1 Details for the Composite Likelihood Implementation

This vignette covers computational details about the implementation. It is provided for interested users.
The vignette largely follows |Cederkvist et al.| (2018) but we point out a few additional ways to speed up the
computation and how the implementation is.

We have n clusters with each having m; members. Let T, €, and C;; be the failure time, the cause
of failure, and the censoring time of individual j in cluster i, respectively. There are K competing risks
and, thus, €f; € {1,..., K}. Let Tj; = min(7};, Cj;) be the observed time, A;; = I(T}; < Cjj) be an event
indicator and €;; = Ajjef; € {0,1,..., K} be the observed failure cause.

Each cluster has a cluster specific random effect given by
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where U;,n; € RE and ~ N (V)(O, W) indicates that a random follows a V' dimensional multivariate normal
distribution with mean 0 and covariance matrix W. The conditional density of observing event k at the
observed time t for individual j in cluster i is
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mij(t)—r'yk is monotonically decreasing and @ is standard normal distribution’s cumulative density function.
Thus, the conditional survival probability is
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We allow for —a:ij(t)—r'yk = oo for t — 7 for some 7 such that Fy;;(7 | u;, M) = 7 (245, w;). In the case
where this is true for all & € {1,..., K}, the conditional survival probability simplifies to
1

1+ Z{il exp(z;;,@l + uil).
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This can be used to greatly simplify the computations.

Composite Likelihood

The model is estimated with pairwise composite likelihood. This leads to three types of the log composite
likelihood terms. The first type is when both j’ and j are observed with failure cause k' and k at time ¢’
and t. The term is given by
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where the derivatives are w.r.t. time and ¢(%)(x; u, 3) is the 2K dimensional multivariate normal distri-
bution’s density with mean g and covariance matrix 3. We can use that
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where I; is the [ dimensional identity matrix, V is a matrix containing zeros except for a one in the K + kth
entry in the first row and the K + k’th entry in the second row and M = (V'V + 1)~ Thus, we can
re-write the log composite likelihood term as
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which further simplifies to
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where My, 1. is the first [ x I’ block of M and a ’ denotes all rows or columns. The problem can
be standardized to working with fixed values a;;; = f:cij(t)T’yl’s and b;;; = zgﬂl’s and matrix M and
computing the derivatives w.r.t. these quantities, a;j;’s, b;;;’s and M. The chain rule can then be applied
to get the derivatives w.r.t. the +;’s, 3;’s, and X. This is computationally very fast. The sparsity of V can
also be used to simplify the expression above.

With one censored individual 7' and observed outcome for j with failure cause k, the log composite
likelihood term is
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Again, we can turn around the conditioning to get
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where M = (vv" + 271)~! and v is a 2K vector with zeros except at the K + kth entry which is one. The
result is K + 1 intractable integrals of dimension K. The first integral is
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The remaining K integrals are of the form
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Note that if —a;;/ (¢') Ty, = oo for all k € {1,..., K}, then log composite likelihood term is
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This is computationally easier to evaluate.
Finally, we get the following log composite likelihood term if both individuals are censored
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where we cover how to compute the first 2K integrals that are not shown in Section The final K2
integrals are of the form:
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where ®2) is the bivariate standard normal CDF integrated over the rectangle from minus infinity to the
passed upper bounds and V is matrix with zeros except for a one in the kth entry in the first row and k’th
entry in the second row. We can re-write this as
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and ®2) is the CDF of a bivariate normal distribution with the specified mean and covariance matrix.
The CDF can be solved efficiently using one dimensional quadrature using the method mentioned in |Genz
(2004). Nevertheless, this additional application of quadrature makes these integrals computationally more
demanding than the other integrals we have shown till now.

If one individual j’ has —@;;/(t') Ty, = oo for all k € {1,..., K}, then the log composite likelihood term
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This lead to integrals of the form
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If also —@;;(t) Ty, = oo for all k € {1,..., K}, then the log composite likelihood term is
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To summarize, we have to, at-worst, compute



1. One K dimensional integral when both individuals are observed.
2. K integrals of dimension K when one individual is censored.
3. 2K integrals of dimension K and K? integrals of dimension K + 1 when both individuals are censored.

Preliminary experiments using https://github.com/boennecd/ghq-cpp/tree/main/ghqCpp|shows that we
can compute each of the K dimensional integrals in about ten microseconds or less when K = 2 with adaptive
Gauss-Hermite quadrature. It takes a bit longer when one also has to use the method mentioned in |Genz
(2004). The cost of all other computations are negligible. This is what makes this implementation fast for
one, two or three.

1.1 Singleton Observations

We may have clusters with only one observation. In this case, the log composite likelihood if the individual
is observed is
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Turning the conditioning around, we have
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where v is a vector with zero expect in the K + k’th entry, M = (vo " + 271~ and pp = Mo(—z;;(t) " vx).
The log composite likelihood term if the individual is censored is
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Leading to K terms of the form
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If —x;;(t) "y, = oo for all k € {1,..., K}, then we can instead compute
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Again, this is computationally easier to work with.
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