## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----craninstall, eval = FALSE------------------------------------------------ # install.packages("mantar") ## ----remoteinstall, eval = FALSE---------------------------------------------- # # install.packages("remotes") # remotes::install_github("kai-nehler/mantar@develop") ## ----loadmantar--------------------------------------------------------------- library(mantar) ## ----example------------------------------------------------------------------ # Load some example data sets for the ReadMe data(mantar_dummy_full_cont) data(mantar_dummy_full_cat) data(mantar_dummy_mis_cont) # Preview the first few rows of these data sets head(mantar_dummy_full_cont) head(mantar_dummy_full_cat) head(mantar_dummy_mis_cont) ## ----example_network---------------------------------------------------------- # Estimate network from full data set using BIC, the and rule as well as treating the data as continuous result_full_cont <- neighborhood_net(data = mantar_dummy_full_cont, ic_type = "bic", pcor_merge_rule = "and", ordered = FALSE) # View estimated partial correlations result_full_cont ## ----example_network_ord------------------------------------------------------ # Estimate network from full data set using BIC, the and rule as well as treating the # data as ordered categorical result_full_cat <- neighborhood_net(data = mantar_dummy_full_cat, ic_type = "bic", pcor_merge_rule = "and", ordered = TRUE) # View estimated partial correlations result_full_cat ## ----example_network_mis, results = "hide"------------------------------------ # Estimate network for data set with missing values result_mis_cont <- neighborhood_net(data = mantar_dummy_mis_cont, n_calc = "individual", missing_handling = "stacked-mi", nimp = 20, imp_method = "pmm", pcor_merge_rule = "and") ## ----example_network_mis_view------------------------------------------------- # View estimated partial correlations result_mis_cont ## ----example_reg_network------------------------------------------------------ # Estimate network from full data set using BIC and the glasso penalty result_full_cont <- regularization_net(data = mantar_dummy_full_cont, penalty = "glasso", vary = "lambda", n_lambda = 100, lambda_min_ratio = 0.1, ic_type = "bic", pcor_merge_rule = "and", ordered = FALSE) # View estimated partial correlations result_full_cont ## ----example_reg_network_mis-------------------------------------------------- # Estimate network for data set with missing values result_mis_cont <- regularization_net(data = mantar_dummy_mis_cont, likelihood = "obs_based", penalty = "glasso", vary = "lambda", n_lambda = 100, lambda_min_ratio = 0.1, ic_type = "ebic", extended_gamma = 0.5, n_calc = "average", missing_handling = "two-step-em", pcor_merge_rule = "and", ordered = FALSE) # View estimated partial correlations result_mis_cont ## ----example_data_prep, message=FALSE, warning=FALSE-------------------------- url <- "https://osf.io/download/6s9p4/" zipfile <- file.path(tempdir(), "vervaet.zip") exdir <- file.path(tempdir(), "vervaet") dir.create(exdir, recursive = TRUE, showWarnings = FALSE) download.file(url, destfile = zipfile, mode = "wb") unzip(zipfile, exdir = exdir) load(file.path(exdir, "Supplementary materials", "Dataset.RData")) ## ----example_data_miss-------------------------------------------------------- colMeans(is.na(Data)) ## ----ordered_cat-------------------------------------------------------------- summary(Data) ## ----example_final_network---------------------------------------------------- final_result <- neighborhood_net(data = Data, n_calc = "individual", missing_handling = "two-step-em", pcor_merge_rule = "and", ordered = FALSE) ## ----example_final_network_view----------------------------------------------- final_result$pcor ## ----example_final_network_summary-------------------------------------------- summary(final_result) ## ----example_final_network_plot, message=FALSE, warning=FALSE----------------- Groups <- c(rep("EDI-II", 11), rep("BDI", 1), rep("STAI", 1), rep("RS-NL", 1), rep("TCI", 7), rep("YSQ", 5), rep("FMPS", 6)) # Create names for legend Names <- c("Drive for Thinness", "Bulimia","Body Dissatisfaction", "Ineffectiveness", "Perfectionism", "Interpersonal Distrust ", "Interoceptive Awareness ", "Maturity Fears", "Asceticism", "Impulse Regulation","Social Insecurity", "Depression", "Anxiety", "Resilience", "Novelty Seeking", "Harm Avoidance", "Reward Dependence", "Persistence", "Self-Directedness", "Cooperativeness", "Self- Transcendence", "Disconnection and Rejection", "Impaired Autonomy & Performance", "Impaired Limits", "Other-directness", "Overvigilance & Inhibition", "Concern over Mistakes", "Personal Standards", "Parental Expectations", "Parental Criticism", "Doubting of Actions", "Order and Organisation") Lab_Colors <- c(rep('white', 11), rep('white', 1), rep('black', 1), rep('white', 1), rep('black', 7), rep('black', 5), rep('white', 6)) plot(final_result, layout = 'spring', nodeNames = Names, groups = Groups, label.color = Lab_Colors, vsize = 5, legend.cex = 0.15, label.cex = 1.25, negCol = "#7A0403FF", posCol = "#00204DFF")