
Package ‘misc3d’
October 13, 2022

Title Miscellaneous 3D Plots

Version 0.9-1

Author Dai Feng and Luke Tierney

Maintainer Luke Tierney <luke-tierney@uiowa.edu>

Suggests rgl, tkrplot, MASS

Imports grDevices, graphics, stats, tcltk

Description A collection of miscellaneous 3d plots, including
isosurfaces.

URL https://gitlab.com/luke-tierney/misc3d

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2021-10-07 20:10:02 UTC

R topics documented:
computeContour3d . 2
contour3d . 3
drawScene . 6
exportScene . 9
image3d . 10
kde3d . 11
lighting . 12
linesTetrahedra . 13
parametric3d . 14
pointsTetrahedra . 17
slices3d . 18
surfaceTriangles . 19
teapot . 20
triangles . 21

Index 23

1

https://gitlab.com/luke-tierney/misc3d

2 computeContour3d

computeContour3d Compute Isosurface, a Three Dimension Contour

Description

Computes a 3D contours or isosurface by the marching cubes algorithm.

Usage

computeContour3d(vol, maxvol = max(vol), level,
x = 1:dim(vol)[1],
y = 1:dim(vol)[2],
z = 1:dim(vol)[3], mask)

Arguments

vol a three dimensional array.
maxvol maximum of the vol array.
level The level at which to construct the contour surface.
x,y,z locations of grid planes at which values in vol are measured.
mask a function of 3 arguments returning a logical array, a three dimensional logical

array, or NULL. If not NULL, only cells for which mask is true at all eight vertices
are used in forming the contour.

Details

Uses the marching-cubes algorithm, with adjustments for dealing with face and internal ambiguities,
to compute an isosurface. See references for the details. The function contour3d provides a higher-
level interface.

Value

A matrix of three columns representing the triangles making up the contour surface. Each row
represents a vertex and goups of three rows represent a triangle.

References

Chernyaev E. (1995) Marching Cubes 33: Construction of Topologically Correct Isosurfaces Tech-
nical Report CN/95-17, CERN

Lorensen W. and Cline H. (1987) Marching Cubes: A High Resolution 3D Surface Reconstruction
Algorithm Computer Graphics vol. 21, no. 4, 163-169

Nielson G. and Hamann B. (1992) The Asymptotic Decider: Resolving the Ambiguity in Marching
Cubes Proc. IEEE Visualization 92, 83-91

See Also

contour3d

contour3d 3

Examples

x <- seq(-2,2,len=50)
g <- expand.grid(x = x, y = x, z = x)
v <- array(g$x^4 + g$y^4 + g$z^4, rep(length(x),3))
con <- computeContour3d(v, max(v), 1)
drawScene(makeTriangles(con))

contour3d Draw an Isosurface, a Three Dimension Contour Plot

Description

Computes and renders 3D contours or isosurfaces computed by the marching cubes algorithm.

Usage

contour3d(f, level, x, y, z, mask = NULL, color = "white", color2 = NA,
alpha = 1, fill = TRUE, col.mesh = if (fill) NA else color,
material = "default", smooth = 0,
add = FALSE, draw = TRUE, engine = "rgl", separate=FALSE, ...)

Arguments

f a function of 3 arguments or a three dimensional array.

level The level or levels at which to construct contour surfaces.

x,y,z locations of grid planes at which values in f are measured or f is to be evaluated.
Can be omitted if f is an array.

mask a function of 3 arguments returning a logical array, a three dimensional logical
array, or NULL. If not NULL, only cells for which mask is true at all eight vertices
are used in forming the contour. Can also be a list of functions the same length
as level.

color color to use for the contour surface. Recycled to the length of 'levels'. Can
also be a function, or list of functions, of three arguments. These are called
for each level with three arguments, the coordinates of the midpoints of the
triangles making up the surface. They should return a vector of colors to use for
the triangles.

color2 opposite face color. Recycled to the length of 'levels'.

alpha alpha channel level, a number between 0 and 1. Recycled to the length of
'levels'.

fill logical; if TRUE, drawing should use filled surfaces; otherwise a wire frame
should be drawn. Recycled to the length of 'levels'.

col.mesh color to use for the wire frame. Recycled to the length of 'levels'.

smooth integer or logical specifying Phong shading level for "standard" and "grid" en-
gines or whether or not to use shading for the "rgl" engine. Recycled to the
length of 'levels'.

4 contour3d

material material specification; currently only used by "standard" and "grid" engines.
Currently possible values are the character strings "dull", "shiny", "metal", and
"default". Recycled to the length of 'levels'.

add logical; if TRUE, add to current rgl graph.
draw logical; if TRUE, draw the results; otherwise, return contour triangles.
engine character; currently "rgl", "standard", "grid" or "none"; for "none" the computed

triangles are returned.
separate logical and one for each level; if it is TRUE, and either the engine is "none"

or draw is not true, the triangles from the corresponding level are separated
into disconnected chunks, namely that triangles from different chunks have no
vertex in common. The default is FALSE for each level.

... additional rendering arguments, e.g. material and texture properties for the "rgl"
engine. See documentation for drawScene and drawScene.rgl

Details

Uses the marching-cubes algorithm, with adjustments for dealing with face and internal ambiguities,
to draw isosurfaces. See references for the details.

Value

For the "rgl" engine the returned value is NULL. For the "standard" and "grid" engines the returned
value is the viewing transformation as returned by persp. For the engine "none", or when draw is
not true, the returned value is a structure representing the triangles making up the contour, or a list
of such structures for multiple contours.

Note

The "rgl" engine now uses the standard rgl coordinates instead of negating y and swapping y and z.
If you need to reproduce the previous behavior you can use options(old.misc3d.orientation=TRUE).

Transparency only works properly in the "rgl" engine. For standard or grid graphics on pdf or quartz
devices using alpha levels less than 1 does work but the triangle borders show as a less transparent
mesh.

References

Chernyaev E. (1995) Marching Cubes 33: Construction of Topologically Correct Isosurfaces Tech-
nical Report CN/95-17, CERN

Daniel Adler, Oleg Nenadic and Walter Zucchini (2003) RGL: A R-library for 3D visualization
with OpenGL

Lorensen W. and Cline H. (1987) Marching Cubes: A High Resolution 3D Surface Reconstruction
Algorithm Computer Graphics vol. 21, no. 4, 163-169

Nielson G. and Hamann B. (1992) The Asymptotic Decider: Resolving the Ambiguity in Marching
Cubes Proc. IEEE Visualization 92, 83-91

See Also

triangles3d, material3d, surface3d.

contour3d 5

Examples

#Example 1: Draw a ball
f <- function(x, y, z)x^2+y^2+z^2
x <- seq(-2,2,len=20)
contour3d(f,4,x,x,x)
contour3d(f,4,x,x,x, engine = "standard")

ball with one corner removed.
contour3d(f,4,x,x,x, mask = function(x,y,z) x > 0 | y > 0 | z > 0)
contour3d(f,4,x,x,x, mask = function(x,y,z) x > 0 | y > 0 | z > 0,

engine="standard", screen = list(x = 290, y = -20),
color = "red", color2 = "white")

ball with computed colors
w <- function(x,y,z) {

v <- sin(x) + cos(2 * y) * sin(5 * z)
r <- range(v)
n <- 100
i <- pmax(pmin(ceiling(n * (v - r[1]) / (r[2] - r[1])), n), 1)
terrain.colors(n)[i]

}
contour3d(f,4,x,x,x, color = w)

#Example 2: Nested contours of mixture of three tri-variate normal densities
nmix3 <- function(x, y, z, m, s) {

0.4 * dnorm(x, m, s) * dnorm(y, m, s) * dnorm(z, m, s) +
0.3 * dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +
0.3 * dnorm(x, m, s) * dnorm(y, -1.5 * m, s) * dnorm(z, m, s)

}
f <- function(x,y,z) nmix3(x,y,z,.5,.5)
g <- function(n = 40, k = 5, alo = 0.1, ahi = 0.5, cmap = heat.colors) {

th <- seq(0.05, 0.2, len = k)
col <- rev(cmap(length(th)))
al <- seq(alo, ahi, len = length(th))
x <- seq(-2, 2, len=n)
contour3d(f,th,x,x,x,color=col,alpha=al)
rgl::bg3d(col="white")

}
g(40,5)
gs <- function(n = 40, k = 5, cmap = heat.colors, ...) {

th <- seq(0.05, 0.2, len = k)
col <- rev(cmap(length(th)))
x <- seq(-2, 2, len=n)
m <- function(x,y,z) x > .25 | y < -.3
contour3d(f,th,x,x,x,color=col, mask = m, engine = "standard",

scale = FALSE, ...)
rgl::bg3d(col="white")

}
gs(40, 5, screen=list(z = 130, x = -80), color2 = "lightgray", cmap=rainbow)

Not run:
#Example 3: Nested contours for FMRI data.

6 drawScene

library(AnalyzeFMRI)
a <- f.read.analyze.volume(system.file("example.img", package="AnalyzeFMRI"))
a <- a[,,,1]
contour3d(a, 1:64, 1:64, 1.5*(1:21), lev=c(3000, 8000, 10000),

alpha = c(0.2, 0.5, 1), color = c("white", "red", "green"))

alternative masking out a corner
m <- array(TRUE, dim(a))
m[1:30,1:30,1:10] <- FALSE
contour3d(a, 1:64, 1:64, 1.5*(1:21), lev=c(3000, 8000, 10000),

mask = m, color = c("white", "red", "green"))
contour3d(a, 1:64, 1:64, 1.5*(1:21), lev=c(3000, 8000, 10000),

color = c("white", "red", "green"),
color2 = c("gray", "red", "green"),
mask = m, engine="standard",
scale = FALSE, screen=list(z = 60, x = -120))

End(Not run)

#Example 4: Separate the triangles from the contours of
mixture of three tri-variate normal densities
nmix3 <- function(x, y, z, m, s) {

0.3*dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +
0.3*dnorm(x, -2*m, s) * dnorm(y, -2*m, s) * dnorm(z, -2*m, s) +
0.4*dnorm(x, -3*m, s) * dnorm(y, -3 * m, s) * dnorm(z, -3*m, s) }

f <- function(x,y,z) nmix3(x,y,z,0.5,.1)
n <- 20
x <- y <- z <- seq(-2, 2, len=n)
contour3dObj <- contour3d(f, 0.35, x, y, z, draw=FALSE, separate=TRUE)
for(i in 1:length(contour3dObj))

contour3dObj[[i]]$color <- rainbow(length(contour3dObj))[i]
drawScene.rgl(contour3dObj)

drawScene Rendering of Triangular Mesh Surface Data

Description

Draw scenes consisting of one or more surfaces described by triangular mesh data structures.

Usage

drawScene(scene, light = c(0, 0, 1),
screen = list(z = 40, x = -60), scale = TRUE, R.mat = diag(4),
perspective = FALSE, distance = if (perspective) 0.2 else 0,
fill = TRUE, xlim = NULL, ylim = NULL, zlim = NULL,
aspect = c(1, 1), col.mesh = if (fill) NA else "black",
polynum = 100, lighting = phongLighting, add = FALSE,
engine = "standard", col.bg = "transparent", depth = 0,
newpage = TRUE)

drawScene.rgl(scene, add = FALSE, ...)

drawScene 7

Arguments

scene a triangle mesh object of class Triangles3D or a list of such objects representing
the scene to be rendered.

light numeric vector of length 3 or 4. The first three elements represent the direction
to the light in viewer coordinates; the viewer is at (0, 0, 1 / distance) looking
down along the positive z-axis. The fourth element, if present, represents light
intensity; the default is 1.

screen as for panel.3dwire, a list giving sequence of rotations to be applied to the
scene before being rendered. The initial position starts with the viewing point
along the positive z-axis, and the x and y axes in the usual position. Each com-
ponent of the list should be named one of "x", "y" or "z"; repetitions are allowed.
The values indicate the amount of rotation about that axis in degrees.

scale logical. Before viewing the x, y and z coordinates of the scene defining the
surface are transformed to the interval [-0.5,0.5]. If scale is true the x, y and
z coordinates are transformed separately. Otherwise, the coordinates are scaled
so that aspect ratios are retained. Ignored if draw = TRUE

R.mat initial rotation matrix in homogeneous coordinates, to be applied to the data
before screen rotates the view further.

perspective logical, whether to render a perspective view. Setting this to FALSE is equivalent
to setting distance to 0

distance numeric, between 0 and 1, controls amount of perspective. The distance of
the viewing point from the origin (in the transformed coordinate system) is 1
/ distance. This is described in a little more detail in the documentation for
cloud.

fill logical; if TRUE, drawing should use filled surfaces or wire frames as indicated
by the object properties. Otherwise all objects in the scene should be rendered
as wire frames.

xlim,ylim,zlim x-, y- and z-limits. The scene is rendered so that the rectangular volume defined
by these limits is visible.

aspect vector of length 2. Gives the relative aspects of the y-size/x-size and z-size/x-
size of the enclosing cube.

col.mesh color to use for the wire frame if frames is true.

polynum integer. Number of triangles to pass in batches to grid primitives for the "grid"
engine. The default should be adequate.

lighting a lighting function. Current options are phongLighting and perspLighting.

add logical; if TRUE, add to current graph.

engine character; currently "standard" or "grid".

col.bg background dolor to use in color depth cuing.

depth numeric, between 0 and 1. Controls the amount of color blending to col.bg for
objects farther from the viewer. depth equal to zero means no depth cuing.

newpage logical; if TRUE, and add is true, then the "grid" engine will call "grid.newpage";
otherwise the current page is used.

... rgl material and texture properties; see documentation for rgl.material

8 drawScene

Details

drawScene renders a scene consisting of one or more triangle mesh objects using standard or grid
graphics. Object-specific rendering features such as smoothing and material are controlled by set-
ting in the objects. Arguments to drawScene control global factors such as viewer and light position.

drawScene.rgl renders the scene in an rgl window.

If add=TRUE in standard or grid graphics then coordinates are not further scaled after the transfor-
mations implied by R.mat, and distance are applied. For the grid engine drawing occurs in the
current viewport.

Value

drawScene.rgl returns NULL. The return value of drawScene is the viewing transformation as
returned by persp.

Note

The "rgl" engine now uses the standard rgl coordinates instead of negating y and swapping y and z.
If you need to reproduce the previous behavior you can use options(old.misc3d.orientation=TRUE).

Transparency only works properly in the "rgl" engine. For standard or grid graphics on devices that
support transparency using alpha levels less than 1 does work but the triangle borders show as a less
transparent mesh.

See Also

rgl.material

Examples

vtri <- local({
z <- 2 * volcano
x <- 10 * (1:nrow(z))
y <- 10 * (1:ncol(z))
surfaceTriangles(x, y, z, color="green3")

})
drawScene(vtri, scale = FALSE)
drawScene(vtri, screen=list(x=40, y=-40, z=-135), scale = FALSE)
drawScene(vtri, screen=list(x=40, y=-40, z=-135), scale = FALSE,

perspective = TRUE)
drawScene(vtri, screen=list(x=40, y=-40, z=-135), scale = FALSE,

perspective = TRUE, depth = 0.4)

exportScene 9

exportScene Writing Out Triangular Mesh Scenes

Description

Writing out scenes consisting of one or more surfaces represented by triangular mesh data structures
to textual files.

Usage

exportScene(scene, filename, format=c("OFF", "IDTF", "ASY"))

Arguments

scene a triangle mesh object of class Triangles3D or a list of such objects representing
the scene to be exported.

filename the name of the exported textual file.

format the format of the exported textual file. It must be one of "OFF", "IDTF", or
"ASY" and can be abbreviated. The default is "OFF".

Details

exportScene writes out scenes to textual files, which can be used for other purposes, for example
the generation of U3d and PRC files for interactive 3D visualization in a PDF.

Value

Textual files representing triangular mesh scenes.

Examples

nmix3 <- function(x, y, z, m, s) {
0.4 * dnorm(x, m, s) * dnorm(y, m, s) * dnorm(z, m, s) +
0.3 * dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +
0.3 * dnorm(x, m, s) * dnorm(y, -1.5 * m, s) * dnorm(z, m, s)

}

f <- function(x,y,z) nmix3(x,y,z,.5,.5)

gs1 <- function(n = 40, k = 5, cmap = heat.colors, ...) {
th <- seq(0.05, 0.2, len = k)
col <- rev(cmap(length(th)))
x <- seq(-2, 2, len=n)
m <- function(x,y,z) x > .25 | y < -.3
contour3d(f,th,x,x,x,color=col, mask = m, engine = "none",

scale = FALSE, ...)
}

10 image3d

conts <- gs1(40, 5, screen=list(z = 130, x = -80),
color2 = "lightgray", cmap=rainbow)

filename <- file.path(tempdir(), "nmix")
exportScene(conts, filename, "OFF")

image3d Draw Points on a 3D Grid

Description

Plots points on a three dimensional grid representing values in a three dimensional array. Assumes
high values are inside and uses alpha blending to make outside points more transparent.

Usage

image3d(v, x = 1:dim(v)[1], y = 1:dim(v)[2], z = 1:dim(v)[3],
vlim = quantile(v, c(.9, 1),na.rm=TRUE),
col = heat.colors(256), alpha.power = 2,
alpha = ((1:length(col))/ length(col))^alpha.power,
breaks, sprites = TRUE, jitter = FALSE,
radius = min(diff(x), diff(y), diff(z)),
add = FALSE,...)

Arguments

v three dimensional data array.

x,y,z locations of grid planes at which values in v are measured.

vlim minimum and maximum v values for which points are to be drawn.

col vector of colors for the points as generated by heat.colors or similar functions.

alpha.power used to calculate the alpha values. The larger the power, the smaller the alpha,
the more transparent the point. Only used if alpha is not supplied.

alpha vector of alpha values between 0 and 1. The length of the vector should be equal
to the length of col.

breaks breakpoints for the colors; must give one more breakpoint than colors.

sprites logical; if TRUE, use sprites3d to draw the points.

radius radius used in sprites3d.

jitter logical; if TRUE, add a small amount of noise to the point locations.

add logical; if TRUE, add to current rgl graph.

... material and texture properties. See rgl.material for details.

References

Daniel Adler, Oleg Nenadic and Walter Zucchini (2003) RGL: A R-library for 3D visualization
with OpenGL

kde3d 11

See Also

image, sprites3d, points3d, jitter.

Examples

view density of mixture of tri-variate normals
nmix3 <- function(x, y, z, m, s) {

0.4 * dnorm(x, m, s) * dnorm(y, m, s) * dnorm(z, m, s) +
0.3 * dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +

0.3 * dnorm(x, m, s) * dnorm(y, -1.5 * m, s) * dnorm(z, m, s)
}
f <- function(x,y,z) nmix3(x,y,z,.5,.5)
x<-seq(-2,2,len=50)
g <- expand.grid(x = x, y = x, z = x)
v <- array(f(gx, gy, g$z), c(length(x), length(x), length(x)))
image3d(v)
image3d(v, jitter = TRUE)

kde3d Compute a Three Dimension Kernel Density Estimate

Description

Evaluates a three dimensional kernel density estimate using a Gaussian kernel with diagonal covari-
ance matrix on a regular grid.

Usage

kde3d(x, y, z, h, n = 20, lims = c(range(x), range(y), range(z)))

Arguments

x,y,z x, y, and z coordinates of the data.

h vector of three bandwidths for the density estimate; recycled if length is less than
three; default is based on the normal reference bandwidth (see bandwidth.nrd).

n numbers of grid points to use for each dimension; recycled if length is less than
three.

lims lower and upper limits on the region for which the density estimate is to be
computed, provides as a vector of length 6, corresponding to low and high values
of x, y, and z; recycled if only two values are supplied.

Value

A list of four components, x, y, z, and d. x, y, and z are the coordinates of the grid points at which
the density estimate has been evaluated, and d is a three dimensional array of the estimated density
values.

12 lighting

References

Based on the function kde2d in package MASS.

See Also

kde2d.

Examples

with(quakes, {
d <- kde3d(long, lat, -depth, n = 40)
contour3d(d$d, exp(-12), d$x/22, d$y/28, d$z/640,

color = "green", color2 = "gray", scale=FALSE,
engine = "standard")

})

lighting Lighting Functions

Description

Functions to compute colors modified for lighting effects.

Usage

phongLighting(normals, view, light, color, color2, alpha, material = "default")
perspLighting(normals, view, light, color, color2, alpha, material = "default")

Arguments

normals numeric matrix with three columns representing surface normal vectors.

view numeric vector of length 3 representing the direction to the viewer.

light numeric vector of length 3 or 4. The first three elements represent the direction
to the light. The fourth element, if present, represents light intensity; the default
is 1.

color colors to use for faces in the direction of the normal vectors.

color2 opposite face color.

alpha alpha channel level, a number between 0 and 1.

material material specification. Currently possible values are the character strings "dull",
"shiny", "metal", and "default".

Details

phongLighting uses the Phong lighting model to compute colors modified for view direction, light
direction, and material properties. perspLighting implements approximately the same lighting
model as the persp function.

linesTetrahedra 13

Value

Vector of color specifications.

linesTetrahedra Create a Set of Lines with Tetrahetra Centered at Points along the
Lines

Description

Creates a scene consisting of lines made up of small tetrahedra centered at points along them.

Usage

linesTetrahedra(x, y, z, delta=c(min(x[,2]-x[,1])/10,
min(y[,2]-y[,1])/10,
min(z[,2]-z[,1])/10),

lwd = 0.01, color = "black", ...)

Arguments

x, y, z numeric vectors of length two or matrices with two columns representing coor-
dinates of starting and ending points of line(s).

delta numeric; increase in each dimension used to locate points along the lines; recy-
cled to length 3.

lwd numeric; used for the size of the tetrahedron in each dimension; recycled to
length 3.

color color to use for the tetrahedra.

... additional arguments to be passed on to makeTriangles.

Details

The function uses the Bresenham’s line algorithm to locate points along lines and then creates a
triangle mesh scene representing tetrahedra centered at those points.

Value

Returns a triangle mesh scene representing the lines.

See Also

lines3d.

14 parametric3d

Examples

p <- pointsTetrahedra(x=c(100,100, 257, 257),
y=c(100,100, 257, 257),
z=c(100,257, 257, 100), size=1)

l <- linesTetrahedra(x=matrix(c(100,257,
100,257), nrow=2, byrow=TRUE),

y=matrix(c(100,257,
100,257), nrow=2, byrow=TRUE),

z=matrix(c(100,257,
257,100), nrow=2, byrow=TRUE),

lwd=0.4,
col="red")

drawScene.rgl(list(p, l))

parametric3d Draw a 3D Parametric Plot

Description

Plot a two-parameter surface in three dimensions.

Usage

parametric3d(fx, fy, fz, u, v, umin, umax, vmin, vmax, n = 100,
color = "white", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default",
add = FALSE, draw = TRUE, engine = "rgl", ...)

Arguments

fx,fy,fz vectorized functions of u and v to compute the x, y, and z coordinates.

u numeric vector of u values.

v numeric vector of v values.

umin numeric; the minimum value of u. Ignored if u is supplied.

umax numeric; the maximum value of u. Ignored if u is supplied.

vmin numeric; the minimum value of v. Ignored if v is supplied.

vmax numeric; the maximum value of v. Ignored if v is supplied.

n the number of equally spaced u and v values to use. Ignored if u and v are
supplied.

color color to use for the surface. Can also be a function of three arguments. This
is called with three arguments, the coordinates of the midpoints of the triangles
making up the surface. The function should return a vector of colors to use for
the triangles.

color2 opposite face color.

parametric3d 15

alpha alpha channel level, a number between 0 and 1..

fill logical; if TRUE, drawing should use filled surfaces; otherwise a wire frame
should be drawn.

col.mesh color to use for the wire frame.

smooth integer or logical specifying Phong shading level for "standard" and "grid" en-
gines or whether or not to use shading for the "rgl" engine.

material material specification; currently only used by "standard" and "grid" engines.
Currently possible values are the character strings "dull", "shiny", "metal", and
"default".

add logical; if TRUE, add to current graph.

draw logical; if TRUE, draw the results; otherwise, return triangle mesh structure.

engine character; currently "rgl", "standard", "grid" or "none"; for "none" the computed
triangles are returned.

... additional rendering arguments, e.g. material and texture properties for the "rgl"
engine. See documentation for drawScene and drawScene.rgl

Details

Analogous to Mathematica’s Param3D. Evaluates the functions fx, fy, and fz specifying the coor-
dinates of the surface at a grid of values for the parameters u and v.

Value

For the "rgl" engine the returned value is NULL. For the "standard" and "grid" engines the returned
value is the viewing transformation as returned by persp. For the engine "none", or when draw is
not true, the returned value is a structure representing the triangles making up the surface.

Note

The "rgl" engine now uses the standard rgl coordinates instead of negating y and swapping y and z.
If you need to reproduce the previous behavior you can use options(old.misc3d.orientation=TRUE).

Transparency only works properly in the "rgl" engine. For standard or grid graphics on pdf or quartz
devices using alpha levels less than 1 does work but the triangle borders show as a less transparent
mesh.

References

Daniel Adler, Oleg Nenadic and Walter Zucchini (2003) RGL: A R-library for 3D visualization
with OpenGL

See Also

surface3d, material3d,scatterplot3d.

16 parametric3d

Examples

#Example 1: Ratio-of-Uniform sampling region of bivariate normal
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -

2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -

2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *

v)/sqrt(1-.75^2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100)

parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),

fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),

fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),

u = qcauchy((1:100)/101), v = qcauchy((1:100)/101))
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -

2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -

2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *

v)/sqrt(1-.75^2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
engine = "standard", scale = FALSE, screen = list(x=-90, y=20))

#Example 2: Ratio-of-Uniform sampling region of Bivariate t
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),

fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100, color = "green")

parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green")

parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green", engine = "standard", scale = FALSE)

#Example 3: Surface of revolution
parametric3d(fx = function(u,v) u,

fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,
umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi)

parametric3d(fx = function(u,v) u,
fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,

pointsTetrahedra 17

umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi,
engine = "standard", scale = FALSE,
color = "red", color2 = "blue", material = "shiny")

pointsTetrahedra Create a Set of Tetrahetra Centered at Data Points

Description

Creates a scene consisting of small tetrahedra centered at specified data points in three dimensions.

Usage

pointsTetrahedra(x, y, z, size = 0.01, color = "black", ...)

Arguments

x, y, z numeric vectors representing point coordinates.

size numeric; multiple of data range to use for the size of the tetrahedron in each
dimension; recycled to length 3.

color color to use for the tetrahedra.

... additional arguments to be passed on to makeTriangles.

Details

This function is useful, for example, for incorporating raw data along with a density estimate surface
in a scene rendered using standard or grid graphics. For rgl rendering points3d is an alternative.

Value

Returns a triangle mesh scene representing the tetrahedra.

See Also

points3d.

Examples

with(quakes, {
d <- kde3d(long, lat, -depth, n = 40)
v <- contour3d(d$d, exp(-12),d$x/22, d$y/28, d$z/640,

color="green", color2="gray", draw=FALSE)
p <- pointsTetrahedra(long/22, lat/28, -depth/640,

size = 0.005)
drawScene(list(v, p))

})

18 slices3d

slices3d Interactive Image Slices of 3D or 4D Volume Data

Description

Uses tkrplot to create an interactive slice view of three or four dimensional volume data.

Usage

slices3d(vol1, vol2=NULL, rlim1, rlim2, col1, col2, main,
scale = 0.8, alpha=1, cross = TRUE,
layout=c("counterclockwise", "clockwise"))

Arguments

vol1 a three or four dimensional real array. If two images are overlaid, then this is the
one at bottom.

vol2 a three or four dimensional real array. If two images are overlaid, then this is the
one on top. The default value is NULL, when only vol1 is drawn.

rlim1 the minimum and maximum vol1 values for which colors should be plotted,
defaulting to the range of the values of vol1.

rlim2 the minimum and maximum vol2 values for which colors should be plotted,
defaulting to the range of the values of vol2, if two images are overlaid.

col1 a list of colors for vol1.

col2 a list of colors for vol2.

main a character vector; main title for the plot.

scale real value for scaling embedded plot size.

alpha real value for transparency level, if two images are overlaid. The default value
is 1.

cross logical; if TRUE, show cross hairs of current slices.

layout a character string specifying the layout. It must be either "counterclockwise" or
"clockwise", and may be abbreviated. The default is "counterclockwise". Im-
ages corresponding to the x-y planes are always displayed in the third quadrant.
If layout is counterclockwise, then the first quadrant shows images from the
y-z planes and the second quadrant the x-z planes. Otherwise, the images in the
first and the second quadrant are switched. The fourth quadrant is left for the
slider used to select the value of the fourth index (if any) of input array(s).

Details

Shows slices of 3D array along the axes as produced by image, along with sliders for controlling
which slices are shown. For 4D data an additional slider selects the value of the fourth index. Two
images can be overlaid. This is useful for viewing medical imaging data (e.g. PET scans and fMRI
data).

surfaceTriangles 19

Examples

#Example 1: View of a mixture of three tri-variate normal densities
nmix3 <- function(x, y, z, m, s) {

0.4 * dnorm(x, m, s) * dnorm(y, m, s) * dnorm(z, m, s) +
0.3 * dnorm(x, -m, s) * dnorm(y, -m, s) * dnorm(z, -m, s) +
0.3 * dnorm(x, m, s) * dnorm(y, -1.5 * m, s) * dnorm(z, m, s)

}
x<-seq(-2, 2, len=40)
g<-expand.grid(x = x, y = x, z = x)
v<-array(nmix3(gx,gy,g$z, .5,.5), c(40,40,40))
slices3d(vol1=v, main="View of a mixture of three tri-variate normals", col1=heat.colors(256))

Not run:
#Example 2: Put a z-map from fMRI data on top of a structure
image. The threshold value of the z-map is 2.
library(AnalyzeFMRI)
temp<-f.read.analyze.volume("standard.img")
z<-f.read.analyze.volume("z-map.img")
slices3d(vol1=temp, vol2=z[,,,1], rlim2=c(2,Inf),col2=heat.colors(20),

main="Regions above threshold values.")

End(Not run)

surfaceTriangles Create a Triangle Mesh Representing a Surface

Description

Creates a triangle mesh object representing a surface over a rectangular grid.

Usage

surfaceTriangles(x, y, f, color = "red", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default")

Arguments

x, y numeric vectors.

f numeric matrix of dimension length(x) by length(y) or vectorized function
of two arguments.

color color to use for the surface. Can also be a function of three arguments. This
is called with three arguments, the coordinates of the midpoints of the triangles
making up the surface. The function should return a vector of colors to use for
the triangles.

color2 opposite face color.

alpha alpha channel level, a number between 0 and 1..

20 teapot

fill logical; if TRUE, drawing should use filled surfaces; otherwise a wire frame
should be drawn.

col.mesh color to use for the wire frame.

smooth integer or logical specifying Phong shading level for "standard" and "grid" en-
gines or whether or not to use shading for the "rgl" engine.

material material specification; currently only used by "standard" and "grid" engines.
Currently possible values are the character strings "dull", "shiny", "metal", and
"default".

Value

Returns a triangle mesh object representing the surface.

See Also

persp, rgl.surface, surface3d.

Examples

drawScene(surfaceTriangles(seq(-1,1,len=30), seq(-1,1,len=30),
function(x, y) (x^2 + y^2), color2 = "green"))

drawScene.rgl(surfaceTriangles(seq(-1,1,len=30), seq(-1,1,len=30),
function(x, y) (x^2 + y^2), color2 = "green"))

teapot Utah Teapot

Description

The Utah teapot is a classic computer graphics example. This data set contains a representation in
terms of triangles.

Usage

data(teapot)

Format

A list with components vertices and edges. vertices is a 3 by 1976 numeric matrix of the
coordinates of the vertices. edges is a 3 by 3751 integer matrix of the indices of the triangles.

Source

Converted from the netCDF file that was at one time made available by Dave Forrest at http://www.maplepark.com/~drf5n/extras/teapot.nc.

triangles 21

triangles Triangle Mesh Functions

Description

Functions to create and modify triangle mesh objects representing 3D surfaces..

Usage

makeTriangles(v1, v2, v3, color = "red", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default")

updateTriangles(triangles, color, color2, alpha, fill, col.mesh,
material, smooth)

translateTriangles(triangles, x = 0, y = 0, z = 0)
scaleTriangles(triangles, x = 1, y = x, z = x)
transformTriangles(triangles, R)

Arguments

v1,v2,v3 specification of triangle coordinates. If all three are provided then they should
be matrices with three columns representing coordinates of the first, second, and
third vertices of the triangles. If only v1 and v2 are provided then v1 should be a
numeric matrix with three rows specifying coordinates of vertices, and v2 should
be an integer matrix with three rows specifying the indexes of the vertices in the
triangles. If only v1 is provided then it should be a matrix with three columns
and number of rows divisible by three specifying the vertices of the triangles in
groups of three.

triangles triangle mesh object.
x,y,z numeric of length one. Amounts by which to translate or scale corresponding

coordinates.
color color to use for the surface. Can also be a function of three arguments. This

is called with three arguments, the coordinates of the midpoints of the triangles
making up the surface. The function should return a vector of colors to use for
the triangles.

color2 opposite face color.
alpha alpha channel level, a number between 0 and 1.
fill logical; if TRUE, drawing should use filled surfaces; otherwise a wire frame

should be drawn.
col.mesh color to use for the wire frame.
smooth integer or logical specifying Phong shading level for "standard" and "grid" en-

gines or whether or not to use shading for the "rgl" engine.
material material specification; currently only used by "standard" and "grid" engines.

Currently possible values are the character strings "dull", "shiny", "metal", and
"default".

R 4 by 4 homogeneous coordinate transformation matrix to apply.

22 triangles

Details

makeTriangles creates a triangle mesh object. updateTriangles modifies fields of such an object.
Both may perform some consistency checks.

translateTriangles and scaleTriangles translate or scale the vertex locations of triangle mesh
objects by specified amounts.

transformTriangles applies a transformation specified by a 4 by 4 homogeneous transformation
matrix.

Value

A triangle mesh object of class Triangles3D.

Index

∗ datasets
teapot, 20

∗ dplot
kde3d, 11

∗ hplot
computeContour3d, 2
contour3d, 3
drawScene, 6
exportScene, 9
image3d, 10
lighting, 12
linesTetrahedra, 13
parametric3d, 14
pointsTetrahedra, 17
slices3d, 18
surfaceTriangles, 19
triangles, 21

bandwidth.nrd, 11

cloud, 7
computeContour3d, 2
contour3d, 2, 3

drawScene, 4, 6, 15
drawScene.rgl, 4, 15

exportScene, 9

image, 11
image3d, 10

jitter, 11

kde2d, 12
kde3d, 11

lighting, 12
lines3d, 13
linesTetrahedra, 13

makeTriangles (triangles), 21

material3d, 4, 15

panel.3dwire, 7
parametric3d, 14
persp, 20
perspLighting (lighting), 12
phongLighting (lighting), 12
points3d, 11, 17
pointsTetrahedra, 17

rgl.material, 7, 8
rgl.surface, 20

scaleTriangles (triangles), 21
scatterplot3d, 15
slices3d, 18
sprites3d, 11
surface3d, 4, 15, 20
surfaceTriangles, 19

teapot, 20
transformTriangles (triangles), 21
translateTriangles (triangles), 21
triangles, 21
triangles3d, 4

updateTriangles (triangles), 21

23

	computeContour3d
	contour3d
	drawScene
	exportScene
	image3d
	kde3d
	lighting
	linesTetrahedra
	parametric3d
	pointsTetrahedra
	slices3d
	surfaceTriangles
	teapot
	triangles
	Index

