Package 'metafuse'

October 13, 2022

Type Package		
Title Fused Lasso Approach in Regression Coefficient Clustering		
Version 2.0-1		
Date 2016-10-16		
Author Lu Tang, Ling Zhou, Peter X.K. Song		
Maintainer Lu Tang <lutang@umich.edu></lutang@umich.edu>		
Description Fused lasso method to cluster and estimate regression coefficients of the same covariate across different data sets when a large number of independent data sets are combined. Package supports Gaussian, binomial, Poisson and Cox PH models.		
License GPL-2		
Imports glmnet, Matrix, MASS, evd		
Repository CRAN		
NeedsCompilation no		

R topics documented:

Index

Date/Publication 2016-10-17 00:37:55

metafuse-package	
metafuse	. 4
	9

metafuse-package

Description

Fused lasso method to cluster and estimate regression coefficients of the same covariate across different data sets when a large number of independent data sets are combined. Package supports Gaussian, binomial, Poisson and Cox PH models.

Details

Simple to use. Accepts X, y, and sid (numerica data source ID for which data entry belongs to) for regression models. Returns regression coefficient estimates and clusterings patterns of coefficients across different datasets, for each covariate. Provides visualization by fusogram, a dendrogram-type of presentation of coefficient clustering pattern across data sources.

Author(s)

Lu Tang, Ling Zhou, Peter X.K. Song Maintainer: Lu Tang <lutang@umich.edu>

References

Lu Tang, and Peter X.K. Song. Fused Lasso Approach in Regression Coefficients Clustering -Learning Parameter Heterogeneity in Data Integration. *Journal of Machine Learning Research*, 17(113):1-23, 2016.

Fei Wang, Lu Wang, and Peter X.K. Song. Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements. *Biometrics*, DOI:10.1111/biom.12496, 2016.

Examples

datagenerator

```
# prepare the input for metafuse
       <- data$y
v
sid
       <- data$group
       <- data[,-c(1,ncol(data))]
Х
# fuse slopes of X1 (which is heterogeneous with 2 clusters)
metafuse(X=X, y=y, sid=sid, fuse.which=c(1), family="gaussian", intercept=TRUE, alpha=0,
         criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse slopes of X2 (which is heterogeneous with 3 clusters)
metafuse(X=X, y=y, sid=sid, fuse.which=c(2), family="gaussian", intercept=TRUE, alpha=0,
         criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse all three covariates
metafuse(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE, alpha=0,
         criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse all three covariates, with sparsity penalty
metafuse(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE, alpha=1,
         criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fit metafuse at a given lambda
metafuse.l(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE,
         alpha=1, lambda=0.5)
```

datagenerator simulate data

Description

Simulate a dataset with data from K different sources, for demonstration of metafuse.

Usage

datagenerator(n, beta0, family, seed = NA)

Arguments

n	a vector of length K (the total number of datasets being integrated), specifying the sample sizes of individual datasets; can also be an scalar, in which case the function simulates K datasets of equal sample size
beta0	a coefficient matrix of dimension $K * p$, where K is the number of datasets being integrated and p is the number of covariates, including the intercept
family	the type of the response vector, c("gaussian", "binomial", "poisson", "cox"); "gaussian" for continuous response, "binomial" for binary response, "poisson" for count response, "cox" for observed time-to-event response, with censoring indicator
seed	the random seed for data generation, default is NA

Details

These datasets are artifical, and are used to demonstrate the features of metafuse. In the case when family="cox", the response will contain two vectors, a time-to-event variable time and a censoring indicator status.

Value

Returns data frame with n*K rows (if n is a scalar), or sum(n) rows (if n is a K-element vector). The data frame contains columns "y", "x1", ..., "x_p-1" and "group" if family="gaussian", "binomial" or "poisson"; or contains columns "time", "status", "x1", ..., "x_p-1" and "group" if family="cox".

Examples

sample size in each dataset (can also be a K-element vector) n <- 200 K <- 10 # number of datasets for data integration p <- 3 # number of covariates in X (including the intercept) # the coefficient matrix of dimension K \star p, used to specify the heterogeneous pattern # beta_1 of X_1 0.0,0.0,0.0,0.0,0.5,0.5,0.5,1.0,1.0,1.0), # beta_2 of X_2 K, p) # generate a data set, family=c("gaussian", "binomial", "poisson", "cox") data <- datagenerator(n=n, beta0=beta0, family="gaussian", seed=123)</pre> names(data) # if family="cox", returned dataset contains columns "time"" and "status" instead of "y" data <- datagenerator(n=n, beta0=beta0, family="cox", seed=123)</pre> names(data)

metafuse

fit a GLM with fusion penalty for data integraion

Description

Fit a GLM with fusion penalty on coefficients within each covariate across datasets, generate solution path and fusograms for visualization of the model selection.

Usage

```
metafuse(X = X, y = y, sid = sid, fuse.which = c(0:ncol(X)),
family = "gaussian", intercept = TRUE, alpha = 0, criterion = "EBIC",
verbose = TRUE, plots = FALSE, loglambda = TRUE)
```

metafuse

Arguments

Х	a matrix (or vector) of predictor(s), with dimensions of $N*(p-1)$, where N is the total sample size of the integrated dataset
У	a vector of response, with length N; when family=" cox ", y is a data frame with cloumns time and status
sid	data source ID of length N, must contain integers numbered from 1 to K
fuse.which	a vector of integers from 0 to p-1, indicating which covariates are considered for fusion; 0 corresponds to the intercept; coefficients of covariates not in this vector are homogeneously estimated across all datasets
family	response vector type, "gaussian" if y is a continuous vector, "binomial" if y is binary vector, "poisson" if y is a count vector, "cox" if y is a data frame with cloumns time and status
intercept	if TRUE, intercept will be included, default is TRUE
alpha	the ratio of sparsity penalty to fusion penalty, default is 0 (i.e., no variable selec- tion, only fusion)
criterion	"AIC" for AIC, "BIC" for BIC, "EBIC" for extended BIC, default is "BIC"
verbose	if TRUE, outputs whenever a fusion event happens, and returns the current value of lambda, default is TRUE
plots	if TRUE, create solution paths and fusogram plots to visualize the clustering of regression coefficients across datasets, default is FALSE
loglambda	if TRUE, lambda will be plotted in log-10 scale, default is TRUE

Details

Adaptive lasso penalty is used. See Zou (2006) for detail.

Value

A list containing the following items will be returned:

family	the response/model type
criterion	model selection criterion used
alpha	the ratio of sparsity penalty to fusion penalty
if.fuse	whether covariate is assumed to be heterogeneous (1) or homogeneous (0)
betahat	the estimated regression coefficients
betainfo	additional information about the fit, including degree of freedom, optimal lambda value, maximum lambda value to fuse all coefficients, and estimated friction of fusion

References

Lu Tang, and Peter X.K. Song. Fused Lasso Approach in Regression Coefficients Clustering -Learning Parameter Heterogeneity in Data Integration. *Journal of Machine Learning Research*, 17(113):1-23, 2016.

Fei Wang, Lu Wang, and Peter X.K. Song. Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements. *Biometrics*, DOI:10.1111/biom.12496, 2016.

Examples

```
# sample size in each dataset (can also be a K-element vector)
n <- 200
K <- 10
          # number of datasets for data integration
p <- 3
          # number of covariates in X (including the intercept)
# the coefficient matrix of dimension K \star p, used to specify the heterogeneous pattern
# beta_1 of X_1
               0.0,0.0,0.0,0.0,0.5,0.5,0.5,1.0,1.0,1.0), # beta_2 of X_2
              K, p)
# generate a data set, family=c("gaussian", "binomial", "poisson", "cox")
data <- datagenerator(n=n, beta0=beta0, family="gaussian", seed=123)</pre>
# prepare the input for metafuse
       <- data$y
٧
sid
       <- data$group
       <- data[,-c(1,ncol(data))]
Х
# fuse slopes of X1 (which is heterogeneous with 2 clusters)
metafuse(X=X, y=y, sid=sid, fuse.which=c(1), family="gaussian", intercept=TRUE, alpha=0,
        criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse slopes of X2 (which is heterogeneous with 3 clusters)
metafuse(X=X, y=y, sid=sid, fuse.which=c(2), family="gaussian", intercept=TRUE, alpha=0,
        criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse all three covariates
metafuse(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE, alpha=0,
        criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
# fuse all three covariates, with sparsity penalty
metafuse(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE, alpha=1,
        criterion="EBIC", verbose=TRUE, plots=TRUE, loglambda=TRUE)
```

metafuse.l

Description

Fit a GLM with fusion penalty on coefficients within each covariate at given lambda.

Usage

```
metafuse.l(X = X, y = y, sid = sid, fuse.which = c(0:ncol(X)),
family = "gaussian", intercept = TRUE, alpha = 0, lambda = lambda)
```

Arguments

Х	a matrix (or vector) of predictor(s), with dimensions of $N*(p-1)$, where N is the total sample size of the integrated dataset
У	a vector of response, with length N; when family=" cox ", y is a data frame with cloumns time and status
sid	data source ID of length N, must contain integers numbered from 1 to K
fuse.which	a vector of integers from 0 to p-1, indicating which covariates are considered for fusion; 0 corresponds to the intercept; coefficients of covariates not in this vector are homogeneously estimated across all datasets
family	response vector type, "gaussian" if y is a continuous vector, "binomial" if y is binary vector, "poisson" if y is a count vector, "cox" if y is a data frame with cloumns time and status
intercept	if TRUE, intercept will be included, default is TRUE
alpha	the ratio of sparsity penalty to fusion penalty, default is 0 (i.e., no variable selec- tion, only fusion)
lambda	tuning parameter for fusion penalty

Details

Adaptive lasso penalty is used. See Zou (2006) for detail.

Value

A list containing the following items will be returned:

family	the response/model type
alpha	the ratio of sparsity penalty to fusion penalty
if.fuse	whether covariate is assumed to be heterogeneous (1) or homogeneous (0)
betahat	the estimated regression coefficients
betainfo	additional information about the fit, including degree of freedom, optimal lambda value, maximum lambda value to fuse all coefficients, and estimated friction of fusion

References

Lu Tang, and Peter X.K. Song. Fused Lasso Approach in Regression Coefficients Clustering -Learning Parameter Heterogeneity in Data Integration. *Journal of Machine Learning Research*, 17(113):1-23, 2016.

Fei Wang, Lu Wang, and Peter X.K. Song. Fused lasso with the adaptation of parameter ordering in combining multiple studies with repeated measurements. *Biometrics*, DOI:10.1111/biom.12496, 2016.

Examples

```
# sample size in each dataset (can also be a K-element vector)
n <- 200
K <- 10
         # number of datasets for data integration
p <- 3
         # number of covariates in X (including the intercept)
# the coefficient matrix of dimension K \star p, used to specify the heterogeneous pattern
K, p)
# generate a data set, family=c("gaussian", "binomial", "poisson", "cox")
data <- datagenerator(n=n, beta0=beta0, family="gaussian", seed=123)</pre>
# prepare the input for metafuse
      <- data$y
у
sid
      <- data$group
      <- data[,-c(1,ncol(data))]
Х
# fit metafuse at a given lambda
metafuse.l(X=X, y=y, sid=sid, fuse.which=c(0,1,2), family="gaussian", intercept=TRUE,
       alpha=1, lambda=0.5)
```

Index

* Data integration metafuse-package, 2 * Fused lasso metafuse-package, 2 * Generalized Linear Models metafuse-package, 2 * data datagenerator, 3 * generator datagenerator, 3 * package metafuse-package, 2 datagenerator, 3 metafuse, 4

metafuse-package, 2
metafuse.1, 7