YEAR)
model1 <- momentModel(LW~S+IQ+EXPR+TENURE+RNS+SMSA+YEAR-1,

~S+EXPR+TENURE+RNS+SMSA+YEAR+MED+KWW+MRT+AGE-1,
data=Griliches, vcov="MDS")

res <- tsls(model1)
summary(res)

update-methods ~~ Methods for Function update in Package stats ~~

Description

The method is used to refit a model with either a different method or with modifications to the
momentModel.

Usage

S4 method for signature 'gmmfit'
update(object, ..., evaluate=TRUE)

S4 method for signature 'momentModel'
update(object, ...)

S4 method for signature 'gelfit'
update(object, newModel=NULL, ...,
evaluate=TRUE)

S4 method for signature 'list'
update(object, ...)

Arguments

object An object produced by "gelFit", "gmmFit" or a model. It can also be a list, in
which case, it is used to change elements of a list.

... Arguments to modify the model or the GMM method

vcov-methods 123

newModel When provided, the new model is estimated using the same specification. For
example, it is particularly useful to estimate the restricted model using the same
optim specification as the unrestricted model.

evaluate The modified call argument is only evaluated when evaluate is TRUE

Methods

signature(object = "ANY") That just calls "update" from the "stats" package.

signature(object = "gmmfit")

signature(object = "momentModel")

signature(object = "list")

Examples

x <- rchisq(200,5)
z1 <- rnorm(200)
z2 <- .2*x+rnorm(200)
y <- x+rnorm(200)
dat <- data.frame(y=y,z1=z1,x=x,z2=z2)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x, ~z1+z2, data=dat)

(res <- gmmFit(model1))

lets change to iterative
update(res, type="iter")

Let change the HAC specification in the model1 object
to MDS
update(res, vcov="MDS")

vcov-methods ~~ Methods for Function vcov in Package stats ~~

Description

Computes the covariance matrix of the coefficient estimated by GMM or GEL.

Usage

S4 method for signature 'gmmfit'
vcov(object, sandwich=NULL, df.adj=FALSE,
breadOnly=FALSE, modelVcov=NULL)

S4 method for signature 'sgmmfit'
vcov(object, sandwich=NULL, df.adj=FALSE,

124 vcov-methods

breadOnly=FALSE, modelVcov=NULL)

S4 method for signature 'tsls'
vcov(object, sandwich=TRUE, df.adj=FALSE)

S4 method for signature 'gelfit'
vcov(object, withImpProb=FALSE, tol=1e-10,

robToMiss=FALSE)

S4 method for signature 'momentModel'
vcov(object, theta)

S4 method for signature 'sysModel'
vcov(object, theta)

Arguments

object A fitted model or a model, For fitted models, it computes the covariance matrix
of the estimators. For models, it computes the covariance matrix of the moment
conditions, in which case, the coefficient vector must be provided.

theta Coefficient vector to compute the covariance matrix of the moment conditions.

sandwich Should we compute the sandwich covariance matrix. This is only necessary if
the weighting matrix is not the optimal one, or if we think it is a bad estimate
of it. If NULL, it will be set to "TRUE" for One-Step GMM, which includes
just-identified GMM like IV, and "FALSE" otherwise.

df.adj Should we adjust for degrees of freedom. If TRUE the covariance matrix is multi-
plied by n/(n-k), where n is the sample size and k is the number of coefficients.
For heteroscedastic robust covariance matrix, adjusting is equivalent to comput-
ing HC1 while not adjusting is HC0.

breadOnly If TRUE, the covariance matrix is set to the bread (see details below).

modelVcov Should be one of "iid", "MDS" or "HAC". It is meant to change the way the
variance of the moments is computed. If it is set to a different specification
included in the model, sandwich is set to TRUE.

withImpProb Should we compute the moments with the implied probabilities

tol Any diagonal less than "tol" is set to tol

robToMiss Should we compute a covariance matrix that is robust to misspecification?

Details

If sandwich=FALSE, then it returns (G′V −1G)−1/n, where G and V are respectively the matrix
of average derivatives and the covariance matrix of the moment conditions. If it is TRUE, it returns
(G′WG)−1G′WVWG(G′WG)−1/n, where W is the weighting matrix used to obtain the vector
of estimates.

If breadOnly=TRUE, it returns (G′WG)−1/n, where the value of W depends on the type of GMM.
For two-step GMM, it is the first step weighting matrix, for one-step GMM, it is either the identity
matrix or the fixed weighting matrix that was provided when gmmFit was called, for iterative GMM,

vcov-methods 125

it is the weighting matrix used in the last step. For CUE, the result is identical to sandwich=FALSE
and beadOnly=FALSE, because the weighting and coefficient estimates are obtained simultaneously,
which makes W identical to V .

breadOnly=TRUE should therefore be used with caution because it will produce valid standard errors
only if the weighting matrix converges to the the inverse of the covariance matrix of the moment
conditions.

For "tsls" objects, sandwich is TRUE by default. If we assume that the error term is iid, then
setting it to FALSE to result in the usual σ2(X̂ ′X̂)−1 covariance matrix. If FALSE, it returns a
robust covariance matrix determined by the value of vcov in the momentModel.

Methods

signature(object = "gmmfit") For any model estimated by any GMM methods.

signature(object = "gelfit") For any model estimated by any GMM methods.

signature(object = "sgmmfit") For any system of equations estimated by any GMM methods.

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

optimal matrix
res <- gmmFit(model1)
vcov(res)

not the optimal matrix
res <- gmmFit(model1, weights=diag(3))
vcov(res, TRUE)

Model with heteroscedasticity
MDS is for models with no autocorrelation.
No restrictions are imposed on the structure of the
variance of the moment conditions
model2 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="MDS")
res <- tsls(model2)

HC0 type of robust variance
vcov(res, sandwich=TRUE)
HC1 type of robust variance
vcov(res, sandwich=TRUE, df.adj=TRUE)

Fixed and True Weights matrix
Consider the moment of a normal distribution:
Using the first three non centered moments

g <- function(theta, x)
{
mu <- theta[1]
sig2 <- theta[2]

126 vcovHAC-methods

m1 <- x-mu
m2 <- x^2-mu^2-sig2
m3 <- x^3-mu^3-3*mu*sig2
cbind(m1,m2,m3)
}

dg <- function(theta, x)
{
mu <- theta[1]
sig2 <- theta[2]
G <- matrix(c(-1,-2*mu,-3*mu^2-3*sig2, 0, -1, -3*mu),3,2)
}

x <- simData$x3

model <- momentModel(g, x, c(mu=.1, sig2=1.5), vcov="iid")
res1 <- gmmFit(model)
summary(res1)
Same results (that's because the moment vcov is centered by default)
W <- solve(var(cbind(x,x^2,x^3)))
res2 <- gmmFit(model, weights=W)
res2
If is therefore more efficient in this case to do the following:
the option breadOnly of summary() is passed to vcov()
summary(res2, breadOnly=TRUE)

vcovHAC-methods ~~ Methods for Function vcovHAC in Package sandwich ~~

Description

Methods to compute the HAC covariance matrix of the moment objects ~~

Methods

signature(x = "momentModel")

signature(x = "sysModel")

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)

a warning is given if the model is not set as being HAC
vcovHAC(model1, theta)

model1 <- momentModel(y~x1, ~z1+z2, data=simData, vcov="HAC",vcovOptions=list(kernel="B"))
vcovHAC(model1, theta)

weakTest 127

weakTest Tests for weak Instruments

Description

This is a collection of tests for weak instruments. It includes the Cragg and Donald test for the
reduced rank hypothesis, the conditional F-test of Sanderson and Windmeijer (2016), the robust
effective F test of Montiel Olea and Pflueger (2013) and the Lewis and Mertens (2022) robust test
with multiple endogenous variables. The critical values of Stock and Yogo (2005) for the null
hypothesis of weak instruments are also provided.

Usage

SWtest(object, j=1, print=TRUE, ...)

CDtest(object, print=TRUE, SWcrit=FALSE, ...)

MOPtest(object, tau=0.10, size=0.05, print=TRUE,
estMethod = c("TSLS", "LIML"), simplified = TRUE,
digits = max(3L, getOption("digits") - 3L), ...)

LewMertest(object, tau=0.10, size=0.05, print=TRUE,
simplified = TRUE, digits = max(3L, getOption("digits") -
3L), npoints=10, ...)

SYTables(object, print=TRUE, SWcrit=FALSE)

Arguments

object A model of class linearModel

j The Sanderson and Windmeijer test is based on the regression of yj − δy−j on
the set on instruments, where yj is the jth included endogenous variable and y−j

is the vector of the other included endogenous variables.

tau The desired bias.

size The size of the test for the critical value.

estMethod Which method we want to test the weak instruments for? The method deter-
mined the critical value associated with a given relative bias.

simplified Should we perform the simplified test? The test produce more conservative
critical values. The generalized test is computationally more demanding.

print If TRUE, the result is printed and nothing is returned. See below for details on
what the functions return when it is set to FALSE

digits The number of digits to print when print is set to TRUE.

SWcrit If true, the critical values and the test are ajusted to Sanderson and Windmeijer
(2016). See details.

128 weakTest

npoints The number of minimizations to run in order to find the global minimum, which
is used for the Lewis and Mertens critical value. It affects the results only when
simplified is set to TRUE.

... Arguments passed to formatC to print the statistic. For MOPtest, they are passed
to momentfit:::getMOPx.

Details

The CDtest function computes the test for the model object and runs SYTables to extract the critical
values that are specific to the model.

Let l be the number of included endogenous variables and s be the number of excluded exogenous.
The Stock and Yogo (2005) tables are based on these two values and they are only available for
l = 1, 2 and s = 1, ..., 30. For the SW test, which is only defined for $l>1$, we compare the
statistic with the critical values associated with l = l − 1 and s = s − l + 1. These are the critical
values that are returned when the argument SWcrit of SYTables is set to TRUE. This allows us to
test for weak instruments in models with 2 or 3 included endogenous variable using the same tables
of critical values.

Sanderson and Windmeijer (2016) show that we can use the same critical values if we modify the
CD test by multiplying it by s/(s−l+1), which is what the function CDtest returns if the argument
SWcrit is set to TRUE.

Value

The function CDtest returns the Cragg anb Donald statistic when print is set to FALSE.

The function SYTable returns a list with the following elements when print is set to FALSE:

biasTSLS, biasFuller
Named vectors of critical values for TSLS or Fuller (see kclassfit). These
critical values are used to achieve the maximum relative bias given by their
names. The values are defined only for models with a number of overidentifying
restrictions greater or equal to 2.

sizeTSLS, sizeLIML
A named vector of critical values for TSLS or LIML (see kclassfit). These
critical values are used to acheive a size that does not exceed the one given by
their names.

Both functions return NULL invisibly when print is set to TRUE

Examples

data(simData)
theta <- c(beta0=1,beta1=2)
model1 <- momentModel(y~x1, ~z1+z2, data=simData)
CDtest(model1)
model2 <- momentModel(y~y1+y2+x1, ~z1+z2+z3+z4+x1, data=simData)
SWtest(model2, 1, FALSE)
SWtest(model2, 2, FALSE)

[-methods 129

[-methods Subsetting methods

Description

Different subsetting methods for S4 class objects of the package. The subset method returns an new
object with observations selected by the second argument. See example.

Methods

signature(x = "momentWeights", i = "integer", j = "missing") It creates a partition from the
weighting matrix.

signature(x = "momentWeights", i = "missing", j = "missing") It generates the whole weight-
ing matrix.

signature(x = "sysMomentWeights", i = "missing", j = "list") It creates a partition from the
weighting matrix. j has no effect here. It creates a partition from the weighting matrix in a
systemof equations. i selects the equation and the list j the moments in each equation. Missing
i means all equations.

signature(x = "sysMomentWeights", i = "numeric", j = "missing") It creates a partition from
the weighting matrix. j has no effect here. It creates a partition from the weighting matrix in a
systemof equations. i selects the equation and the list j the moments in each equation. Missing
j means all moments.

signature(x = "sysMomentWeights", i = "missing", j = "missing") No effect. It returns x.
signature(x = "snonlinearModel", i = "numeric", j="missing") It generates a system of equa-

tions with a subset of equations selected by i. If the number of remaining equations is one, it
returns an object of class "nonlinearGmm".

signature(x = "slinearModel", i = "numeric", j="missing") It generates a system of equa-
tions with a subset of equations selected by i. If the number of remaining equations is one, it
returns an object of class "linearModel".

signature(x = "rslinearModel", i = "numeric", j="missing") It is only use to select one
equation when no cross-equation restrictions are imposed. Only one equation can be selected.

signature(x = "rsnonlinearModel", i = "numeric", j="missing") It is only use to select one
equation when no cross-equation restrictions are imposed. Only one equation can be selected.

signature(x = "sysMomentModel", i = "numeric", j="list") It generates a system of equa-
tions with a subset of equations selected by i and a subset of moment conditions selected by j.
If the number of remaining equations is one, it returns an object of class "linearGmm".

signature(x = "sysMomentModel", i = "missing", j="missing") No effect. It returns x.
signature(x = "momentModel", i = "missing", j = "missing") Returns the model without any

change.
signature(x = "functionModel", i = "numeric", j = "missing") It generates the same model

with a subset of the moment conditions.
signature(x = "formulaModel", i = "numeric", j = "missing") It generates the same model

with a subset of the moment conditions.
signature(x = "rfuncionModel", i = "numeric", j = "missing") It generates the same model

with a subset of the moment conditions. j has no effect here.

130 [-methods

Examples

data(simData)
model1 <- momentModel(y~x1+x2, ~x2+x3+z1+z2+z3, data=simData, vcov="MDS")
w <- evalWeights(model1, theta=1:3)
w[]
w[1:3]

A model with a subset of the instruments
model1[1:4]

Selecting the observations:

subset(model1, simData[["x1"]]<3)
subset(model1, 1:25)

Index

∗ 3SLS
systemGmm-doc, 118

∗ Confidence Intervals
confint-methods, 10

∗ FIVE
systemGmm-doc, 118

∗ Fuller
kclassfit, 47
weakTest, 127

∗ GEL
gel4, 27

∗ GMM
gmm4, 33
systemGmm-doc, 118

∗ Instruments
gel4, 27
gmm4, 33

∗ LIML
kclassfit, 47
weakTest, 127

∗ LSE
lse-methods, 55

∗ Moment
gel4, 27
gmm4, 33

∗ SUR
systemGmm-doc, 118

∗ System of Equations
systemGmm-doc, 118

∗ Two Stage Least Squares
weakTest, 127

∗ Weak Instruments Test
weakTest, 127

∗ classes
allNLModel-class, 5
confint-class, 9
formulaModel-class, 24
functionModel-class, 25
gelfit-class, 29

gmmfit-class, 36
hypothesisTest-class, 43
kclassfit-class, 48
linearModel-class, 54
lsefit-class, 56
mconfint-class, 57
minAlgo-class, 61
minAlgoNlm-class, 61
minAlgoStd-class, 62
momentModel-class, 69
momentWeights-class, 71
nonlinearModel-class, 74
regModel-class, 80
rformulaModel-class, 84
rfunctionModel-class, 85
rlinearModel-class, 87
rmomentModel-class, 89
rnonlinearModel-class, 89
rslinearModel-class, 91
rsnonlinearModel-class, 92
rsysModel-class, 94
sfunctionModel-class, 95
sgmmfit-class, 96
slinearModel-class, 99
snonlinearModel-class, 101
specTest-class, 105
sSpec-class, 107
stsls-class, 108
summaryGel-class, 110
summaryGmm-class, 111
summaryKclass-class, 112
summarySysGmm-class, 113
sysModel-class, 114
sysMomentWeights-class, 117
tsls-class, 120

∗ datasets
CigarettesSW, 7
ConsumptionG, 12
Griliches, 40

131

132 INDEX

HealthRWM, 41
Klein, 50
LabourCR, 51
ManufactCost, 56
Mroz, 72
simData, 98

∗ methods
[-methods, 129
bread-methods, 6
coef-methods, 8
confint-methods, 10
Dresiduals-methods, 13
DWH-methods, 14
estfun-methods, 15
evalDMoment-methods, 16
evalGel-methods, 18
evalGelObj-methods, 19
evalGmm-methods, 20
evalGmmObj-methods, 21
evalMoment-methods, 22
evalWeights-methods, 23
gelFit-methods, 30
getRestrict-methods, 31
gmmFit-methods, 37
hypothesisTest-methods, 44
lse-methods, 55
meatGmm-methods, 58
merge-methods, 59
model.matrix-methods, 64
modelDims-methods, 65
modelResponse-methods, 66
momentStrength-methods, 70
momFct-methods, 72
plot-methods, 75
print-methods, 76
printRestrict-methods, 77
quadra-methods, 78
residuals-methods, 80
restModel-methods, 81
setCoef-methods, 94
show-methods, 97
solveGel-methods, 102
solveGmm-methods, 103
specTest-methods, 106
summary-methods, 109
ThreeSLS-methods, 119
tsls-methods, 121
update-methods, 122

vcov-methods, 123
vcovHAC-methods, 126

∗ misspecified
momFct-methods, 72

∗ optimization
minFit-methods, 63

∗ probabilities
getImpProb-methods, 31

[,formulaModel,numeric,missing-method
([-methods), 129

[,functionModel,numeric,missing-method
([-methods), 129

[,momentModel,missing,missing-method
([-methods), 129

[,momentWeights,missing,missing-method
([-methods), 129

[,momentWeights,numeric,missing-method
([-methods), 129

[,regModel,numeric,missing-method
([-methods), 129

[,rslinearModel,numeric,missing-method
([-methods), 129

[,rsnonlinearModel,numeric,missing-method
([-methods), 129

[,sfunctionModel,numeric,missing-method
([-methods), 129

[,slinearModel,numeric,missing-method
([-methods), 129

[,snonlinearModel,numeric,missing-method
([-methods), 129

[,sysModel,missing,list-method
([-methods), 129

[,sysModel,missing,missing-method
([-methods), 129

[,sysModel,numeric,list-method
([-methods), 129

[,sysMomentWeights,missing,list-method
([-methods), 129

[,sysMomentWeights,numeric,list-method
([-methods), 129

[,sysMomentWeights,numeric,missing-method
([-methods), 129

[-methods, 129

algoObj, 4, 61–63, 104
allNLModel, 25, 26, 75, 84, 86, 90
allNLModel-class, 5

bread (bread-methods), 6

INDEX 133

bread,gmmfit-method (bread-methods), 6
bread,sgmmfit-method (bread-methods), 6
bread,tsls-method (bread-methods), 6
bread-methods, 6

CDtest (weakTest), 127
CigarettesSW, 7
coef,gelfit-method (coef-methods), 8
coef,gmmfit-method (coef-methods), 8
coef,momentModel-method (coef-methods),

8
coef,rformulaModel-method

(coef-methods), 8
coef,rfunctionModel-method

(coef-methods), 8
coef,rlinearModel-method

(coef-methods), 8
coef,rnonlinearModel-method

(coef-methods), 8
coef,rslinearModel-method

(coef-methods), 8
coef,rsnonlinearModel-method

(coef-methods), 8
coef,sgmmfit-method (coef-methods), 8
coef-methods, 8
confint,ANY-method (confint-methods), 10
confint,data.frame-method

(confint-methods), 10
confint,gelfit-method

(confint-methods), 10
confint,gmmfit-method

(confint-methods), 10
confint,matrix-method

(confint-methods), 10
confint,numeric-method

(confint-methods), 10
confint-class, 9
confint-methods, 10
constrOptim, 4, 103
ConsumptionG, 12

Dresiduals (Dresiduals-methods), 13
Dresiduals,linearModel-method

(Dresiduals-methods), 13
Dresiduals,nonlinearModel-method

(Dresiduals-methods), 13
Dresiduals,rsnonlinearModel-method

(Dresiduals-methods), 13

Dresiduals,sysModel-method
(Dresiduals-methods), 13

Dresiduals-methods, 13
DWH (DWH-methods), 14
DWH,gmmfit,gmmfit-method (DWH-methods),

14
DWH,gmmfit,lm-method (DWH-methods), 14
DWH,gmmfit,missing-method

(DWH-methods), 14
DWH-methods, 14

EEL_lam, 18, 28, 102
EEL_lam (lambdaAlgo), 52
estfun,momentModel-method

(estfun-methods), 15
estfun-methods, 15
ETXX_lam (lambdaAlgo), 52
evalDMoment (evalDMoment-methods), 16
evalDMoment,formulaModel-method

(evalDMoment-methods), 16
evalDMoment,functionModel-method

(evalDMoment-methods), 16
evalDMoment,regModel-method

(evalDMoment-methods), 16
evalDMoment,rformulaModel-method

(evalDMoment-methods), 16
evalDMoment,rfunctionModel-method

(evalDMoment-methods), 16
evalDMoment,rnonlinearModel-method

(evalDMoment-methods), 16
evalDMoment,rslinearModel-method

(evalDMoment-methods), 16
evalDMoment,rsnonlinearModel-method

(evalDMoment-methods), 16
evalDMoment,sysModel-method

(evalDMoment-methods), 16
evalDMoment-methods, 16
evalGel (evalGel-methods), 18
evalGel,momentModel-method

(evalGel-methods), 18
evalGel-methods, 18
evalGelObj (evalGelObj-methods), 19
evalGelObj,momentModel,numeric,numeric-method

(evalGelObj-methods), 19
evalGelObj-methods, 19
evalGmm, 39
evalGmm (evalGmm-methods), 20
evalGmm,momentModel-method

(evalGmm-methods), 20

134 INDEX

evalGmm,sysModel-method
(evalGmm-methods), 20

evalGmm-methods, 20
evalGmmObj (evalGmmObj-methods), 21
evalGmmObj,momentModel,numeric,momentWeights-method

(evalGmmObj-methods), 21
evalGmmObj,sysModel,list,sysMomentWeights-method

(evalGmmObj-methods), 21
evalGmmObj-methods, 21
evalMoment (evalMoment-methods), 22
evalMoment,formulaModel-method

(evalMoment-methods), 22
evalMoment,functionModel-method

(evalMoment-methods), 22
evalMoment,regModel-method

(evalMoment-methods), 22
evalMoment,rsysModel-method

(evalMoment-methods), 22
evalMoment,sysModel-method

(evalMoment-methods), 22
evalMoment-methods, 22
evalWeights, 71, 117
evalWeights (evalWeights-methods), 23
evalWeights,momentModel-method

(evalWeights-methods), 23
evalWeights,rslinearModel-method

(evalWeights-methods), 23
evalWeights,sysModel-method

(evalWeights-methods), 23
evalWeights-methods, 23

formatC, 128
formulaModel, 84
formulaModel-class, 24
functionModel, 86
functionModel-class, 25

gel4, 27
gelFit, 11, 27–29
gelFit (gelFit-methods), 30
gelFit,momentModel-method

(gelFit-methods), 30
gelFit,rmomentModel-method

(gelFit-methods), 30
gelfit-class, 29
gelFit-methods, 30
getImpProb (getImpProb-methods), 31
getImpProb,gelfit-method

(getImpProb-methods), 31

getImpProb-methods, 31
getK (kclassfit), 47
getLambda, 18, 28, 102
getLambda (lambdaAlgo), 52
getRestrict (getRestrict-methods), 31
getRestrict,momentModel-method

(getRestrict-methods), 31
getRestrict,rformulaModel-method

(getRestrict-methods), 31
getRestrict,rfunctionModel-method

(getRestrict-methods), 31
getRestrict,rlinearModel-method

(getRestrict-methods), 31
getRestrict,rnonlinearModel-method

(getRestrict-methods), 31
getRestrict,rslinearModel-method

(getRestrict-methods), 31
getRestrict,rsnonlinearModel-method

(getRestrict-methods), 31
getRestrict,sysModel-method

(getRestrict-methods), 31
getRestrict-methods, 31
gmm4, 33
gmmFit, 11, 33, 36, 96, 120, 124
gmmFit (gmmFit-methods), 37
gmmfit, 49, 121
gmmFit,formulaModel-method

(gmmFit-methods), 37
gmmFit,momentModel-method

(gmmFit-methods), 37
gmmFit,rformulaModel-method

(gmmFit-methods), 37
gmmFit,rfunctionModel-method

(gmmFit-methods), 37
gmmFit,rlinearModel-method

(gmmFit-methods), 37
gmmFit,rnonlinearModel-method

(gmmFit-methods), 37
gmmFit,rslinearModel-method

(gmmFit-methods), 37
gmmFit,sysModel-method

(gmmFit-methods), 37
gmmfit-class, 36
gmmFit-methods, 37
Griliches, 40

HealthRWM, 41
hypothesisTest, 43, 106

INDEX 135

hypothesisTest
(hypothesisTest-methods), 44

hypothesisTest,gmmfit,gmmfit-method
(hypothesisTest-methods), 44

hypothesisTest,gmmfit,missing-method
(hypothesisTest-methods), 44

hypothesisTest,missing,gmmfit-method
(hypothesisTest-methods), 44

hypothesisTest,missing,sgmmfit-method
(hypothesisTest-methods), 44

hypothesisTest,sgmmfit,missing-method
(hypothesisTest-methods), 44

hypothesisTest,sgmmfit,sgmmfit-method
(hypothesisTest-methods), 44

hypothesisTest-class, 43
hypothesisTest-methods, 44

kclassfit, 47, 48, 112, 128
kclassfit-class, 48
kernapply (kernapply-methods), 49
kernapply,momentModel-method

(kernapply-methods), 49
kernapply-methods, 49
Klein, 50

LabourCR, 51
lambdaAlgo, 52
LewMertest (weakTest), 127
linearModel, 88
linearModel-class, 54
lm, 55, 56
lse, 56
lse (lse-methods), 55
lse,linearModel-method (lse-methods), 55
lse-methods, 55
lsefit-class, 56

ManufactCost, 56
mclapply, 11
mconfint-class, 57
meatCL, 35, 68, 115
meatGmm (meatGmm-methods), 58
meatGmm,gmmfit-method

(meatGmm-methods), 58
meatGmm,sgmmfit-method

(meatGmm-methods), 58
meatGmm,tsls-method (meatGmm-methods),

58
meatGmm-methods, 58

merge (merge-methods), 59
merge,ANY,ANY-method (merge-methods), 59
merge,linearModel,linearModel-method

(merge-methods), 59
merge,nonlinearModel,nonlinearModel-method

(merge-methods), 59
merge,slinearModel,linearModel-method

(merge-methods), 59
merge,snonlinearModel,nonlinearModel-method

(merge-methods), 59
merge-methods, 59
minAlgo, 4, 5, 62, 63, 104
minAlgo (minAlgo-class), 61
minAlgo-class, 61
minAlgoNlm-class, 61
minAlgoStd-class, 62
minFit, 4, 5
minFit (minFit-methods), 63
minFit,minAlgoNlm-method

(minFit-methods), 63
minFit,minAlgoStd-method

(minFit-methods), 63
minFit-methods, 63
model.matrix (model.matrix-methods), 64
model.matrix,linearModel-method

(model.matrix-methods), 64
model.matrix,nonlinearModel-method

(model.matrix-methods), 64
model.matrix,rlinearModel-method

(model.matrix-methods), 64
model.matrix,rslinearModel-method

(model.matrix-methods), 64
model.matrix,rsnonlinearModel-method

(model.matrix-methods), 64
model.matrix,slinearModel-method

(model.matrix-methods), 64
model.matrix,snonlinearModel-method

(model.matrix-methods), 64
model.matrix-methods, 64
modelDims (modelDims-methods), 65
modelDims,formulaModel-method

(modelDims-methods), 65
modelDims,functionModel-method

(modelDims-methods), 65
modelDims,linearModel-method

(modelDims-methods), 65
modelDims,nonlinearModel-method

(modelDims-methods), 65

136 INDEX

modelDims,rformulaModel-method
(modelDims-methods), 65

modelDims,rfunctionModel-method
(modelDims-methods), 65

modelDims,rlinearModel-method
(modelDims-methods), 65

modelDims,rnonlinearModel-method
(modelDims-methods), 65

modelDims,rslinearModel-method
(modelDims-methods), 65

modelDims,rsnonlinearModel-method
(modelDims-methods), 65

modelDims,sfunctionModel-method
(modelDims-methods), 65

modelDims,slinearModel-method
(modelDims-methods), 65

modelDims,snonlinearModel-method
(modelDims-methods), 65

modelDims,sysMomentModel-method
(modelDims-methods), 65

modelDims-methods, 65
modelResponse (modelResponse-methods),

66
modelResponse,linearModel-method

(modelResponse-methods), 66
modelResponse,rlinearModel-method

(modelResponse-methods), 66
modelResponse,rslinearModel-method

(modelResponse-methods), 66
modelResponse,slinearModel-method

(modelResponse-methods), 66
modelResponse-methods, 66
momentModel, 24–26, 28, 36, 54, 55, 67, 69,

74, 75, 84, 86, 88, 90, 95, 99, 101
momentModel-class, 69
momentStrength

(momentStrength-methods), 70
momentStrength,formulaModel-method

(momentStrength-methods), 70
momentStrength,functionModel-method

(momentStrength-methods), 70
momentStrength,linearModel-method

(momentStrength-methods), 70
momentStrength,nonlinearModel-method

(momentStrength-methods), 70
momentStrength,rlinearModel-method

(momentStrength-methods), 70
momentStrength-methods, 70

momentWeights, 79
momentWeights (momentWeights-class), 71
momentWeights-class, 71
momFct (momFct-methods), 72
momFct,numeric,gelfit-method

(momFct-methods), 72
momFct-methods, 72
MOPtest (weakTest), 127
Mroz, 72

nlm, 4, 61, 62, 64
nlminb, 4, 53, 103
nonlinearModel, 90
nonlinearModel-class, 74

oldClass, 56
optim, 4, 30, 34, 35, 39, 53, 62, 64, 68, 103,

104

plot,ANY-method (plot-methods), 75
plot,mconfint-method (plot-methods), 75
plot-methods, 75
points, 75
polygon, 76
print,ANY-method (print-methods), 76
print,confint-method (print-methods), 76
print,gelfit-method (print-methods), 76
print,gmmfit-method (print-methods), 76
print,hypothesisTest-method

(print-methods), 76
print,kclassfit-method

(kclassfit-class), 48
print,lsefit-method (lsefit-class), 56
print,mconfint-method (print-methods),

76
print,minAlgo-method (print-methods), 76
print,momentModel-method

(print-methods), 76
print,momentWeights-method

(print-methods), 76
print,rformulaModel-method

(print-methods), 76
print,rfunctionModel-method

(print-methods), 76
print,rlinearModel-method

(print-methods), 76
print,rnonlinearModel-method

(print-methods), 76

INDEX 137

print,rslinearModel-method
(print-methods), 76

print,rsnonlinearModel-method
(print-methods), 76

print,sgmmfit-method (print-methods), 76
print,specTest-method (print-methods),

76
print,sSpec-method (print-methods), 76
print,summaryGel-method

(print-methods), 76
print,summaryGmm-method

(print-methods), 76
print,summaryKclass-method

(summaryKclass-class), 112
print,summarySysGmm-method

(print-methods), 76
print,sysModel-method (print-methods),

76
print,sysMomentWeights-method

(print-methods), 76
print-methods, 76
printRestrict (printRestrict-methods),

77
printRestrict,rformulaModel-method

(printRestrict-methods), 77
printRestrict,rfunctionModel-method

(printRestrict-methods), 77
printRestrict,rlinearModel-method

(printRestrict-methods), 77
printRestrict,rnonlinearModel-method

(printRestrict-methods), 77
printRestrict,rslinearModel-method

(printRestrict-methods), 77
printRestrict,rsnonlinearModel-method

(printRestrict-methods), 77
printRestrict-methods, 77

quadra (quadra-methods), 78
quadra,momentWeights,matrixORnumeric,matrixORnumeric-method

(quadra-methods), 78
quadra,momentWeights,matrixORnumeric,missing-method

(quadra-methods), 78
quadra,momentWeights,missing,missing-method

(quadra-methods), 78
quadra,sysMomentWeights,matrixORnumeric,matrixORnumeric-method

(quadra-methods), 78
quadra,sysMomentWeights,matrixORnumeric,missing-method

(quadra-methods), 78

quadra,sysMomentWeights,missing,missing-method
(quadra-methods), 78

quadra-methods, 78

REEL_lam, 18, 28, 102
REEL_lam (lambdaAlgo), 52
regModel, 55, 75, 88, 90
regModel-class, 80
residuals,ANY-method

(residuals-methods), 80
residuals,gelfit-method

(residuals-methods), 80
residuals,gmmfit-method

(residuals-methods), 80
residuals,linearModel-method

(residuals-methods), 80
residuals,nonlinearModel-method

(residuals-methods), 80
residuals,rsysModel-method

(residuals-methods), 80
residuals,sgmmfit-method

(residuals-methods), 80
residuals,sysModel-method

(residuals-methods), 80
residuals-methods, 80
restModel, 28, 32, 35
restModel (restModel-methods), 81
restModel,formulaModel-method

(restModel-methods), 81
restModel,functionModel-method

(restModel-methods), 81
restModel,linearModel-method

(restModel-methods), 81
restModel,nonlinearModel-method

(restModel-methods), 81
restModel,slinearModel-method

(restModel-methods), 81
restModel,snonlinearModel-method

(restModel-methods), 81
restModel-methods, 81
rformulaModel-class, 84
rfunctionModel-class, 85
rhoEEL (rhoFct), 86
rhoEL (rhoFct), 86
rhoET (rhoFct), 86
rhoETEL (rhoFct), 86
rhoETHD (rhoFct), 86
rhoFct, 18, 19, 30, 86, 102
rhoHD (rhoFct), 86

138 INDEX

rhoREEL (rhoFct), 86
rlinearModel-class, 87
rmomentModel, 84, 86, 88, 90
rmomentModel-class, 89
rnonlinearModel-class, 89
rslinearModel-class, 91
rsnonlinearModel-class, 92
rsysModel, 91, 93
rsysModel-class, 94

setCoef (setCoef-methods), 94
setCoef,momentModel-method

(setCoef-methods), 94
setCoef,sysModel-method

(setCoef-methods), 94
setCoef-methods, 94
sfunctionModel-class, 95
sgmmfit, 108
sgmmfit-class, 96
show,ANY-method (show-methods), 97
show,confint-method (show-methods), 97
show,gelfit-method (show-methods), 97
show,gmmfit-method (show-methods), 97
show,hypothesisTest-method

(show-methods), 97
show,kclassfit-method

(kclassfit-class), 48
show,lsefit-method (lsefit-class), 56
show,mconfint-method (show-methods), 97
show,minAlgo-method (show-methods), 97
show,momentModel-method (show-methods),

97
show,momentWeights-method

(show-methods), 97
show,sgmmfit-method (show-methods), 97
show,specTest-method (show-methods), 97
show,sSpec-method (show-methods), 97
show,summaryGel-method (show-methods),

97
show,summaryGmm-method (show-methods),

97
show,summaryKclass-method

(summaryKclass-class), 112
show,summarySysGmm-method

(show-methods), 97
show,sysModel-method (show-methods), 97
show,sysMomentWeights-method

(show-methods), 97
show-methods, 97

simData, 98
slinearModel, 91
slinearModel-class, 99
snonlinearModel, 93
snonlinearModel-class, 101
solveGel (solveGel-methods), 102
solveGel,momentModel-method

(solveGel-methods), 102
solveGel-methods, 102
solveGmm, 63
solveGmm (solveGmm-methods), 103
solveGmm,allNLModel,momentWeights-method

(solveGmm-methods), 103
solveGmm,linearModel,momentWeights-method

(solveGmm-methods), 103
solveGmm,rnonlinearModel,momentWeights-method

(solveGmm-methods), 103
solveGmm,rslinearModel,sysMomentWeights-method

(solveGmm-methods), 103
solveGmm,sfunctionModel,sysMomentWeights-method

(solveGmm-methods), 103
solveGmm,slinearModel,sysMomentWeights-method

(solveGmm-methods), 103
solveGmm,snonlinearModel,sysMomentWeights-method

(solveGmm-methods), 103
solveGmm-methods, 103
specTest, 45
specTest (specTest-methods), 106
specTest,gelfit,missing-method

(specTest-methods), 106
specTest,gmmfit,missing-method

(specTest-methods), 106
specTest,gmmfit,numeric-method

(specTest-methods), 106
specTest,kclassfit,missing-method

(kclassfit-class), 48
specTest,sgmmfit,missing-method

(specTest-methods), 106
specTest-class, 105
specTest-methods, 106
sSpec-class, 107
stsls-class, 108
subset ([-methods), 129
subset,formulaModel-method ([-methods),

129
subset,functionModel-method

([-methods), 129
subset,regModel-method ([-methods), 129

INDEX 139

subset,sysModel-method ([-methods), 129
summary (summary-methods), 109
summary,gelfit-method

(summary-methods), 109
summary,gmmfit-method

(summary-methods), 109
summary,kclassfit-method

(kclassfit-class), 48
summary,sgmmfit-method

(summary-methods), 109
summary-methods, 109
summaryGel-class, 110
summaryGmm, 112
summaryGmm-class, 111
summaryKclass-class, 112
summarySysGmm-class, 113
SWtest (weakTest), 127
sysModel, 91, 93, 96, 100, 101
sysModel-class, 114
sysMomentModel, 115
sysMomentWeights-class, 117
systemGmm (systemGmm-doc), 118
systemGmm-doc, 118
SYTables (weakTest), 127

ThreeSLS (ThreeSLS-methods), 119
ThreeSLS,list-method (gmm4), 33
ThreeSLS,rslinearModel-method

(ThreeSLS-methods), 119
ThreeSLS,slinearModel-method

(ThreeSLS-methods), 119
ThreeSLS-methods, 119
tsls (tsls-methods), 121
tsls,formula-method (gmm4), 33
tsls,linearModel-method (tsls-methods),

121
tsls,list-method (gmm4), 33
tsls,slinearModel-method

(tsls-methods), 121
tsls-class, 120
tsls-methods, 121

uniroot, 11
update,ANY-method (update-methods), 122
update,gelfit-method (update-methods),

122
update,gmmfit-method (update-methods),

122
update,list-method (update-methods), 122

update,momentModel-method
(update-methods), 122

update-methods, 122

vcov, 14
vcov,gelfit-method (vcov-methods), 123
vcov,gmmfit-method (vcov-methods), 123
vcov,momentModel-method (vcov-methods),

123
vcov,sgmmfit-method (vcov-methods), 123
vcov,sysModel-method (vcov-methods), 123
vcov,tsls-method (vcov-methods), 123
vcov-methods, 123
vcovHAC, 27, 35, 68, 115
vcovHAC,momentModel-method

(vcovHAC-methods), 126
vcovHAC,sysModel-method

(vcovHAC-methods), 126
vcovHAC-methods, 126

weakTest, 127
Wu_lam, 18, 28, 102
Wu_lam (lambdaAlgo), 52

	algoObj
	allNLModel-class
	bread-methods
	CigarettesSW
	coef-methods
	confint-class
	confint-methods
	ConsumptionG
	Dresiduals-methods
	DWH-methods
	estfun-methods
	evalDMoment-methods
	evalGel-methods
	evalGelObj-methods
	evalGmm-methods
	evalGmmObj-methods
	evalMoment-methods
	evalWeights-methods
	formulaModel-class
	functionModel-class
	gel4
	gelfit-class
	gelFit-methods
	getImpProb-methods
	getRestrict-methods
	gmm4
	gmmfit-class
	gmmFit-methods
	Griliches
	HealthRWM
	hypothesisTest-class
	hypothesisTest-methods
	kclassfit
	kclassfit-class
	kernapply-methods
	Klein
	LabourCR
	lambdaAlgo
	linearModel-class
	lse-methods
	lsefit-class
	ManufactCost
	mconfint-class
	meatGmm-methods
	merge-methods
	minAlgo-class
	minAlgoNlm-class
	minAlgoStd-class
	minFit-methods
	model.matrix-methods
	modelDims-methods
	modelResponse-methods
	momentModel
	momentModel-class
	momentStrength-methods
	momentWeights-class
	momFct-methods
	Mroz
	nonlinearModel-class
	plot-methods
	print-methods
	printRestrict-methods
	quadra-methods
	regModel-class
	residuals-methods
	restModel-methods
	rformulaModel-class
	rfunctionModel-class
	rhoFct
	rlinearModel-class
	rmomentModel-class
	rnonlinearModel-class
	rslinearModel-class
	rsnonlinearModel-class
	rsysModel-class
	setCoef-methods
	sfunctionModel-class
	sgmmfit-class
	show-methods
	simData
	slinearModel-class
	snonlinearModel-class
	solveGel-methods
	solveGmm-methods
	specTest-class
	specTest-methods
	sSpec-class
	stsls-class
	summary-methods
	summaryGel-class
	summaryGmm-class
	summaryKclass-class
	summarySysGmm-class
	sysModel-class
	sysMomentModel
	sysMomentWeights-class
	systemGmm-doc
	ThreeSLS-methods
	tsls-class
	tsls-methods
	update-methods
	vcov-methods
	vcovHAC-methods
	weakTest
	[-methods
	Index

