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Abstract

The linear model for location and scale (LMLS) is a multi-predictor regression model with explanatory
variables for the mean (= the location) and the standard deviation (= the scale) of a normally distributed
response variable. It is a special case of the generalized additive model for location, scale and shape
(GAMLSS), as described by Rigby and Stasinopoulos (2005). This vignette discusses the lmls package
for R, motivating the model class with a real-world application and illustrating the capabilities of the
package: maximum likelihood and Markov chain Monte Carlo (MCMC) inference, a parametric bootstrap
algorithm, and diagnostic plots for the LMLS model class.

The lmls package and this vignette were written for the “Advanced Statistical Programming” course at
the University of Göttingen and published on CRAN to provide an accessible introduction to anybody who
is curious about location-scale regression, and as a basis for the implementation of additional inference
algorithms and model extensions.
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1 Motivation and model

The lmls package comes with the abdom dataset (which it borrows from the gamlss.data package). The dataset
consists of only two variables: the size of 610 fetuses (as measurements of their abdominal circumference
taken from ultrasound scans) and their gestational age ranging from 12 to 42 weeks.

library(lmls)

ggplot(abdom, aes(x, y)) +

geom_point(color = "darkgray", size = 1) +

xlab("Age [weeks]") +

ylab("Size [mm]")
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Figure 1: The abdom dataset containing the gestational age and abdominal circumference of 610 fetuses.

As expected, Figure 1 indicates that the size of the babies increases with their age. We can use a simple
linear regression model to quantify this relationship:

m1 <- lm(y ~ x, data = abdom)

summary(m1)

#>

#> Call:

#> lm(formula = y ~ x, data = abdom)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -84.579 -8.105 -0.185 8.064 54.325

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) -55.1795 2.0010 -27.58 <2e-16 ***

#> x 10.3382 0.0701 147.49 <2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#>

#> Residual standard error: 14.63 on 608 degrees of freedom

#> Multiple R-squared: 0.9728, Adjusted R-squared: 0.9728

#> F-statistic: 2.175e+04 on 1 and 608 DF, p-value: < 2.2e-16

The simple linear regression model with normally distributed errors is defined as

yi = β0 + xiβ1 + εi, where εi
i.i.d.
∼ N (0, σ2).

Based on the scatterplot of the data in Figure 1, the homoscedasticity (= constant variance) assumption
of the simple linear regression model seems implausible. In fact, the variance of the babies’ size seems to
increase with their age. We can confirm this by plotting the regression residuals against the babies’ age:

abdom$resid <- resid(m1)

ggplot(abdom, aes(x, resid)) +

geom_point(color = "darkgray", size = 1) +
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geom_hline(yintercept = 0, linewidth = 0.5) +

xlab("Age [weeks]") +

ylab("Residuals")
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Figure 2: The residuals of the simple linear regression model for the abdom dataset show clear heteroscedasticity
and some non-linearity.

It follows from the definition of the simple linear regression model that the response variable yi is normally
distributed with mean µi = β0 + xiβ1 and standard deviation σ, yielding

yi
ind.
∼ N (β0 + xiβ1, σ

2).

From this representation, we can extend the simple linear regression model and use the explanatory variable xi

to predict not only the mean µi but also the standard deviation σi of the response variable yi. We translate
this idea into the model

yi
ind.
∼ N (β0 + xiβ1, (exp(γ0 + xiγ1))2), (1)

which is a minimal linear model for location and scale (LMLS). The regression coefficients γ0 and γ1 are
the intercept and the slope parameter for the log-standard deviation, and the exponential function is the
inverse link (or response) function. It ensures that the predictions for the standard deviation are always valid
(= positive). This step is necessary, because the linear predictor γ0 + xiγ1 can become zero or negative for
some choices of γ0 and γ1.

Using the lmls package, we can estimate Model (1) for the abdom dataset with a maximum likelihood
algorithm running the following line of code:

m2 <- lmls(y ~ x, ~ x, data = abdom)

abdom$mu <- predict(m2, type = "response", predictor = "location")

abdom$sigma <- predict(m2, type = "response", predictor = "scale")

abdom$upper <- abdom$mu + 1.96 * abdom$sigma

abdom$lower <- abdom$mu - 1.96 * abdom$sigma

ggplot(abdom, aes(x, y)) +

geom_point(color = "darkgray", size = 1) +

geom_line(aes(y = mu), linewidth = 0.7) +

geom_line(aes(y = upper), linewidth = 0.3) +
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geom_line(aes(y = lower), linewidth = 0.3) +

xlab("Age [weeks]") +

ylab("Size [mm]")
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Figure 3: The LMLS for the abdom dataset with a linear effect of the babies’ age on their average size and a
linear effect on the log-standard deviation.

The general LMLS can include multiple explanatory variables, transformations of the explanatory variables,
and it does not require the explanatory variables for the mean and the standard deviation to be identical.
We define the general LMLS as

yi
ind.
∼ N (x′

iβ, (exp(z′
iγ))2),

where xi and β are the covariate vector and the vector of regression coefficients for the mean, and zi and γ

are the covariate vector and the vector of regression coefficients for the standard deviation.

Polynomials are a straightforward way to include transformations of explanatory variables in a model. For
example, we can improve Model (1) for the abdom dataset and add a quadratic effect of the babies’ age on
their average size with this command:

m3 <- lmls(y ~ poly(x, 2), ~ x, data = abdom)

The AIC drops from 4861.184 to 4802.823 for this model compared to Model (1). Figure 4 illustrates how the
quadratic effect improves the fit of the model.

2 Statistical inference

The lmls package implements two inference algorithms: a frequentist maximum likelihood (ML) algorithm,
which it uses by default, and a Bayesian Markov chain Monte Carlo (MCMC) algorithm. The derivatives
that are required for these inference algorithms are derived in the Appendix in Section 4.

To simplify the notation in this and the next section, we first define the response vector y = [y1, . . . , yn]′, the
design matrices X = [x′

1, . . . ,x
′
n]′ and Z = [z′

1, . . . ,z
′
n]′, and the standard deviation of the i-th observation

4



100

200

300

400

20 30 40

Age [weeks]

S
iz

e
 [
m

m
]

Figure 4: The LMLS for the abdom dataset with a quadratic effect of the babies’ age on their average size
and a linear effect on the log-standard deviation.

σi = exp(z′
iγ). Finally, let W be the weight matrix

W =








1/σ2
1 0 . . . 0

0 1/σ2
2 0

...
. . .

...
0 0 . . . 1/σ2

n







. (2)

2.1 Maximum likelihood

The ML algorithm combines weighted least squares (WLS) updates for β̂ and Fisher scoring updates for γ̂.
We first discuss this update strategy and then take a look at the initialization strategy.

2.1.1 Update strategy

If we know the true γ and hence the true weight matrix W, we can estimate β with WLS:

β̂(WLS) = (X′
WX)−1

X
′
Wy.

On the other hand, if we know the true β, we can estimate γ with the Fisher scoring algorithm. Fisher
scoring is an iterative algorithm for ML estimation, similar to Newton’s method. The k-th update of the
Fisher scoring algorithm is defined as

γ̂(k) = γ̂(k−1) + (I(γ̂(k−1)))−1s(γ̂(k−1)),

where I is the Fisher information and s is the score of γ.

In most cases, we know neither the true β nor the true γ, but we can estimate them with an iterative
algorithm alternating between a Fisher scoring update for γ̂ and a WLS update for β̂. The other vector of
regression coefficients is kept fixed at each step.

2.1.2 Initialization strategy

For the iterative algorithm to work well, we need to find good starting values. To initialize β̂, the ordinary
least squares (OLS) estimator β̂(OLS) = (X′

X)−1
X

′y is a natural choice. Note that β̂(OLS) is unbiased for
the LMLS, because

E(β̂(OLS)) = (X′
X)−1

X
′
E(y) = (X′

X)−1
X

′
Xβ = β.
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Under mild regularity conditions, β̂(OLS) is also consistent. However, it is not the best linear unbiased
estimator (BLUE), because the homoscedasticity requirement of the Gauss-Markov theorem does not hold.

To initialize γ̂, we first estimate log σi with ŝi = log |yi − x′
iβ̂

(OLS)| + 0.635 and then regress ŝ = [ŝ1, . . . , ŝn]′

on the design matrix Z with OLS to obtain γ̂(0) = (Z′
Z)−1

Z
′ŝ.

The motivation for ŝi as an estimator for log σi is as follows: Consider

log

∣
∣
∣
∣

yi − µi

σi

∣
∣
∣
∣

= log |yi − µi| − log σi (3)

and

log

∣
∣
∣
∣

yi − µi

σi

∣
∣
∣
∣

= log

√
(
yi − µi

σi

)2

=
1

2
· log

(
yi − µi

σi

)2

︸ ︷︷ ︸

∼χ2(1)

. (4)

Setting the RHS of Equation (3) equal to the RHS of Equation (4) and taking expectations yields

E(log |yi − µi|) − log σi = 1/2 · (ψ(1/2) + log 2)
︸ ︷︷ ︸

≈−0.635

,

where ψ is the digamma function. The term ψ(1/2) + log 2 follows from the fact that a χ2(ν) distribution
is identical to a Gamma(k = ν/2, θ = 2) distribution, and that for X ∼ Gamma(k, θ), we have E(logX) =
ψ(k) + log θ. Rearranging the equation to

E (log |yi − µi| + 0.635)
︸ ︷︷ ︸

=si

= log σi

shows that si is an unbiased estimator for log σi. Unfortunately, we do not know the true µi in practice and
have to use the unbiased estimator x′

iβ̂
(OLS) as an approximation instead.

2.1.3 Complete algorithm

1. Estimate β̂(OLS) = (X′
X)−1

X
′y.

2. Initialize γ̂(0) = (Z′
Z)−1

Z
′ŝ, where ŝ = [ŝi] = log |yi − x′

iβ̂
(OLS)| + 0.635.

3. Initialize β̂(0) = (X′
Ŵ

(0)
X)−1

X
′
Ŵ

(0)y, where Ŵ
(0) is the weight matrix for γ̂(0).

4. Set k = 1.
5. Repeat the following steps until convergence:

1. Update γ̂(k) = γ̂(k−1) + (I(γ̂(k−1)))−1s(γ̂(k−1)) keeping β̂(k−1) fixed.

2. Update β̂(k) = (X′
Ŵ

(k)
X)−1

X
′
Ŵ

(k)y, where Ŵ
(k) is the weight matrix for γ̂(k).

3. Increase k by 1.

2.2 Markov chain Monte Carlo

To estimate an LMLS with MCMC, we can call the mcmc() function on an existing model object. The sampler
requires a model object that contains the design matrices, so we need to make sure the lmls() function was
called with the argument light = FALSE. Finally, we can use the summary() function with the argument
type = "mcmc" to output some summary statistics of the posterior samples.

m3 <- lmls(y ~ poly(x, 2), ~ x, data = abdom, light = FALSE)

m3 <- mcmc(m3)

summary(m3, type = "mcmc")

#>

#> Call:

#> lmls(location = y ~ poly(x, 2), scale = ~x, data = abdom, light = FALSE)

6



#>

#> Deviance residuals:

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> -3.188000 -0.700400 -0.063480 -0.004337 0.611500 4.060000

#>

#> Location coefficients (identity link):

#> Mean 2.5% 50% 97.5%

#> (Intercept) 226.72 225.61 226.71 227.83

#> poly(x, 2)1 2160.34 2130.05 2160.87 2190.74

#> poly(x, 2)2 -99.46 -125.90 -99.24 -73.85

#>

#> Scale coefficients (log link):

#> Mean 2.5% 50% 97.5%

#> (Intercept) 1.36740 1.16883 1.37487 1.569

#> x 0.04206 0.03513 0.04190 0.049

#>

#> Residual degrees of freedom: 605

#> Log-likelihood: -2399.48

#> AIC: 4808.95

#> BIC: 4831.02

The posterior samples for one regression coefficient, γ1 in this case, can be extracted and plotted as follows:

samples <- as.data.frame(m3$mcmc$scale)

samples$iteration <- 1:nrow(samples)

p1 <- ggplot(samples, aes(iteration, x)) +

geom_line() +

xlab("Iteration") +

ylab(expression(gamma[1]))

p2 <- ggplot(samples, aes(x, after_stat(density))) +

geom_histogram(bins = 15) +

xlab(expression(gamma[1])) +

ylab("Density")

p1 + p2
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Figure 5: Trace plot and histogram of the posterior samples for γ1.

2.2.1 MCMC algorithm

The MCMC algorithm assumes flat priors for β and γ and works as follows:

1. Initialize β(0) and γ(0) with the ML estimates.
2. Set k = 1.
3. Repeat the following steps num_samples times:

1. Sample β(k) from the full conditional in a Gibbs update step (see Section 2.2.2).
2. Sample γ(k) with the Riemann manifold Metropolis-adjusted Langevin algorithm (MMALA) from

Girolami and Calderhead (2011) using the Fisher-Rao metric tensor.
3. Increase k by 1.

2.2.2 Full conditional of β

The full conditional of β used in the Gibbs update step is given by

p(β | · ) ∝ exp(−1/2 · (y − Xβ)′
W(y − Xβ)) · p(β) · p(γ),

where the weight matrix W is defined as in Equation (2). The priors p(β) and p(γ) can be ignored, because
we assume them to be flat. It can be shown with some tedious but simple linear algebra that

(y − Xβ)′
W(y − Xβ)

= (β − β̂(WLS))′
X

′
WX(β − β̂(WLS)) + y′(W + WX(X′

WX)−1
X

′
W)y,

where β̂(WLS) is the WLS estimator for β using the weight matrix W. As the second addend in the last
equation is independent of β, the full conditional reduces to

p(β | · ) ∝ exp(−1/2 · (β − β̂(WLS))′
X

′
WX(β − β̂(WLS))),

which implies the following multivariate normal distribution:

β | · ∼ N (β̂(WLS), (X′
WX)−1).

3 Comparison with other R packages

There are a number of R packages with similar capabilities as lmls. The popular mgcv package (Wood 2017),
which is typically used to estimate generalized additive models (GAMs), added support for multi-predictor
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models including the LMLS with a normally distributed response variable in version 1.8. The gamlss package
implements generalized additive models for location, scale and shape (GAMLSS, Rigby and Stasinopoulos
2005) in a very general way, and the bamlss package (Umlauf, Klein, and Zeileis 2018) is a Bayesian alternative
to the gamlss package.

Compared to these packages, the scope of the lmls package is much narrower. Its functionality is limited to
the LMLS with a normally distributed response variable. Other response distributions or the regularization
of covariate effects are not supported. Instead, lmls aims to be. . .

• . . . user-friendly. The few exported functions are intuitive and simple.
• . . . stable. As lmls implements only one single, narrow model class, it can make use of specific and

robust inference algorithms.
• . . . fast. In fact, lmls seems to be 3.5 to 4 times faster than mgcv and gamlss. See below for a small

benchmark on the abdom dataset.
• . . . lightweight. lmls is written in pure R and depends only on the generics package.
• . . . comprehensible. lmls was used as a teaching material for a university course. The code is modular

and accessible, even to R beginners.
• . . . well-tested. Most of the code is covered by unit and integration tests.

Finally, we compare the performance of the lmls package on the abdom dataset with mgcv and gamlss using
the microbenchmark package. The results of the benchmark are shown in Figure 6.

library(gamlss)

library(mgcv)

bench <- microbenchmark::microbenchmark(

lmls = lmls(y ~ poly(x, 2), ~ x, data = abdom),

mgcv = gam(list(y ~ poly(x, 2), ~ x), family = gaulss(), data = abdom),

gamlss = gamlss(y ~ poly(x, 2), ~ x, data = abdom)

)

gamlss

mgcv

lmls

0 10 20

Execution time [ms]

P
a
c
ka

g
e

Figure 6: The lmls package is about 3.5 to 4 times faster than mgcv and gamlss on the abdom dataset.

4 Appendix: Score and Fisher information

The inference algorithms from Section 2 require the score (= the gradient of the log-likelihood) and the Fisher
information (= the covariance of the score) with respect to β and γ.
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4.1 Location coefficients β

The score of the location coefficients β is

s(β) =
∂ℓ

∂β
= X

′q,

where q is an n-dimensional column vector with the elements qi = (yi − µi)/σ
2
i . The corresponding Fisher

information is given by
I(β) = Cov(s(β)) = Cov(X′q) = X

′ Cov(q)X,

where the diagonal elements of the covariance matrix Cov(q) are

Var(qi) = Var

(
yi − µi

σ2
i

)

=
1

σ2
i

· Var

(
yi − µi

σi

)

︸ ︷︷ ︸

∼N (0,1)

=
1

σ2
i

,

and the off-diagonal elements are Cov(qi, qj) = 0 for i ̸= j, due to the independence assumption of the LMLS.
In R, we can use the following efficient implementation of the Fisher information of β:

crossprod(X / scale)

Here, scale is the vector [σ1, . . . , σn]. This code works, because R stores matrices in column-major order
and recycles shorter vectors for operations like element-wise division.

4.2 Scale coefficients γ

The score of the scale coefficients γ is

s(γ) =
∂ℓ

∂γ
= Z

′r,

where r is an n-dimensional column vector with the elements ri = ((yi − µi)/σi)
2 − 1. The corresponding

Fisher information is given by

I(γ) = Cov(s(γ)) = Cov(Z′r) = Z
′ Cov(r)Z,

where the diagonal elements of the covariance matrix Cov(r) are

Var(ri) = Var

((
yi − µi

σi

)2

− 1

)

= Var

((
yi − µi

σi

)2)

︸ ︷︷ ︸

∼χ2(1)

= 2,

and the off-diagonal elements are Cov(ri, rj) = 0 for i ≠ j, due to the independence assumption of the LMLS.
In R, we can use the following efficient implementation of the Fisher information of γ:

2 * crossprod(Z)

4.3 Mixed Fisher information of β and γ

The inference algorithms from Section 2 update the location coefficients β and the scale coefficients γ

separately. Would a joint update maybe work better? Let us take a look at the Fisher information of the
stacked regression coefficients

I

([
β

γ

])

=

[
I(β) Cov(s(β), s(γ))

Cov(s(γ), s(β)) I(γ)

]

.

We are still missing the off-diagonal elements

Cov(s(β), s(γ)) = Cov(s(γ), s(β))′ = Cov(X′q,Z′r) = X
′ Cov(q, r)Z,
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where the diagonal elements of the cross-covariance matrix Cov(q, r) are

Cov(qi, ri) = Cov

(
yi − µi

σ2
i

,

(
yi − µi

σi

)2

− 1

)

=
1

σi

· Cov

(
yi − µi

σi

,

(
yi − µi

σi

)2)

= 0.

The third equality holds because (yi − µi)/σi is a standard normal random variable and hence uncorrelated
with its square. The off-diagonal elements of Cov(q, r) are Cov(qi, rj) = 0 for i ̸= j, due to the independence
assumption of the LMLS. It follows that Cov(s(β), s(γ)) = Cov(s(γ), s(β)) = 0, which means there is no
additional information we can make use of for a joint update of β and γ (at least not in terms of the Fisher
information).
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