
Package ‘lslx’
December 2, 2022

Type Package

Title Semi-Confirmatory Structural Equation Modeling via Penalized
Likelihood or Least Squares

Version 0.6.11

Description
Fits semi-confirmatory structural equation modeling (SEM) via penalized likelihood (PL) or pe-
nalized least squares (PLS). For details, please see Huang (2020) <doi:10.18637/jss.v093.i07>.

License GPL-3

Encoding UTF-8

Collate lslxData-class.R lslxData-initialize-method.R
lslxModel-class.R lslxModel-initialize-method.R
lslxFitting-class.R lslxFitting-initialize-method.R
prelslx-class.R prelslx-initialize-method.R
prelslx-prefit-method.R lslx-class.R lslx-print-method.R
lslx-set-coefficient-method.R lslx-set-block-method.R
lslx-set-directed-method.R lslx-set-heterogeneity-method.R
lslx-set-undirected-method.R lslx-set-data-method.R
RcppExports.R lslx-fit-method.R lslx-get-method.R
lslx-extract-method.R lslx-test-method.R
lslx-summarize-method.R lslx-plot-method.R
lslx-validate-method.R lslx-s3-interface.R polyhedral.R
utility-function.R

Depends R (>= 3.5.0)

Imports stats, Rcpp, R6, ggplot2

Suggests knitr, rmarkdown, lavaan

VignetteBuilder knitr

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.2.2

URL https://github.com/psyphh/lslx/wiki

BugReports https://github.com/psyphh/lslx/issues

NeedsCompilation yes

1

https://doi.org/10.18637/jss.v093.i07
https://github.com/psyphh/lslx/wiki
https://github.com/psyphh/lslx/issues

2 coef.lslx

Author Po-Hsien Huang [cre, aut],
Wen-Hsin Hu [aut]

Maintainer Po-Hsien Huang <psyphh@gmail.com>

Repository CRAN

Date/Publication 2022-12-02 08:20:05 UTC

R topics documented:

coef.lslx . 2
fitted.lslx . 3
lslx . 3
plsem . 42
prelslx . 44
residuals.lslx . 46
summary.lslx . 46
vcov.lslx . 47

Index 48

coef.lslx S3 method to extract parameter estimate from lslx

Description

coef.lslx() is an S3 interface for extracting parameter estimate from a lslx object.

Usage

S3 method for class 'lslx'
coef(object, selector, lambda, delta, ...)

Arguments

object A fitted lslx object.

selector A character to specify a selector for determining an optimal penalty level.

lambda A numeric to specify a chosen optimal lambda value.

delta A numeric to specify a chosen optimal lambda value.

... Other arguments. For details, please see the $extracted_coefficient() method
in lslx.

fitted.lslx 3

fitted.lslx S3 method to extract model-implied moments from lslx

Description

fitted.lslx() is an S3 interface for extracting model-implied moments from a lslx object.

Usage

S3 method for class 'lslx'
fitted(object, selector, lambda, delta, ...)

Arguments

object A fitted lslx object.

selector A character to specify a selector for determining an optimal penalty level.
Its value can be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or
their robust counterparts "raic", "raic3", "rcaic", "rbic", "rabic", "rhbic"
if raw data is available.

lambda A numeric to specific a chosen optimal penalty level. If the specified lambda is
not in lambda_grid, a nearest legitimate value will be used.

delta A numeric to specific a chosen optimal convexity level. If the specified delta
is not in delta_grid, a nearest legitimate value will be used.

... Other arguments. For details, please see the $extracted_implied_mean() and
the $extracted_implied_cov() methods in lslx.

lslx R6 class for semi-confirmatory structural equation modeling via pe-
nalized likelihood

Description

R6 class for semi-confirmatory structural equation modeling via penalized likelihood

R6 class for semi-confirmatory structural equation modeling via penalized likelihood

Value

Object of lslx R6 class for fitting semi-confirmatory structural equation modeling (SEM) with
penalized likelihood (PL).

4 lslx

Usage

lslx is an R6ClassGenerator for constructing an lslx object that has methods for fitting semi-
confirmatory SEM. In a simpliest case, the use of lslx involves three major steps

1. Initialize a new lslx object by specifying a model and importing a data set.
r6_lslx <- lslx$new(model, data)

2. Fit the specified model to the imported data with given fitting control.
r6_lslx$fit(penalty_method, lambda_grid, delta_grid)

3. Summarize the fitting results with specified selector.
r6_lslx$summarize(selector)

To cite lslx in publications use:

Po-Hsien Huang (in press). lslx: Semi-Confirmatory Structural Equation Modeling via Penalized
Likelihood. Journal of Statistical Software.

Overview

lslx is a package for fitting semi-confirmatory structural equation modeling (SEM) via penalized
likelihood (PL) developed by Huang, Chen, and Weng (2017). In this semi-confirmatory method,
an SEM model is distinguished into two parts: a confirmatory part and an exploratory part. The
confirmatory part includes all of the freely estimated parameters and fixed parameters that are
allowed for theory testing. The exploratory part is composed by a set of penalized parameters
describing relationships that cannot be clearly determined by available substantive theory. By im-
plementing a sparsity-inducing penalty and choosing an optimal penalty level, the relationships in
the exploratory part can be efficiently identified by the sparsity pattern of these penalized parame-
ters. After Version 0.6.7, lslx also supports penalized least squares for SEM with ordianl data under
delta parameterization. The technical details of lslx can be found in its JSS paper (Huang, 2020)
<doi:10.18637/jss.v093.i07> or Vignette for Package lslx (https://cran.r-project.org/web/packages/lslx/vignettes/vignette-
lslx.pdf).

The main function lslx generates an object of lslx R6 class. R6 class is established via package
R6 (Chang, 2017) that facilitates encapsulation object-oriented programming in R system. Hence,
the lslx object is self-contained. On the one hand, lslx object stores model, data, and fitting
results. On the other hand, it has many built-in methods to respecify model, fit the model to data,
and test goodness of fit and coefficients. The initialization of a new lslx object requires importing
a model and a data set to be analyzed. After an lslx object is initialized, build-in methods can
be used to modify the object, find the estimates, and summarize fitting result. Details of object
initialization is described in the section of Initialize Method.

In the current semi-confirmatory approach, the model specification is quite similar to the traditional
practice of SEM except that some parameters can be set as penalized. Model specification in lslx
mainly relies on the argument model when creating a new lslx object. After a lslx object is
initialized, the initialized model can be still modified by set-related methods. These set-related
methods may hugely change the initialized model by just one simple command. This two-step
approach allows users specifying their own models flexibly and efficiently. Details of the model
specification can be found in the sections of Model Syntax and Set-Related Methods.

Given a penalty level, lslx finds a PL estimate by minimizing a penalized maximum likelihood
(ML) loss or a least squares loss functions (including OLS, DWLS, and WLS). The penalty function

lslx 5

can be set as lasso (Tibshirani, 1996), ridge (Hoerl & Kennard, 1970), elastic net (Zou & Hastie,
2005), or mcp (minimax concave penalty; Zhang, 2010). lslx solves the optimization problem
based on an improved glmnet method (Friedman, Hastie, & Tibshirani, 2010) made by Yuan, Ho,
and Lin (2012). The underlying optimizer is written by using Rcpp (Eddelbuettel & Francois,
2011) and RcppEigen (Bates & Eddelbuettel, 2013). Our experiences show that the algorithm
can efficiently find a local minimum provided that (1) the starting value is reasonable, and (2) the
saturated covariance matrix is not nearly singular. Details of optimization algorithm and how to
implement the algorithm can be found in the sections of Optimization Algorithm and Fit-Related
Methods.

When conducting SEM, missing data are easily encountered. lslx can handle missing data problem
by listwise deletion and two-step methods. Details of the methods for missing data can be found in
the section of Missing Data.

After fitting the specified model to data under all of the considered penalty levels, an optimal
penalty level should be chosen. A naive method for penalty level selection is using information
criteria. Huang, Chen, and Weng (2017) have shown the asymptotic properties of Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) in selecting the penalty level. In lslx,
information criteria other an AIC and BIC can be also used. However, the empirical performances
of these included criteria should be further studied. Details of choosing an optimal penalty level
can be found in the section of Penalty Level Selection.

Given a penalty level, it is important to evaluate the goodness-of-fit of selected model and coef-
ficients. In lslx, it is possible to make statistical inferences for goodness-of-fit and coefficients.
However, the inference methods assume that no model selection is conducted, which is not true
in the case of using PL. After version 0.6.4, several post-selection mehtods are available (Huang,
2019b). Details of statistical inference can be found in the sections of Model Fit Evaluation and Co-
efficient Evaluation. Implementations of these methods can be found in the sections of Summarize
Method and Test-Related Methods.

Besides making statistical inference, lslx has methods for plotting the fitting results, include vi-
sualizing quality of optimization and the values of information criteria, fit indices, and coefficient
estimates. Details of methods for plotting can be found in the section of Plot-Related Methods.

An object of lslx R6 class is composed by three R6 class objects: lslxModel, lslxData, and
lslxFitting. lslxModel contains the specified model and lslxData object stores the imported
data to be analyzed. When fitting the model to data, a reduced model and data will be sent to
lslxFitting. After the underlying optimizer finishes its job, the fitting results will be also stored
in lslxFitting. Since the three members are set as private, they can be only assessed by defined
member functions. Other than the three members, quantities that are crucial for SEM can be also
extracted, such as model-implied moments, information matrix, and etc.. Details of methods for
obtaining private members and SEM-related quantities can be found in the sections of Get-Related
Methods and Extract-Related Methods.

Model Syntax

With lslx the relationships among observed variables and latent factors are mainly specified via
equation-like syntax. The creation of syntax in lslx is highly motivated by lavaan (Rosseel, 2012),
a successful package for fitting SEM. However, lslx utilizes slightly more complex, but still intuitive
operators to describe relations among variables.

Example 1: Multiple Regression Model
Consider the first example of model that specifies a multiple regression model

6 lslx

y <= x1 + x2

In this example, an dependent variable y is predicted by x1 and x2. These three variables are all ob-
served variables and should appear in the given data set. The operator <= means that the regression
coefficients from the right-hand side (RHS) variables to the left-hand side (LHS) variables should
be freely estimated.

Although it is a very simple example, at least four important things behind this example should be
addressed:

1. For any endogenous variable (i.e., an variable that is influenced by any other variable), its
residual term is not required to be specified. In this example, lslx recognizes y is an endoge-
nous variable and hence the variance of corresponding residual will be set as freely estimated
parameter. It is also possible to explicitly specify the variance of residual of y by y <=> y.
Here, the operator <=> indicates the covariance of the RHS and LHS variables should be
freely estimated.

2. If all of the specified equations do not contain the intercept variable 1, then the intercept of
each endogenous and observed variable will be freely estimated. Since the intercept variable
1 doesn’t appear in this example, the intercept for y will be set as a freely estimated parameter.
We can explicitly set the intercept term by y <= 1. However, under the situation that many
equations are specified, once the intercept variable 1 appears in some equation, intercept terms
in other equations should be explicitly specified. Otherwise, the intercepts of endogenous and
observed variables in other equations will be fixed at zero.

3. For any set of exogeneous variables (i.e., variables that are not influenced by any other vari-
able in the specified system), not only their variances will be freely estimated, but also their
pairwise covariances will be set as freely estimated parameters. In this example, x1 and x2
are both exogeneous variables. Hence, their variance and pairwise covariances will be auto-
matically set as freely estimated parameters. These covariances can be explicitly stated by
simply x1 + x2 <=> x1 + x2. The syntax parser in lslx will consider variance/covariance of
each combination of LHS and RHS variables.

4. The intercepts (or means) of exogeneous and observed variables are always set as freely es-
timated parameters. In this example, the intercepts of x1 and x2 will be freely estimated. It
can be stated explicitly by x1 + x2 <= 1. Also, the lslx parser will know that the intercept
variable 1 has effect on all of x1 and x2.

The previous regression example can be equivalently represented by x1 + x2 => y. In lslx all of the
directed operators can be reversed under the stage of model specification. Users can choose the
directions of operators according to their own preference.

The unique feature of lslx is that all of the parameters can be set as penalized. To penalize all of the
regression coefficients, the equation can be modified as

y <~ x1 + x2

Here, the operator <~ means that the regression coefficients from the RHS variables to the LHS
variables should be estimated with penalization. If only the coefficient of x1 should be penalized,
we can use prefix to partly modify the equation

y <= pen() * x1 + x2

or equivalently

y <~ x1 + free() * x2

lslx 7

Both pen() and free() are prefix to modify the lslx operators. pen() makes the corresponding
parameter to be penalized and free() makes it to be freely estimated. Inside the parentheses,
starting values can be specified. Any prefix must present before some variable name and divided
by asterisk *. Note that prefix can appear in the either RHS or LHS of operators and its function
can be ’distributed’ to the variables in the other side. For example, free() * y <~ x1 + x2 will be
interpreted as that all of the coefficients should be freely estimated. However, any prefix cannot
simultaneously appear on both sides of operators, which may result in an ambiguity specification.

Example 2: Factor Analysis Model
Now, we consider another example of equation specification.

y1 + y2 + y3 <=: f1

y4 + y5 + y6 <=: f2

y7 + y8 + y9 <=: f3

This example is a factor analysis model with nine observed variables and three latent factors. In
lslx, defining a latent factor can be through the operator <=: which means that the RHS factor is
defined by LHS observed variables. The observed variables must be presented in the given data set.
Of course, f1 can be equivalently defined by f1 :=> y1 + y2 + y3.

As addressed in the first example, the lslx parser will automatically set many parameters that are
not directly presented in these equations.

1. In this example, all of the observed variables are directed by some latent factor and hence they
are endogenous. The variances of their residuals will be set as freely estimated parameters.
Also, their intercepts will be freely estimated since no intercept variable 1 presents in the
specified equations.

2. The three latent factors f1, f2, and f3 are exogenous variables. Their pairwise covariances
will be also set as freely estimated parameters. However, because they are latent but not
observed, their intercepts will be fixed at zero. If user hope to estimate the latent factor means,
they should add an additional equation f1 + f2 + f3 <= 1. After adding this equation, on the
one hand, the latent intercepts will be set as free as indicated by that equation. On the other
hand, since intercept variable 1 now presents in the specified equations, the intercepts for the
endogenous and observed variables will be then fixed at zero.

So far, the specification for the factor analysis model is not complete since the scales of factors are
not yet determined. In SEM, there are two common ways for scale setting. The first way is to fix
some loading per factor. For example, we may respecify the model via

fix(1) * y1 + y2 + y3 <=: f1

fix(1) * y4 + y5 + y6 <=: f2

fix(1) * y7 + y8 + y9 <=: f3

The prefix fix(1) will fix the corresponding loadings to be one. Simply using 1 * y1 will be also
interpreted as fixing the loading of y1 at one to mimic lavaan. The second way for scale setting is
fixing the variance of latent factors, which can be achieved by specifying additional equations

fix(1) * f1 <=> f1

fix(1) * f2 <=> f2

fix(1) * f3 <=> f3

Note that in the current version of lslx, scale setting will be not made automatically. Users must
accomplish it manually.

8 lslx

When conducting factor analysis, we may face the problem that each variable may not be influenced
by only one latent factor. The semi-confirmatory factor analysis, which penalizes some part of
loading matrix, can be applied in this situation. One possible model specification for the semi-
confirmatory approach is

y1 + y2 + y3 <=: f1

y4 + y5 + y6 <=: f2

y7 + y8 + y9 <=: f3

y4 + y5 + y6 + y7 + y8 + y9 <~: f1

y1 + y2 + y3 + y7 + y8 + y9 <~: f2

y4 + y5 + y6 + y7 + y8 + y9 <~: f3

fix(1) * f1 <=> f1

fix(1) * f2 <=> f2

fix(1) * f3 <=> f3

In this specification, loadings in the non-independent cluster will be also estimated but with penal-
ization.

After version 0.6.3, lslx supports basic lavaan operators. The previous model can be equivalently
specified as

f1 =~ y1 + y2 + y3

f2 =~ y4 + y5 + y6

f3 =~ y7 + y8 + y9

pen() * f1 =~ y4 + y5 + y6 + y7 + y8 + y9

pen() * f2 =~ y1 + y2 + y3 + y7 + y8 + y9

pen() * f3 =~ y4 + y5 + y6 + y7 + y8 + y9

f1 ~~ 1 * f1

f2 ~~ 1 * f2

f3 ~~ 1 * f3

Example 3: Path Models with both Observed Variables and Latent Factors
In the third example, we consider a path model with both observed variables and latent factors

fix(1) * y1 + y2 + y3 <=: f1

fix(1) * y4 + y5 + y6 <=: f2

fix(1) * y7 + y8 + y9 <=: f3

f3 <= f1 + f2

f1 + f2 + f3 <~ x1 + x2

f1 <~> f2

The first three equations specify the measurement model for y1 - y9 and f1 - f3. The forth equation
describes the relations among latent factor. The fifth equation sets all the coefficients from x1 - x2
to f1 - f3 to be penalized. The final equation states that the covariance of residuals of f1 and f2 is
estimated with penalization, which is achieved by the operator <~>.

Like Example 1 and 2, many parameters in the current example are automatically set by lslx.

lslx 9

1. Because y1 - y9 and f1 - f3 are all endogenous, the variances of their residuals will be treated
as freely estimated parameters. Also, due to the non-presence of intercept variable 1, the
intercept of y1 - y9 will be set as free parameters and the intercept of f1 - f3 will be set as
zero.

2. The variance, intercepts, and pairwise covariances of exogenous and observed variables x1 -
x2 will be all estimated freely.

In this example, we can see that model specification in lslx is quite flexible. Like usual SEM,
users can specify their models according some substantive theory. If no theory is available to guide
the relationships in some part of the model, the semi-confirmatory approach can set this part as
exploratory by setting the corresponding parameters as penalized.

Example 4: Multi-Group Factor Analysis Model

In the fourth example, we consider a multi-group factor analysis model.

fix(1) * y1 + y2 + y3 <=: f1

fix(1) * y4 + y5 + y6 <=: f2

fix(1) * y7 + y8 + y9 <=: f3

The syntax specifies a factor analysis model with nine observed variables and three latent factors.
Loadings for y2, y3, y5, y6, y8, and y9 are freely estimated in both groups. Loadings for y1,
y4, and y7 are set as fixed for scale setting in both groups. You may observe that the syntax for
multi-group analysis is the same as that for single group analysis. That is true because in lslx
a multi-group analysis is mainly identified by specifying a group variable. If the imported data
can be divided into several samples based on some group variable (argument group_variable in
new method, please see the section of Initialize Method) for group labeling, lslx will automatically
conduct multi-group analysis (see example of Semi-Confirmatory Multi-Group Factor Analysis in
the Section of Examples).

Sometimes, we may hope to specify different model structures for the two groups. It can be achieved
by using vector version of prefix, which is also motivated by the syntax in lavaan. For example, if
we hope to restrict the loading for y2 to be 1 in the first group but set it as freely estimate parameter
in the second group. Then we may use

fix(1) * y1 + c(fix(1), free()) * y2 + y3 <=: f1

Note that the order of groups is important here. Since lslx treats the group variable as factor, its
order is determined by the sorted name of groups. For example, if three groups c, a, and b are
considered, then the first group is a, the second is b, and the third is c.

In the current version of lslx, coefficient constraints cannot be imposed. It seems that testing coef-
ficient invariance across groups is impossible in lslx. However, the present package parameterizes
group coefficients in different way compared to other SEM software (Huang, 2018). Under lslx,
each group coefficient is decomposed into a sum of a reference component and an increment com-
ponent. If the reference component is assumed to be zero, the increment component represents
the group coefficient, which is equivalent to the usual parameterization in other software solutions.
On the other hand, if some group is set as reference (argument reference_group in new method,
please see the section of Initialize Method), then the reference component now represents the group
coefficient of the reference group and other increment components represent the differences from
the reference group. The coefficient invariance across groups can be evaluated by examining the
value or sparsity of the corresponding increment component.

10 lslx

Optimization Algorithm

Let θ denote the vector of model parameter. lslx tries to find a PL estimate for θ by minimizing
the objective function objective(θ, λ) = loss(θ) + regularizer(θ, λ) where loss is the ML loss
function, regularizer is a regularizer, possibly lasso (Tibshirani, 1996) or mcp (Zhang, 2010),
and λ is a regularization parameter. The optimization algorithm for minimizing the PL criterion
is based on an improved glmnet method (Friedman, Hastie, & Tibshirani, 2010) made by Yuan,
Ho, and Lin (2012). The algorithm can be understood as a quasi-Newton method with inner loop
and outer loop. The inner loop of the algorithm derives a quasi-Newton direction by minimizing a
quadratic approximated objective function via coordinate descent. To save the computation time,
the Hessian matrix for the quadratic term is approximated by the identity matrix, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, or the expected Hessian (Fisher scoring). Although the
computational cost of BFGS approximation is much smaller than calculating expected hessian, our
experience shows that the two methods perform similarly in terms of computation time because
more outer iterations are required for BFGS. The inner loop stops if the change of the derived
direction is quite small. The outer loop of the algorithm updates the value of parameter estimate via
the derived quasi-Newton direction and Armijo’s rule. The outer loop stops if the maximal absolute
element of subgradient of objective function is smaller than the specified tolerance. The minimizer
is the so-called PL estimates. Note that the PL estimates is a function of penalty level, i.e., PL
estimates can vary under different penalty levels. An optimal penalty level can be chosen by using
model selection criterion.

In lslx, PL estimates under each penalty level and convexity level specified by user will be calcu-
lated. The convexity levels will be sorted from large to small based on the suggestion of Mazumder
(2011). The previous obtained PL estimate will be used as warm start for further minimization
problem. Since the solution path is continuous, the warm start can speed up the convergence of
minimization (see Friedman, Hastie, & Tibshirani, 2010).

Missing Data

When conducting SEM, it is easy to encounter the problem of missing data. In lslx, missing data
can be handled by the listwise deletion method and the two-stage method (Yuan & Bentler, 2000).
The listwise deletion method only uses fully complete observations for further SEM analysis. If
the missing mechanism is missing completely at random (MCAR; Rubin, 1976), the listwise dele-
tion method can yield a consistent estimator. The two-stage method first calculates the saturated
moments by minimizing the likelihoods based on all of the available observations and then use the
obtained saturated moment estimates for further SEM analysis. Under the assumption of missing
at random (MAR; Rubin, 1976), it has been shown that the two-stage method can yield a consis-
tent estimate. In addition, the standard errors of coefficients can be also consistently estimated if
a correct asymptotic covariance of saturated moments is used. Because the two-stage approach is
generally valid and efficient compared to the listwise deletion method, lslx set the two-stage method
as default for handling the missing data problem. The current version also supports the use of aux-
iliary variables (see Savalei & Bentler, 2008). If the two-stage method is implemented, the standard
error formula will be corrected for the presence of missing data (see Yuan & Lu, 2008 for technical
details).

So far, lslx doesn’t include the full-information maximum likelihood (FIML) method for missing
values. One reason is that PL can be computationally intensive if many penalty levels are consid-
ered. The additional E-step in each iteration of FIML makes the problem worse. Another reason
is that the two-step method has been shown to outperform FIML in simulation settings (Savalei &

lslx 11

Falk, 2014). Therefore, we tend to believe that the implementation of FIML in PL may not bring
further advantages over the two-step method.

Penalty Level Selection

Penalty level selection in lslx is based on optimizing the value of some information criterion. Many
information criteria are available for this task. In the current version, available information criteria
are

aic Akaike Information Criterion (Akaike, 1974)

AIC(θ) = loss(θ)− (2/N) ∗ df(θ)

aic3 Akaike Information Criterion with Penalty Being 3 (Sclove, 1987)

AIC3(θ) = loss(θ)− (3/N) ∗ df(θ)

caic Consistent Akaike Information Criterion (Bozdogan, 1987)

CAIC(θ) = loss(θ)− ((log(N) + 1)/N) ∗ df(θ)

bic Bayesian Information Criterion (Schwarz, 1978)

BIC(θ) = loss(θ)− (log(N)/N) ∗ df(θ)

abic Adjusted Bayesian Information Criterion (Sclove, 1987)

ABIC(θ) = loss(θ)− (log((N + 2)/24)/N) ∗ df(θ)

hbic Haughton Bayesian Information Criterion (Haughton, 1997)

HBIC(θ) = loss(θ)− (log(N/π)/N) ∗ df(θ)

where

• N : total number of sample size;
• G: total number of group;
• loss(θ): the loss value under estimate θ;
• df(θ): the degree of freedom defined as (1) G ∗ P ∗ (P + 3)/2 − e(θ) with e(θ) being the

number of non-zero elements in θ for Lasso and MCP; or (2) the expectation of likelihood
ratio statistics with ridge for ridge and elastic net.

Note the formula for calculating the information criteria in lslx are different to other software solu-
tions. The loss function value is used to replace the likelihood function value and hence the penalty
term is also divided by sample size N . For each information criterion, a robust version is calculated
if raw data is available. Their corresponding names are raic, raic3, rcaic, rbic, rabic, and
rhbic with "r" standing for "robust". These robust criteria use the Satorra-Bentler scaling factor for
correcting degree of freedom. For the case of normal data and correctly specified model, the two
versions will be the same asymptotically.

Huang, Chen, and Weng (2017) have study the asymptotic behaviors of aic and bic under penal-
ized estimation. They show that under suitable conditions, aic can select a model with minimum
expected loss and bic can choose the most parsimonious one from models that attain the minimum
expected loss. By the order of penalty term, we may expect: (1) the large sample behaviors of aic3
and tic will be similar to aic; and (2) the asymptotic behaviors of caic, abic, and hbic will be
similar to bic. However, their small-sample performances require further studies.

12 lslx

Model Fit Evaluation

Given a chosen penalty level, we may evaluate the overall model fit by using fit indices. In the
current version, available fit indices for model evaluation are

rmsea Root Mean Square Error of Approximation (Steiger, 1998; Steiger & Lind, 1980)

RMSEA(θ) =
√
(G ∗max(loss(θ)/df(θ)− 1/N, 0))

cfi Comparative Fit Index (Bentler, 1990)

CFI(θ) = (max(loss0−df0/N, 0)−max(loss(θ)−df(θ)/N, 0))/max(loss0−df0/N, 0)

nnfi Non-Normed Fit Index (Tucker & Lewis, 1973)

NNFI(θ) = (loss0/df0 − loss(θ)/df(θ))/(loss0/df0 − 1/N)

srmr Standardized Root Mean of Residual (Bentler, 1995)

SRMR(θ) =
√
(
∑
g

wg

∑
i

∑
j≤i

((σgij − sgij)
2/(σgii ∗ σgjj))/(G ∗ P ∗ (P + 1)/2)

+
∑
g

wg

∑
i

((µgi −mgi)
2/σgii)/(G ∗ P))

where

• N : total number of sample size;
• G: total number of groups;
• P : number of observed variables;
• wg: sample weight of group g;
• loss(θ): the loss value under estimate θ;
• #(θ): the number of non-zero elements in θ;
• df(θ): the degree of freedom defined by G ∗ P ∗ (P + 3)/2−#(θ);
• loss0: the loss value under baseline model;
• df0: the degree of freedom under baseline model;
• σgij : the (i, j) element of model implied covariance at group g;
• sgij : the (i, j) element of sample covariance at group g;
• µgi: the i element of model implied mean at group g;
• mgi: the i element of sample mean at group g;

In lslx, the baseline model is the model that assumes a diagonal covariance matrix and a saturated
mean. Hence, the baseline model may not be appropriate if users hope to evaluate the goodness-of-
fit of mean structure.

It is also possible to test overall model fit by formal statistical test. In the current version, statistical
tests for likelihood ratio (LR) and root mean square error of approximation (RMSEA) can be im-
plemented. If raw data is available, lslx calculates mean-adjusted versions of LR statistic (Satorra
& Bentler, 1994) and RMSEA intervals (Brosseau-Liard, Savalei & Li, 2012; Li & Bentler, 2006).
It should be noted that the classical tests may not be valid after penalty level selection because the
task of penalty level selection may destroy the sampling distribution of test statistics (see Pötscher,
1991 for discussion). Valid post model selection inference methods require further development.

lslx 13

Coefficient Evaluation

Given a chosen penalty level, we may evaluate the significance of coefficients (or parameters). In the
current version, standard errors based on the expected/observed Fisher information matrix and the
sandwich formula are available (see Yuan & Hayashi, 2006 for discussion). Because the sandwich
formula is generally valid compared to the approaches based on Fisher information, lslx uses the
sandwich formula as default whenever raw data is available. Note that sandwich covariance matrix
in lslx is calculated based on Equation (14) in Yuan and Hayashi (2006) but not Equation (2.12a) in
Browne (1984) to accommodate the potential model misspecification. Again, the significance tests
may not be valid after penalty level selection. After version 0.6.4, several post-selection mehtods
are available (Huang, in press), inlcuding PoSI method with Scheffe constant (Berk, Brown, Buja,
Zhang, & Zhao, 2013) and Polyhedral method (Lee, Sun, Sun, & Taylor, 2016).

Initialize Method

$new(model, data, numeric_variable, ordered_variable,
group_variable, reference_group, weight_variable, auxiliary_variable,
sample_cov, sample_mean, sample_size, sample_moment_acov, verbose = TRUE)

Arguments
model A character with length one to represent the model specification.

data A data.frame of raw data. It must contains variables specified in model (and possibly the
variables specified by group_variable and weight_variable).

numeric_variable A character to specify which response variables should be transfromed into
numeric.

ordered_variable A character to specify which response variables should be transfromed into
ordered.

weight_variable A character with length one to specify what variable is used for sampling
weight.

auxiliary_variable A character to specify what variable(s) is used as auxiliary variable(s)
for estimating saturated moments when missing data presents and two-step method is imple-
mented. Auxiliary variable(s) must be numeric. If any categorical auxiliary is considered,
please transform it into dummy variables before initialization.

group_variable A character with length one to specify what variable is used for labeling group.

reference_group A character with length one to specify which group is set as reference.

sample_cov A numeric matrix (single group case) or a list of numeric matrix (multi-group
case) to represent sample covariance matrixs. It must have row and column names that match
the variable names specified in model.

sample_mean A numeric (single group case) or a list of numeric (multi-group case) to represent
sample mean vectors.

sample_size A numeric (single group case) with length one or a list of numeric (multi-group
case) to represent the sample sizes.

sample_moment_acov A numeric matrix (single group case) or a list of numeric matrix (multi-
group case) to represent asymptotic covariance for moments.

verbose A logical to specify whether messages made by lslx should be printed.

14 lslx

Details

$new() initializes a new object of lslx R6 class for fitting semi-confirmatory structural equation
modeling (SEM). In most cases, a new lslx object is initialized by supplying model and data. For
details of syntax for model specification, see the section of Model Syntax. By default, types of re-
sponse variables (numeric versus ordered) will be infered according to the imported data.frame.
If users hope to transform variables types in lslx, numeric_variable and ordered_variable
can be used. When multi-group analysis is desired, argument group_variable should be given
to specify what variable is used for labeling group. Argument reference_group can be used to
set reference group. Note that if some group is set as reference, the coefficients in other groups
will represent increments from the reference. When the missingness of data depends on some other
variables, auxiliary_variable can be used to specify auxiliary variables for estimate saturated
moments. For details of missing data, see the section of Missing Data. If raw data is not available,
lslx also supports initialization via sample moments. In that case, sample_cov and sample_size
are required. If sample_mean is missing under moment initialization, it is assumed to be zero.

Set-Related Methods

$free_coefficient(name, start, verbose = TRUE)
$penalize_coefficient(name, start, verbose = TRUE)
$fix_coefficient(name, start, verbose = TRUE)

$free_directed(left, right, group, verbose = TRUE)
$penalize_directed(left, right, group, verbose = TRUE)
$fix_directed(left, right, group, verbose = TRUE)

$free_undirected(both, group, verbose = TRUE)
$penalize_undirected(both, group, verbose = TRUE)
$fix_undirected(both, group, verbose = TRUE)

$free_block(block, group, type, verbose = TRUE)
$penalize_block(block, group, type, verbose = TRUE)
$fix_block(block, group, type, verbose = TRUE)

$free_heterogeneity(block, group, verbose = TRUE)
$penalize_heterogeneity(block, group, verbose = TRUE)
$fix_heterogeneity(block, group, verbose = TRUE)

Arguments

name A character to indicate which coefficients should be reset.

start A numeric to specify starting values. The length of start should be one or match the length
of name to avoid ambiguity. If start is missing, the starting value will be set as (1) NA for free
or penalized coefficient; and (2) 0 for fixed coefficient.

left A character to indicate variable names in the left-hand side of operator "<-".

right A character to indicate variable names in the right-hand side of operator "<-".

both A character to indicate variable names in both side of operator "<->".

group A character to indicate group names that the specified relations belong to.

lslx 15

block A character with length one to indicate a block such that the corresponding target coef-
ficient will be reset. Its value must be "f<-1", "y<-1", "f<-f", "f<-y", "y<-f", "y<-y",
"f<->f", "f<->y", "y<->f", or "y<->y".

type A character to indicate which type of parameter should be changed in the given block. Its
value must be "free", "fixed", or "pen". If type is not specified, the types of all parameters
in the given block will be modified.

verbose A logical to specify whether messages made by lslx should be printed.

Details

Set-related methods include several member functions that can be used to modify the initialized
model specification. Like most encapsulation objects, set-related function is used to modify the
inner members of object. So far, the set-related methods are all established to modify the model.
The data are protected without any modification.

$free_coefficient() / $penalize_coefficient() / $fix_coefficient() sets the coefficient
named name as FREE / PENALIZED / FIXED with starting value start. In the case of single
group analysis, argument name can be replaced by relations, i.e., the group name can be omitted.

$free_directed() / $penalize_directed() / $fix_directed() sets all the regression coeffi-
cients from variables in right to variables in left at groups in group as FREE / PENALIZED /
FIXED.

$free_undirected() / $penalize_undirected() / $fix_undirected() sets all the covariances
among variables in both at groups in group as FREE / PENALIZED / FIXED. Note that this method
all always not modify the variance of variables specified in both.

$free_block() / $penalize_block() / $fix_block() sets all the parameters belonging to block
at group with type as FREE / PENALIZED / FIXED.

$free_heterogeneity() / $penalize_heterogeneity() / $fix_heterogeneity() sets every
target coefficient as FREE / PENALIZED / FIXED. A target coefficient should satisfy that (1) it
belongs to block at group, and (2) it has either free or penalized reference component. The method
is only available in the case of multi-group analysis with specified reference group.

Inside lslx object, every coefficient (or parameter) has its own name and belongs to some block.

• The coefficient name is constructed by a relation and a group name. A relation is defined
by combining a left variable name, an operator, and a right variable name. For example,
"y1<-f1" is a relation to represent the coefficient from "f1" to "y1". Note that in relation
we only use operators "<-" and "<->". "->" is illegal and no distinction between "=" and
"~" are made. In multi-group analysis cases, a coefficient name requires explicitly specifying
group name. For example, "y1<-f1/G1" is the parameter name for the path coefficient from
"f1" to "y1" in group "G1".

• Block is defined by the types of left variable and right variable, and the operator. In lslx, "y"
is used to indicate observed response, "f" is used for latent factor, and "1" is for intercept.
Hence, "y<-f" is the block that contains all the coefficients from latent factors to observed
responses. There are 10 possible distinct blocks: "f<-1", "y<-1", "f<-f", "f<-y", "y<-f",
"y<-y", "f<->f", "f<->y", "y<->f", and "y<->y"

Arguments in set-related methods may rely on the naming rule of coefficent name and block to
modify model specification.

16 lslx

Fit-Related Methods

$fit(penalty_method = "lasso", lambda_grid = "default", delta_grid = "default",
step_grid = "default", loss = "default", algorithm = "default",
missing_method = "default", start_method = "default",
lambda_direction = "default", lambda_length = 50L, delta_length = 3L,
threshold_value = 0.3, iter_out_max = 100L, iter_in_max = 50L,
iter_other_max = 500L, iter_armijo_max = 100L, tol_out = 1e-3,
tol_in = 1e-3, tol_other = 1e-7, step_size = 0.5, momentum = 0,
armijo = 1e-5, ridge_cov = 0, ridge_hessian = 1e-4, warm_start = TRUE,
positive_variance = TRUE, minimum_variance = 1e-4, enforce_cd = FALSE,
random_update = TRUE, weight_matrix = NULL, verbose = TRUE)

$fit_none(...)
$fit_lasso(lambda_grid = "default", ...)
$fit_ridge(lambda_grid = "default", ...)
$fit_elastic_net(lambda_grid = "default", delta_grid = "default", ...)
$fit_mcp(lambda_grid = "default", delta_grid = "default", ...)
$fit_forward(step_grid = "default", ...)
$fit_backward(step_grid = "default", ...)

Arguments
penalty_method A character to specify the penalty method. There are two class penalty methods

can be specified. For penalized estimation with a regularizer, "lasso", "ridge", "elastic_net",
and "mcp" can be used. For penalized estimation with stepwise search, "forward" and
"backward" can be implemented. If no penalty is considered, we can set penalty_method as
"none".

lambda_grid A non-negative numeric to specify penalty levels for the regularizer. If it is set as
"default", its value will be generated automatically based on the variable scales.

delta_grid A non-negative numeric to specify the combination weight for "elastic_net" or the
convexity level for "mcp". If it is set as "default", its value will be generated automatically.

step_grid A non-negative numeric to specify a grid for stepwise search with "forward" and
"backward".

loss A character to determine the loss function. The current version supports "ml" (maximum
likelihood), "uls" (unweighted least squares), "dwls" (diagonal weighted least squres), and
"wls" (weighted least squares). The maximum likelihood is only available for all continuous
response variables. If the argument is set as "default", then (1) "ml" will be implemented
for all continuous response variables; (2) "dwls" will be implemented for ordinal or mixed
types response variables.

algorithm A character to determine the method of optimization. The current version supports
"gd" (gradient descent), "bfgs" (Broyden-Fletcher-Goldfarb-Shanno), "fisher" (Fisher scor-
ing), and "dynamic" (an adaptive algorithm). If the argument is set as "default", then
"dynamic" will be implemented.

missing_method A character to determine the method for handling missing data (or NA). The
current version supports "two_stage" and "listwise_deletion". If the argument is set
as "default" and a raw data set is available, the "two_stage" will be implemented. If the
argument is set as "default" and only moment data is available, the "listwise_deletion"
will be used (actually, in this case no missing presences).

lslx 17

start_method A character to determine the method for calculating unspecified starting values.
The current version supports "mh" (McDonald & Hartmann, 1992) and "heuristic". If the
argument is set as "default", the "mh" will be implemented.

lambda_direction A character to determine the "direction" of lambda_grid. "decrease" sorts
lambda_grid from large to small. On the contrary, "increase" sorts lambda_grid from
small to large. If the argument is set as "default", "increase" will be used when the small-
est element of lambda_grid is larger than zero; otherwise, "decrease" is assumed.

lambda_length A numeric to specify the length of automatically generated lambda_grid under
lambda_grid = "default".

delta_length A numeric to specify the length of automatically generated delta_grid under
delta_grid = "default".

threshold_value A numeric to specify the "largest threshold value" for lambda_grid initializa-
tion.

iter_out_max A positive integer to specify the maximal iterations for outer loop of the modified
glmnet algorithm.

iter_in_max A positive integer to specify the maximal iterations for inner loop of the modified
glmnet algorith.

iter_other_max A positive integer to specify the maximal iterations for other loop.

iter_armijo_max A positive integer to specify the maximal iterations for searching step-size via
Armijo rule.

tol_out A small positive numeric to specify the tolerance (convergence criterion) for outer loop
of the modified glmnet algorithm.

tol_in A small positive numeric to specify the tolerance (convergence criterion) for inner loop of
the modified glmnet algorithm.

tol_other A small positive numeric to specify the tolerance (convergence criterion) for other
loop.

step_size A positive numeric smaller than one to specify the step-size.

momentum A numeric between 0 and 1 for momentum parameter.

armijo A small positive numeric for the constant in Armijo rule.

ridge_cov A small positive numeric for the ridge of sample covariance matrix.

ridge_hessian A small positive numeric for the ridge of approximated hessian in optimization.

ridge_weight A small positive numeric for the ridge of weight matrix in weighted least squares.

warm_start A logical to specify whether the warm start approach should be used.

positive_variance A logical to specify whether the variance estimate should be constrained to
be larger than minimum_variance.

minimum_variance A numeric to specify the minimum value of variance if positive_variance
= TRUE.

enforce_cd A logic to specify whether coordinate descent should be used when no penalty func-
tion is used. Its default value is TRUE.

random_update A logic to specify whether coordinate descent should be conducted in a random
order. Its default value is TRUE.

18 lslx

weight_matrix A list with length equaling to the number of groups to specify a user-defined
weight matrix for least squares loss.

verbose A logical to specify whether messages made by lslx should be printed.

... Other passing arguments for calling $fit().

Details
Fit-related methods are used for fitting model to data. The success of these methods may depend on
the specified fitting control. For details of optimization algorithm, see the section of Optimization
Algorithm.

$fit() fits the specified model to data by minimizing a penalized loss function. It is the most
comprehensive fit method and hence many arguments can be specified.

$fit_none() fits the specified model to data by minimizing a loss function without penalty. It is a
user convinient wrapper of $fit() with penalty_method = "none".

$fit_lasso() fits the specified model to data by minimizing a loss function with lasso penalty
(Tibshirani, 1996). It is a user convinient wrapper of $fit() with penalty_method = "lasso".

$fit_ridge() fits the specified model to data by minimizing a loss function with ridge penalty (Ho-
erl & Kennard, 1970). It is a user convinient wrapper of $fit() with penalty_method = "ridge".

$fit_elastic_net() fits the specified model to data by minimizing a loss function with elastic net
penalty (Zou & Hastie, 2005). It is a user convinient wrapper of $fit() with penalty_method =
"elastic_net".

$fit_mcp() method fits the specified model to data by minimizing a loss function with mcp (Zhang,
2010). It is a user convinient wrapper of $fit() with penalty_method = "mcp".

$fit_forward() method fits the specified model to data by minimizing a loss function with forward
searching. It is a user convinient wrapper of $fit() with penalty_method = "forward".

$fit_backward() method fits the specified model to data by minimizing a loss function with back-
ward searching. It is a user convinient wrapper of $fit() with penalty_method = "backward".

Summarize Method

$summarize(selector, lambda, delta, step, standard_error = "default",
debias = "default", inference = "default", alpha_level = .05,
include_faulty = FALSE, style = "default", mode = "default", digit = 3,
interval = TRUE, output)

Arguments
selector A character to specify a selector for determining an optimal penalty level. Its value can

be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or their robust counterparts
"raic", "raic3", "rcaic", "rbic", "rabic", "rhbic" if raw data is available.

lambda A numeric to specific a chosen optimal penalty level. If the specified lambda is not in
lambda_grid, a nearest legitimate value will be used.

delta A numeric to specific a chosen optimal convexity level. If the specified delta is not in
delta_grid, a nearest legitimate value will be used.

step A numeric to specific a chosen step for stepwise searching. If the specified step is not in
step_grid, a nearest legitimate value will be used.

lslx 19

standard_error A character to specify the standard error to be used for hypothesis testing. The
argument can be either "sandwich", "expected_information", and "observed_information".
If it is specified as "default", it will be set as (1) "sandwich" when raw data is available; (2)
"observed_information" when only moment data is available.

debias A character to specify a debias method for obtaining a debiased estimator. Its value can
be either "none" or "one_step". If it is specified as "default", "none" will be used unless
post = "polyhedral" is used.

inference A character to specify the method for post selection inference. The current version
supports "naive", "polyhedral", and "scheffe". If it is specified as "default", "naive"
will be used.

alpha_level A numeric to specify the alpha level for constructing 1 - alpha confidence intervals.

include_faulty A logical to specify whether non-convergence or non-convexity results should
be removed for penalty level selection. Non-convergence result determined by examining the
maximal elements of absolute objective gradient and the number of iterations. non-convexity
result is determined by checking the minimum of univariate approximate hessian.

style A character to specify whether the style of summary. Its value must be either "default",
"manual", "minimal", or "maximal".

mode A character to specify the mode of summary. Its value must be "print" or "return".
"print" will print the summary result and "return" will return a list of the summary result.
If it is specified as "default", it will be set as "print".

digit An integer to specify the number of digits to be displayed.

interval A logical to specify whether the confidence interval should be printed.

Details
$summarize() prints a summary for the fitting result under a selected peanlty/convexity level. It
requires users to specify which selector should be used or a combination of gamma and lambda..
By default, the summary includes model information, numerical conditions, fit indices, coefficient
estimates, and related statistical inference. It can be modified by the style argument. For de-
tails of evaluation and inference methods, see the sections of Model Fit Evaluation and Coefficient
Evaluation.

Test-Related Methods

$test_lr(selector, lambda, delta, step, include_faulty = FALSE)
$test_rmsea(selector, lambda, delta, step,
alpha_level = .05, include_faulty = FALSE)

$test_coefficient(selector, lambda, delta, step,
standard_error = "default", debias = "default", inference = "default",
alpha_level = .05, include_faulty = FALSE)

Arguments
selector A character to specify a selector for determining an optimal penalty level. Its value can

be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or their robust counterparts
"raic", "raic3", "rcaic", "rbic", "rabic", "rhbic" if raw data is available.

delta A numeric to specific a chosen optimal weight for elastic net or convexity level for mcp. If
the specified delta is not in delta_grid, a nearest legitimate value will be used.

20 lslx

step A numeric to specific a chosen step for stepwise searching. If the specified step is not in
step_grid, a nearest legitimate value will be used.

standard_error A character to specify the standard error to be used for hypothesis testing. The
argument can be either "sandwich", "expected_information", and "observed_information".
If it is specified as "default", it will be set as (1) "sandwich" when raw data is available; (2)
"observed_information" when only moment data is available.

debias A character to specify a debias method for obtaining a debiased estimator. Its value can
be either "none" or "one_step". If it is specified as "default", "none" will be used unless
post = "polyhedral" is used.

inference A character to specify the method for post selection inference. The current version
supports "naive", "polyhedral", and "scheffe". If it is specified as "default", "naive"
will be used.

alpha_level A numeric to specify the alpha level for constructing 1 - alpha confidence intervals.
include_faulty A logical to specify whether non-convergence or non-convexity results should

be removed for penalty level selection. Non-convergence result determined by examining the
maximal elements of absolute objective gradient and the number of iteration. non-convexity
result is determined by checking the minimum of univariate approximate hessian.

Details
Test-related methods are used to obtain the result of specific statistical test. So far, only tests for
likelihood ratio (LR), root mean square error of approximation (RMSEA), and coefficients are avail-
able.

$test_lr() returns a data.frame of result for likelihood ratio test. If raw data is available, it also
calculates a mean-adjusted statistic. For details of significance test method for LR, see the section
of Model Fit Evaluation.

$test_rmsea() returns a data.frame of result for rmsea confidence intervals. If raw data is avail-
able, it also calculates a mean-adjusted confidence interval (Brosseau-Liard, Savalei & Li, 2012;
Li & Bentler, 2006). For details of confidence interval construction for RMSEA, see the section of
Model Fit Evaluation.

$test_coefficient() returns a data.frame of result for coefficient significance and confidence
interval. For details of standard error formula for coefficients, see the section of Coefficient Evalu-
ation.

Plot-Related Methods

$plot_numerical_condition(condition, x_scale = "default",
mode = "default")

$plot_information_criterion(criterion, x_scale = "default",
mode = "default")

$plot_fit_index(index, x_scale = "default", mode = "default")
$plot_coefficient(block, left, right, both, x_scale = "default",
mode = "default")

Arguments
condition A character to specify which numerical conditions should be plotted. Its value must

be "objective_value", "objective_gradient_abs_max", "objective_hessian_convexity",
"n_iter_out", "loss_value", "n_nonzero_coefficient", or their combination.

lslx 21

criterion A character to specify which information criteria should be plotted. Its value must
be "aic", "aic3", "caic", "bic", "abic", "hbic", "raic", "raic3", "rcaic", "rbic",
"rabic", "rhbic", or their combination.

index A character to specify which fit indices should be plotted. Its value must be "rmsea",
"cfi", "nnfi", "srmr", or their combination.

block A character with length one to indicate a block such that the corresponding target co-
efficient will be reset. Its value must be one of "f<-1", "y<-1", "f<-f", "f<-y", "y<-f",
"y<-y", "f<->f", "f<->y", "y<->f", or "y<->y".

left A character to specify the variables in the left-hand side of operator in block.

right A character to specify the variables in the right-hand side of operator in block.

both A character to specify the variables in both sides of operator in block.

lambda_scale A character to specify the scale of lambda (x-axis) for coord_trans() in gg-
plot2.

mode A character to specify the mode of plot. Its value must be "plot" or "return". "plot" will
plot the result and "return" will return a data.frame for plot. If it is specified as "default",
it will be set as "plot".

Details

Plot-related methods are used for visualizing the fitting results.

$plot_numerical_condition() plots the values of selected numerical conditions. It can be used
to assess the quality of optimization. By default, "n_iter_out", "objective_gradient_abs_max",
and "objective_hessian_convexity" across the given penalty levels are plotted.

$plot_information_criterion() shows how the values of information criteria vary with penalty
levels. By default, "aic", "aic3", "caic", "bic", "abic", and "hbic" are plotted.

$plot_fit_index() shows how the values of fit indices vary with penalty levels. By default,
"rmsea", "cfi", "nnfi", and "srmr" are plotted.

$plot_coefficient() visualizes the solution paths of coefficients belonging to the intersection of
block, left, right, and both arguments. By default, all of the coefficients are plotted.

Get-Related Methods

$get_model()
$get_data()
$get_fitting()

Details

Get-related methods are defined to obtain a deep copy of members inside lslx. Note that all of the
data members of lslx are set as private to protect the inner data structure. They cannot be assessed
directly via $.

$get_model() returns a deep copy of model member in the current lslx object.

$get_data() returns a deep copy of data member in the current lslx object.

$get_fitting() returns a deep copy of fitting member in the current lslx object.

22 lslx

Extract-Related Methods

$extract_specification()
$extract_saturated_cov()
$extract_saturated_mean()
$extract_saturated_moment_acov()

$extract_penalty_level(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_numerical_condition(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_information_criterion(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_fit_index(selector, lambda, delta, step, include_faulty = FALSE)
$extract_cv_error(selector, lambda, delta, step, include_faulty = FALSE)

$extract_coefficient(selector, lambda, delta, step, type = "default",
include_faulty = FALSE)

$extract_debiased_coefficient(selector, lambda, delta, step, type = "default",
include_faulty = FALSE)

$extract_implied_cov(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_implied_mean(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_residual_cov(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_residual_mean(selector, lambda, delta, step,
include_faulty = FALSE)

$extract_coefficient_matrix(selector, lambda, delta, step, block,
include_faulty = FALSE)

$extract_moment_jacobian(selector, lambda, delta, step,
type = "default", include_faulty = FALSE)

$extract_expected_information(selector, lambda, delta, step,
type = "default", include_faulty = FALSE)

$extract_observed_information(selector, lambda, delta, step,
type = "default", include_faulty = FALSE)

$extract_bfgs_hessian(selector, lambda, delta, step, type = "default",
include_faulty = FALSE)

$extract_score_acov(selector, lambda, delta, step, type = "default",
include_faulty = FALSE)

$extract_coefficient_acov(selector, lambda, delta, step,
standard_error = "default", type = "default", include_faulty = FALSE)

lslx 23

$extract_loss_gradient(selector, lambda, delta, step, type = "default",
include_faulty = FALSE)

$extract_regularizer_gradient(selector, lambda, delta, step,
type = "default", include_faulty = FALSE)

$extract_objective_gradient(selector, lambda, delta, step,
type = "default", include_faulty = FALSE)

Arguments
selector A character to specify a selector for determining an optimal penalty level. Its value can

be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or their robust counterparts
"raic", "raic3", "rcaic", "rbic", "rabic", "rhbic" if raw data is available.

lambda A numeric to specific a chosen optimal penalty level. If the specified lambda is not in
lambda_grid, a nearest legitimate value will be used.

delta A numeric to specific a chosen optimal weight for elastic net or convexity level for mcp. If
the specified delta is not in delta_grid, a nearest legitimate value will be used.

step A numeric to specific a chosen step for stepwise searching. If the specified step is not in
step_grid, a nearest legitimate value will be used.

standard_error A character to specify the standard error to be used for hypothesis testing. The
argument can be either "sandwich", "expected_information", and "observed_information".
If it is specified as "default", it will be set as (1) "sandwich" when raw data is available; (2)
"observed_information" when only moment data is available.

block A character with length one to indicate a block such that the corresponding target coef-
ficient will be reset. Its value must be "f<-1", "y<-1", "f<-f", "f<-y", "y<-f", "y<-y",
"f<->f", "f<->y", "y<->f", or "y<->y".

type A character to specify the type of parameters that will be used to compute the extracted
quantity. The argument can be either "all", "fixed", "free", "pen", "effective" (include
"free" + "selected"), and "selected" (non-zero element of "pen"). If it is specified as
"default", it will be set as all.

include_faulty A logical to specify whether non-convergence or non-convexity results should
be removed for penalty level selection. Non-convergence result determined by examining the
maximal elements of absolute objective gradient and the number of iterations. non-convexity
result is determined by checking the minimum of univariate approximate hessian.

Details
Many extract-related methods are defined to obtain quantities that can be used for further SEM
applications or model diagnosis. Some of these quantities only depend on data (e.g., saturated
sample covariance matrix), but some of them relies on a penalty level (e.g., gradient of objective
function). An optimal penalty level can be determined by specifying a selector or a combination
of gamma and lambda. When implementing fit-related methods, lslx only records necessary results
for saving memory. Therefore, the extract-related methods not only extract objects but may possibly
re-compute some of them. If the extracted quantity is a function of model coefficients, note that
fixed coefficient is still considered as a valid variable. For example, the sub-gradient of objective
function is calculated by considering both estimated coefficients and fixed coefficients. Hence, it
is not appropriate to use all the elements of the sub-gradient to evaluate the optimality of solution
because the values of fixed coefficients are not optimized. Fortunately, the type argument can be
used to choose desired parameters by their types.

24 lslx

$extract_specification() returns a data.frame of model specification.

$extract_saturated_cov() returns a list of saturated sample covariance matrix(s).

$extract_saturated_mean() returns a list of saturated sample mean vector(s).

$extract_saturated_moment_acov() returns a list of asymptotic covariance matrix(s) of satu-
rated moments. Note that if raw data is not available, asymptotic covariance matrix is calculated by
assuming normality for data.

$extract_penalty_level() returns a character of the index name of the optimal penalty level.

$extract_numerical_condition() returns a numeric of the numerical conditions.

$extract_information_criterion() returns a numeric of the values of information criteria.

$extract_fit_indice() returns a numeric of the values of fit indices.

$extract_coefficient() returns a numeric of estimates of the coefficients.

$extract_implied_cov() returns a list of model-implied covariance matrix(s).

$extract_implied_mean() returns a list of model-implied mean vector(s).

$extract_residual_cov() returns a list of residual matrix(s) of covariance.

$extract_residual_mean() returns a list of residual vector(s) of mean.

$extract_coefficient_matrix() returns a list of coefficient matrix(s) specified by block.

$extract_moment_jacobian() returns a matrix of Jacobian of moment structure.

$extract_expected_information() returns a matrix of the expected Fisher information matrix.

$extract_observed_information() returns a matrix of the observed Fisher information matrix.
Note that the observed information matrix is calculated via numerical differentiation for the gradient
of loss.

$extract_bfgs_hessian() returns a matrix of the BFGS Hessian matrix.

$extract_score_acov() returns a matrix of the asymptotic covariance of scores.

$extract_coefficient_acov() returns a matrix of the asymptotic covariance of coefficients.
For details of standard error formula, see the section of Coefficient Evaluation.

$extract_loss_gradient() returns a matrix of the gradient of loss function.

$extract_regularizer_gradient() returns a matrix of the sub-gradient of regularizer.

$extract_objective_gradient() returns a matrix of the sub-gradient of objective function.

Super class

lslx::prelslx -> lslx

Methods

Public methods:
• lslx$extract_specification()

• lslx$extract_saturated_cov()

• lslx$extract_saturated_mean()

• lslx$extract_saturated_moment_acov()

• lslx$extract_lambda_grid()

lslx 25

• lslx$extract_delta_grid()

• lslx$extract_weight_matrix()

• lslx$extract_penalty_level()

• lslx$extract_coefficient_indicator()

• lslx$extract_numerical_condition()

• lslx$extract_information_criterion()

• lslx$extract_fit_index()

• lslx$extract_cv_error()

• lslx$extract_coefficient()

• lslx$extract_debiased_coefficient()

• lslx$extract_implied_cov()

• lslx$extract_implied_mean()

• lslx$extract_residual_cov()

• lslx$extract_residual_mean()

• lslx$extract_coefficient_matrix()

• lslx$extract_moment_jacobian()

• lslx$extract_expected_information()

• lslx$extract_observed_information()

• lslx$extract_score_acov()

• lslx$extract_coefficient_acov()

• lslx$extract_loss_gradient()

• lslx$extract_regularizer_gradient()

• lslx$extract_objective_gradient()

• lslx$fit()

• lslx$fit_lasso()

• lslx$fit_ridge()

• lslx$fit_elastic_net()

• lslx$fit_mcp()

• lslx$fit_forward()

• lslx$fit_backward()

• lslx$fit_none()

• lslx$get_model()

• lslx$get_data()

• lslx$get_fitting()

• lslx$plot_numerical_condition()

• lslx$plot_information_criterion()

• lslx$plot_fit_index()

• lslx$plot_coefficient()

• lslx$print()

• lslx$free_block()

• lslx$fix_block()

• lslx$penalize_block()

26 lslx

• lslx$free_coefficient()

• lslx$fix_coefficient()

• lslx$penalize_coefficient()

• lslx$set_coefficient_type()

• lslx$set_coefficient_start()

• lslx$set_data()

• lslx$free_directed()

• lslx$fix_directed()

• lslx$penalize_directed()

• lslx$free_heterogeneity()

• lslx$fix_heterogeneity()

• lslx$penalize_heterogeneity()

• lslx$free_undirected()

• lslx$fix_undirected()

• lslx$penalize_undirected()

• lslx$summarize()

• lslx$test_lr()

• lslx$test_rmsea()

• lslx$test_coefficient()

• lslx$validate()

• lslx$clone()

Method extract_specification():
Usage:
lslx$extract_specification()

Method extract_saturated_cov():
Usage:
lslx$extract_saturated_cov()

Method extract_saturated_mean():
Usage:
lslx$extract_saturated_mean()

Method extract_saturated_moment_acov():
Usage:
lslx$extract_saturated_moment_acov()

Method extract_lambda_grid():
Usage:
lslx$extract_lambda_grid()

Method extract_delta_grid():
Usage:

lslx 27

lslx$extract_delta_grid()

Method extract_weight_matrix():
Usage:
lslx$extract_weight_matrix()

Method extract_penalty_level():
Usage:
lslx$extract_penalty_level(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_coefficient_indicator():
Usage:
lslx$extract_coefficient_indicator(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_numerical_condition():
Usage:
lslx$extract_numerical_condition(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_information_criterion():
Usage:
lslx$extract_information_criterion(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_fit_index():

28 lslx

Usage:
lslx$extract_fit_index(selector, lambda, delta, step, include_faulty = FALSE)

Method extract_cv_error():

Usage:
lslx$extract_cv_error(selector, lambda, delta, step, include_faulty = FALSE)

Method extract_coefficient():

Usage:
lslx$extract_coefficient(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_debiased_coefficient():

Usage:
lslx$extract_debiased_coefficient(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_implied_cov():

Usage:
lslx$extract_implied_cov(selector, lambda, delta, step, include_faulty = FALSE)

Method extract_implied_mean():

Usage:
lslx$extract_implied_mean(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_residual_cov():

Usage:

lslx 29

lslx$extract_residual_cov(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_residual_mean():
Usage:
lslx$extract_residual_mean(
selector,
lambda,
delta,
step,
include_faulty = FALSE

)

Method extract_coefficient_matrix():
Usage:
lslx$extract_coefficient_matrix(
selector,
lambda,
delta,
step,
block,
include_faulty = FALSE

)

Method extract_moment_jacobian():
Usage:
lslx$extract_moment_jacobian(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_expected_information():
Usage:
lslx$extract_expected_information(
selector,
lambda,
delta,
step,
type = "default",

30 lslx

include_faulty = FALSE
)

Method extract_observed_information():
Usage:
lslx$extract_observed_information(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_score_acov():
Usage:
lslx$extract_score_acov(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_coefficient_acov():
Usage:
lslx$extract_coefficient_acov(
selector,
lambda,
delta,
step,
standard_error = "default",
ridge_penalty = "default",
type = "default",
include_faulty = FALSE

)

Method extract_loss_gradient():
Usage:
lslx$extract_loss_gradient(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

lslx 31

Method extract_regularizer_gradient():
Usage:
lslx$extract_regularizer_gradient(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method extract_objective_gradient():
Usage:
lslx$extract_objective_gradient(
selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE

)

Method fit():
Usage:
lslx$fit(
penalty_method = "mcp",
lambda_grid = "default",
delta_grid = "default",
step_grid = "default",
loss = "default",
algorithm = "default",
missing_method = "default",
start_method = "default",
lambda_direction = "default",
lambda_length = 50L,
delta_length = 3L,
threshold_value = 0.3,
subset = NULL,
cv_fold = 1L,
iter_out_max = 100L,
iter_in_max = 50L,
iter_other_max = 500L,
iter_armijo_max = 20L,
tol_out = 0.001,
tol_in = 0.001,
tol_other = 1e-07,
step_size = 1,
momentum = 0,

32 lslx

armijo = 1e-05,
ridge_cov = 0,
ridge_hessian = 1e-04,
ridge_weight = 1e-04,
warm_start = TRUE,
positive_variance = TRUE,
minimum_variance = 1e-04,
armijo_rule = TRUE,
enforce_cd = TRUE,
random_update = TRUE,
weight_matrix = NULL,
verbose = TRUE

)

Method fit_lasso():
Usage:
lslx$fit_lasso(lambda_grid = "default", ...)

Method fit_ridge():
Usage:
lslx$fit_ridge(lambda_grid = "default", ...)

Method fit_elastic_net():
Usage:
lslx$fit_elastic_net(lambda_grid = "default", delta_grid = "default", ...)

Method fit_mcp():
Usage:
lslx$fit_mcp(lambda_grid = "default", delta_grid = "default", ...)

Method fit_forward():
Usage:
lslx$fit_forward(step_grid = "default", ...)

Method fit_backward():
Usage:
lslx$fit_backward(step_grid = "default", ...)

Method fit_none():
Usage:
lslx$fit_none(...)

Method get_model():
Usage:
lslx$get_model()

Method get_data():

lslx 33

Usage:
lslx$get_data()

Method get_fitting():
Usage:
lslx$get_fitting()

Method plot_numerical_condition():
Usage:
lslx$plot_numerical_condition(
condition,
x_scale = "default",
x_reverse = "default",
mode = "default"

)

Method plot_information_criterion():
Usage:
lslx$plot_information_criterion(
criterion,
x_scale = "default",
x_reverse = "default",
mode = "default"

)

Method plot_fit_index():
Usage:
lslx$plot_fit_index(
index,
x_scale = "default",
x_reverse = "default",
mode = "default"

)

Method plot_coefficient():
Usage:
lslx$plot_coefficient(
block,
left,
right,
both,
x_scale = "default",
x_reverse = "default",
mode = "default"

)

Method print():

34 lslx

Usage:
lslx$print()

Method free_block():
Usage:
lslx$free_block(block, group, type, verbose = TRUE)

Method fix_block():
Usage:
lslx$fix_block(block, group, type, verbose = TRUE)

Method penalize_block():
Usage:
lslx$penalize_block(block, group, penalty, set, type, verbose = TRUE)

Method free_coefficient():
Usage:
lslx$free_coefficient(name, start, verbose = TRUE)

Method fix_coefficient():
Usage:
lslx$fix_coefficient(name, start, verbose = TRUE)

Method penalize_coefficient():
Usage:
lslx$penalize_coefficient(name, start, penalty, set, weight, verbose = TRUE)

Method set_coefficient_type():
Usage:
lslx$set_coefficient_type(name, type)

Method set_coefficient_start():
Usage:
lslx$set_coefficient_start(name, start)

Method set_data():
Usage:
lslx$set_data(data, sample_cov, sample_mean, sample_size, sample_moment_acov)

Method free_directed():
Usage:
lslx$free_directed(left, right, group, verbose = TRUE)

Method fix_directed():
Usage:
lslx$fix_directed(left, right, group, verbose = TRUE)

lslx 35

Method penalize_directed():
Usage:
lslx$penalize_directed(left, right, group, penalty, set, verbose = TRUE)

Method free_heterogeneity():
Usage:
lslx$free_heterogeneity(block, group, hold_fixed = TRUE, verbose = TRUE)

Method fix_heterogeneity():
Usage:
lslx$fix_heterogeneity(block, group, hold_fixed = TRUE, verbose = TRUE)

Method penalize_heterogeneity():
Usage:
lslx$penalize_heterogeneity(
block,
group,
penalty,
set,
hold_fixed = TRUE,
verbose = TRUE

)

Method free_undirected():
Usage:
lslx$free_undirected(both, group, verbose = TRUE)

Method fix_undirected():
Usage:
lslx$fix_undirected(both, group, verbose = TRUE)

Method penalize_undirected():
Usage:
lslx$penalize_undirected(both, group, penalty, set, verbose = TRUE)

Method summarize():
Usage:
lslx$summarize(
selector,
lambda,
delta,
step,
standard_error = "default",
ridge_penalty = "default",
debias = "default",
inference = "default",

36 lslx

alpha_level = 0.05,
include_faulty = FALSE,
style = "default",
mode = "default",
interval = TRUE,
digit = 3L,
output = list(general_information = TRUE, fitting_information = FALSE,
saturated_model_information = FALSE, baseline_model_information = FALSE,

numerical_condition = TRUE, information_criterion = FALSE, fit_index = TRUE, cv_error
= TRUE, lr_test = TRUE, rmsea_test = TRUE, coefficient_test = TRUE)

)

Method test_lr():
Usage:
lslx$test_lr(selector, lambda, delta, step, include_faulty = FALSE)

Method test_rmsea():
Usage:
lslx$test_rmsea(
selector,
lambda,
delta,
step,
alpha_level = 0.05,
include_faulty = FALSE

)

Method test_coefficient():
Usage:
lslx$test_coefficient(
selector,
lambda,
delta,
step,
standard_error = "default",
ridge_penalty = "default",
debias = "default",
inference = "default",
alpha_level = 0.05,
include_faulty = FALSE

)

Method validate():
Usage:
lslx$validate(
selector,
lambda,
delta,

lslx 37

data,
subset = NULL,
do_fit = "default",
standard_error = "default",
alpha_level = 0.05,
include_faulty = FALSE,
style = "default",
mode = "default",
interval = TRUE,
digit = 3L

)

Method clone(): The objects of this class are cloneable with this method.

Usage:
lslx$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactionson Auto-
matic Control, 19(6), 716–723.

Bates, D., & Eddelbuettel, D. (2013). Fast and Elegant Numerical Linear Algebra Using the
RcppEigen Package. Journal of Statistical Software, 52(5), 1–24.

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate Soft-
ware.

Bentler, P. (1990). Comparative fit indices in structural models. Psychological Bulletin, 107(2),
238–246.

Berk, R., Brown, L., Buja, A., Zhang, K., & Zhao, L. (2013). Valid postselection inference. The
Annals of Statistics, 41(2), 802–837.

Bozdogan, H. (1987). Model selection and Akaike’s Information Criterion (AIC): The general
theory and its analytical extensions. Psychometrika, 52(3), 345–370.

Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance struc-
tures. British Journal of Mathematical and Statistical Psychology, 37(1), 62–83.

Chang, W. (2017). R6: Classes with Reference Semantics.

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statis-
tical Software, 40(8), 1–18.

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22.

Haughton, D. M. A., Oud, J. H. L., & Jansen, R. A. R. G. (1997). Information and other criteria in
structural equation model selection. Communications in Statistics - Simulation and Computation,
26(4), 1477–1516.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics, 12(1), 55–67.

38 lslx

Huang, P. H. (2018). A Penalized Likelihood Method for Multi-Group Structural Equation Model-
ing. British Journal of Mathematical and Statistical Psychology, 71(3), 499-522.

Huang, P. H. (2020). lslx: Semi-Confirmatory Structural Equation Modeling via Penalized Likeli-
hood. Journal of Statistical Software. 93(7), 1-37.

Huang, P. H. (in press). Post-selection inference in Structural Equation Modeling. Multivariate
Behavioral Research.

Huang, P. H., Chen, H., & Weng, L. J. (2017). A Penalized Likelihood Method for Structural
Equation Modeling. Psychometrika, 82(2), 329–354.

Brosseau-Liard, P. E., Savalei, V., & Li, L. (2012). An Investigation of the Sample Performance of
Two Nonnormality Corrections for RMSEA. Multivariate Behavioral Research, 47(6), 904-930.

Lee, J. D., Sun, D. L., Sun, Y., & Taylor, J. E. (2016). Exact postselection inference, with application
to the lasso. The Annals of Statistics, 44(3), 907–927.

Li, L., & Bentler, P. M. (2006). Robust statistical tests for evaluating the hypothesis of close fit of
misspecified mean and covariance structural models. UCLA Statistics Preprint #506. Los Angeles:
University of California.

Mazumder, R., Friedman, J. H., & Hastie, T. (2011). SparseNet: Coordinate Descent With Non-
convex Penalties. Journal of the American Statistical Association, 106(495), 1125–1138.

McDonald, R. P., & Hartmann, W. M. (1992). A procedure for obtaining initial values of parameters
in the RAM model. Multivariate Behavioral Research, 27(1), 57–76.

Pötscher, B. M. (1991). Effects of model selection on inference. Econometric Theory, 7(2), 163-
185.

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1–36.

Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 63(3), 581–592.

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance
structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variable analysis: Applications to
developmental research (pp. 399–419). Thousand Oaks, CA: Sage.

Savalei, V. & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information
maximum likelihood with incomplete nonnormal data. Structural Equation Modeling: A Multidis-
ciplinary Journal, 21(2), 280-302.

Savalei, V. & Bentler, P. M. (2009). A Two-Stage Approach to Missing Data: Theory and Appli-
cation to Auxiliary Variables, Structural Equation Modeling: A Multidisciplinary Journal, 16(3),
477-497.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate
analysis. Psychometrika, 52(3), 333–343.

Steiger, J. H. (1998). A Note on Multiple Sample Extensions of the RMSEA Fit Index. Structural
Equation Modeling-a Multidisciplinary Journal, 5(4), 411–419.

Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. In
Paper presented at the annual meeting of the Psychometric Society.

Tibshirani, R. (1996). Regression Selection and Shrinkage via the Lasso. Journal of the Royal
Statistical Society B, 58(1), 267–288.

lslx 39

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis.
Psychometrika, 38(1), 1–10.

Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance
structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200.

Yuan, K. H., & Hayashi, K. (2006). Standard errors in covariance structure models: Asymptotics
versus bootstrap. British Journal of Mathematical and Statistical Psychology, 59(2), 397–417.

Yuan, K.-H., & Lu, L. (2008). SEM with missing data and unknown population distributions using
two-stage ML: Theory and its application. Multivariate Behavioral Research, 43(4), 621–652.

Yuan, G. X., Ho, C. H., & Lin, C. J. (2012). An Improved GLMNET for L1-regularized Logistic
Regression. Journal of Machine Learning Research, 13(1), 1999–2030.

Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals
of Statistics, 38(2), 894–942.

Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal of
the Royal Statistical Society B, 67(2), 301–320.

Examples

EXAMPLE: Regression Analysis with Lasso Penalty
run `vignette("regression-analysis")` to see the vignette
generate data for regression analysis
set.seed(9487)
x <- matrix(rnorm(2000), 200, 10)
colnames(x) <- paste0("x", 1:10)
y <- matrix(rnorm(200), 200, 1)
data_reg <- data.frame(y, x)

specify regression model with penalized coefficients
model_reg <- "y <= x1 + x2 + x3 + x4

y <~ x5 + x6 + x7 + x8 + x9 + x10"

initialize lslx object via specified model and raw data
lslx_reg <- lslx$new(model = model_reg,

data = data_reg)

fit specified model to data with lasso under specified penalty levels
lslx_reg$fit(penalty_method = "lasso",

lambda_grid = seq(.00, .30, .02))

summarize fitting result under penalty level selected by 'aic'
lslx_reg$summarize(selector = "aic")

EXAMPLE: Semi-Confirmatory Factor Analysis
run `vignette("factor-analysis")` to see the vignette
specify semi-confirmatory factor analysis model
model_fa <- "visual :=> x1 + x2 + x3

textual :=> x4 + x5 + x6
speed :=> x7 + x8 + x9
visual :~> x4 + x5 + x6 + x7 + x8 + x9

40 lslx

textual :~> x1 + x2 + x3 + x7 + x8 + x9
speed :~> x1 + x2 + x3 + x4 + x5 + x6
visual <=> 1 * visual
textual <=> 1 * textual
speed <=> 1 * speed"

initialize lslx object via specified model and raw data
lslx_fa <- lslx$new(model = model_fa,

data = lavaan::HolzingerSwineford1939)

fit with mcp under specified penalty levels and convexity levels
lslx_fa$fit(penalty_method = "mcp",

lambda_grid = seq(.02, .60, .02),
delta_grid = c(1.5, 3.0, Inf))

summarize fitting result under penalty level selected by 'bic'
lslx_fa$summarize(selector = "bic")

EXAMPLE: Semi-Confirmatory Structural Equation Modeling
run `vignette("structural-equation-modeling")` to see the vignette
specify structural equation modeling model
model_sem <- "fix(1) * x1 + x2 + x3 <=: ind60

fix(1) * y1 + y2 + y3 + y4 <=: dem60
fix(1) * y5 + y6 + y7 + y8 <=: dem65
dem60 <= ind60
dem65 <= ind60 + dem60"

initialize lslx object via specified model and sample moments
lslx_sem <- lslx$new(model = model_sem,

sample_cov = cov(lavaan::PoliticalDemocracy),
sample_size = nrow(lavaan::PoliticalDemocracy))

set some covariances of errors as penalized
lslx_sem$penalize_coefficient(name = c("y1<->y5",

"y2<->y4",
"y2<->y6",
"y3<->y7",
"y4<->y8",
"y6<->y8"))

fit with lasso under default penalty levels
lslx_sem$fit_lasso(lambda_length = 25)

summarize fitting result under penalty level selected by 'abic'
lslx_sem$summarize(selector = "abic")

EXAMPLE: Factor Analysis with Missing Data
run `vignette("missing-data-analysis")` to see the vignette
create missing values for x5 and x9 by the code in package semTools
data_miss <- lavaan::HolzingerSwineford1939
data_miss$x5 <- ifelse(data_miss$x1 <= quantile(data_miss$x1, .3),

lslx 41

NA, data_miss$x5)
data_miss$age <- data_miss$ageyr + data_miss$agemo/12
data_miss$x9 <- ifelse(data_miss$age <= quantile(data_miss$age, .3),

NA, data_miss$x9)

specify confirmatory factor analysis model
model_miss <- "visual :=> x1 + x2 + x3

textual :=> x4 + x5 + x6
speed :=> x7 + x8 + x9
visual <=> 1 * visual
textual <=> 1 * textual
speed <=> 1 * speed"

"ageyr" and "agemo" are set as auxiliary variables
lslx_miss <- lslx$new(model = model_miss,

data = data_miss,
auxiliary_variable = c("ageyr", "agemo"))

penalize all covariances among residuals
lslx_miss$penalize_block(block = "y<->y",

type = "fixed",
verbose = FALSE)

fit with lasso under default penalty levels
lslx_miss$fit_lasso(lambda_length = 25)

summarize fitting result under penalty level selected by 'raic'
lslx_miss$summarize(selector = "raic")

EXAMPLE: Multi-Group Factor Analysis
run `vignette("multi-group-analysis")` to see the vignette
specify multi-group factor analysis model
model_mgfa <- "visual :=> 1 * x1 + x2 + x3

textual :=> 1 * x4 + x5 + x6
speed :=> 1 * x7 + x8 + x9"

"school" is set as group variable and "Pasteur" is specified as reference
lslx_mgfa <- lslx$new(model = model_mgfa,

data = lavaan::HolzingerSwineford1939,
group_variable = "school",
reference_group = "Pasteur")

penalize increment components of loadings and intercepts in 'Grant-White'
lslx_mgfa$penalize_heterogeneity(block = c("y<-1", "y<-f"),

group = "Grant-White")

free increment components of means of latent factors in 'Grant-White'
lslx_mgfa$free_block(block = "f<-1",

group = "Grant-White")

fit with mcp under default penalty levels and specified convexity levels
lslx_mgfa$fit_mcp(lambda_length = 25)

42 plsem

summarize fitting result under penalty level selected by 'hbic'
lslx_mgfa$summarize(selector = "hbic")

plsem S3 interface for semi-confirmatory SEM via PL

Description

plsem() is an S3 interface for obaining a fitted lslx object.

Usage

plsem(
model,
data,
penalty_method = "mcp",
lambda_grid = "default",
delta_grid = "default",
numeric_variable,
ordered_variable,
weight_variable,
auxiliary_variable,
group_variable,
reference_group,
sample_cov,
sample_mean,
sample_size,
sample_moment_acov,
verbose = TRUE,
...

)

Arguments

model A character with length one to represent the model specification.

data A data.frame of raw data. It must contains variables specified in model (and
possibly the variables specified by group_variable and weight_variable).

penalty_method A character to specify the penalty method. The current version supports
"none", "lasso", "ridge", "elastic", and "mcp".

lambda_grid A non-negative numeric to specify penalty levels for both "lasso" and "mcp".
If it is set as "default", its value will be generated automatically based on the
variable scales.

plsem 43

delta_grid A non-negative numeric to specify the convexity level for "mcp". If it is set
as "default", its value will be generated automatically based on the variable
scales.

numeric_variable

A character to specify which response variables should be transfromed into
numeric.

ordered_variable

A character to specify which response variables should be transfromed into
ordered.

weight_variable

A character with length one to specify what variable is used for sampling
weight.

auxiliary_variable

A character to specify what variable(s) is used as auxiliary variable(s) for es-
timating saturated moments when missing data presents and two-step method is
implemented. Auxiliary variable(s) must be numeric. If any categorical auxil-
iary is considered, please transform it into dummy variables before initialization.

group_variable A character with length one to specify what variable is used for labeling group.
reference_group

A character with length one to specify which group is set as reference.

sample_cov A numeric matrix (single group case) or a list of numeric matrix (multi-
group case) to represent sample covariance matrixs. It must have row and col-
umn names that match the variable names specified in model.

sample_mean A numeric (single group case) or a list of numeric (multi-group case) to rep-
resent sample mean vectors.

sample_size A numeric (single group case) with length one or a list of numeric (multi-
group case) to represent the sample sizes.

sample_moment_acov

A numeric matrix (single group case) or a list of numeric matrix (multi-
group case) to represent asymptotic covariance for moments.

verbose A logical to specify whether messages made by lslx should be printed.

... Other arguments. For details, please see the documentation of lslx.

Value

A fitted lslx object

Examples

EXAMPLE: Semi-Confirmatory Factor Analysis with lavaan Style
specify a factor analysis model with lavaan style
model_fa <- "visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
pen() * visual =~ x4 + x5 + x6 + x7 + x8 + x9
pen() * textual =~ x1 + x2 + x3 + x7 + x8 + x9
pen() * speed =~ x1 + x2 + x3 + x4 + x5 + x6

44 prelslx

visual ~~ 1 * visual
textual ~~ 1 * textual
speed ~~ 1 * speed"

fit with mcp under specified penalty levels and convexity levels
lslx_fa <- plsem(model = model_fa,

data = lavaan::HolzingerSwineford1939,
penalty_method = "mcp",
lambda_grid = seq(.02, .60, .02),
delta_grid = c(1.5, 3.0, Inf))

summarize fitting result under the penalty level selected by 'bic'
summary(lslx_fa, selector = "bic")

prelslx R6 class to obtain preliminary result for semi-confirmatory structural
equation modeling

Description

R6 class to obtain preliminary result for semi-confirmatory structural equation modeling

R6 class to obtain preliminary result for semi-confirmatory structural equation modeling

Value

Object of prelslx R6 class.

Methods

Public methods:
• prelslx$new()

• prelslx$prefit()

• prelslx$clone()

Method new():
Usage:
prelslx$new(
model,
data,
numeric_variable,
ordered_variable,
weight_variable,
auxiliary_variable,
group_variable,
reference_group,
sample_cov,

prelslx 45

sample_mean,
sample_size,
sample_moment_acov,
verbose = TRUE

)

Method prefit():

Usage:
prelslx$prefit(
penalty_method = "mcp",
lambda_grid = "default",
delta_grid = "default",
step_grid = "default",
loss = "default",
algorithm = "default",
missing_method = "default",
start_method = "default",
lambda_direction = "default",
lambda_length = 50L,
delta_length = 3L,
threshold_value = 0.3,
subset = NULL,
cv_fold = 1L,
iter_out_max = 100L,
iter_in_max = 50L,
iter_other_max = 500L,
iter_armijo_max = 100L,
tol_out = 0.001,
tol_in = 0.001,
tol_other = 1e-07,
step_size = 0.5,
momentum = 0,
armijo = 1e-05,
ridge_cov = 0,
ridge_hessian = 1e-04,
ridge_weight = 1e-04,
warm_start = TRUE,
positive_variance = TRUE,
minimum_variance = 1e-04,
armijo_rule = TRUE,
enforce_cd = TRUE,
random_update = TRUE,
weight_matrix = NULL,
verbose = TRUE

)

Method clone(): The objects of this class are cloneable with this method.

Usage:

46 summary.lslx

prelslx$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

residuals.lslx S3 method to extract residual moments from lslx

Description

residuals.lslx() is an S3 interface for extracting residuals from a lslx object.

Usage

S3 method for class 'lslx'
residuals(object, selector, lambda, delta, ...)

Arguments

object A fitted lslx object.

selector A character to specify a selector for determining an optimal penalty level.
Its value can be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or
their robust counterparts "raic", "raic3", "rcaic", "rbic", "rabic", "rhbic"
if raw data is available.

lambda A numeric to specific a chosen optimal penalty level. If the specified lambda is
not in lambda_grid, a nearest legitimate value will be used.

delta A numeric to specific a chosen optimal convexity level. If the specified delta
is not in delta_grid, a nearest legitimate value will be used.

... Other arguments. For details, please see the $extracted_residual_mean()
and the $extracted_residual_cov() methods in lslx.

summary.lslx S3 method to summarize lslx fitting results

Description

summary.lslx() is an S3 interface for summarizing lslx fitting results.

Usage

S3 method for class 'lslx'
summary(object, selector, lambda, delta, ...)

vcov.lslx 47

Arguments

object A fitted lslx object.

selector A character to specify a selector for determining an optimal penalty level.

lambda A numeric to specify a chosen optimal lambda value.

delta A numeric to specify a chosen optimal lambda value.

... Other arguments. For details, please see the $summarize() method in lslx.

vcov.lslx S3 method to extract covariance matrix of estimates from lslx

Description

vcov.lslx() is an S3 interface for extracting covariance matrix of parameter estimate from a lslx
object.

Usage

S3 method for class 'lslx'
vcov(object, selector, lambda, delta, ...)

Arguments

object A fitted lslx object.

selector A character to specify a selector for determining an optimal penalty level.
Its value can be any one in "aic", "aic3", "caic", "bic", "abic", "hbic", or
their robust counterparts "raic", "raic3", "rcaic", "rbic", "rabic", "rhbic"
if raw data is available.

lambda A numeric to specific a chosen optimal penalty level. If the specified lambda is
not in lambda_grid, a nearest legitimate value will be used.

delta A numeric to specific a chosen optimal convexity level. If the specified delta
is not in delta_grid, a nearest legitimate value will be used.

... Other arguments. For details, please see the $extracted_coefficient_acov()
method in lslx.

Index

coef.lslx, 2

fitted.lslx, 3

lslx, 3
lslx::prelslx, 24

plsem, 42
prelslx, 44

residuals.lslx, 46

summary.lslx, 46

vcov.lslx, 47

48

	coef.lslx
	fitted.lslx
	lslx
	plsem
	prelslx
	residuals.lslx
	summary.lslx
	vcov.lslx
	Index

